aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/reduction.ml
blob: 2ce121ed12dfdbed6255b5fb34e141586ab208df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

(* $Id$ *)

open Pp
open Util
open Names
open Generic
open Term
open Univ
open Evd
open Constant
open Inductive
open Environ
open Instantiate
open Closure

exception Redelimination
exception Induc
exception Elimconst

type 'a reduction_function = unsafe_env -> 'a evar_map -> constr -> constr

type 'a stack_reduction_function = 
    unsafe_env -> 'a evar_map -> constr -> constr list -> constr * constr list

(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)

let rec under_casts f env sigma = function
  | DOP2(Cast,c,t) -> DOP2(Cast,under_casts f env sigma c, t)
  | c              -> f env sigma c

let rec whd_stack env sigma x stack =
  match x with
    | DOPN(AppL,cl)  -> whd_stack env sigma cl.(0) (array_app_tl cl stack)
    | DOP2(Cast,c,_) -> whd_stack env sigma c stack
    | _              -> (x,stack)
	  
let stack_reduction_of_reduction red_fun env sigma x stack =
  let t = red_fun env sigma (applistc x stack) in
  whd_stack env sigma t []

let strong whdfun env sigma = 
  let rec strongrec t = match whdfun env sigma t with
    | DOP0 _ as t -> t
    (* Cas ad hoc *)
    | DOP1(oper,c) -> DOP1(oper,strongrec c)
    | DOP2(oper,c1,c2) -> DOP2(oper,strongrec c1,strongrec c2)
    | DOPN(oper,cl) -> DOPN(oper,Array.map strongrec cl)
    | DOPL(oper,cl) -> DOPL(oper,List.map strongrec cl)
    | DLAM(na,c) -> DLAM(na,strongrec c)
    | DLAMV(na,c) -> DLAMV(na,Array.map strongrec c)
    | VAR _ as t -> t
    | Rel _ as t -> t
  in
  strongrec

let rec strong_prodspine redfun env sigma c = 
  match redfun env sigma c with
    | DOP2(Prod,a,DLAM(na,b)) ->
        DOP2(Prod,a,DLAM(na,strong_prodspine redfun env sigma b))
    | x -> x


(****************************************************************************)
(*                   Reduction Functions                                    *)
(****************************************************************************)


(* call by value reduction functions *)
let cbv_norm_flags flags env sigma t =
  cbv_norm (create_cbv_infos flags env sigma) t

let cbv_beta env = cbv_norm_flags beta env
let cbv_betaiota env = cbv_norm_flags betaiota env
let cbv_betadeltaiota env =  cbv_norm_flags betadeltaiota env

let compute = cbv_betadeltaiota


(* lazy reduction functions. The infos must be created for each term *)
let clos_norm_flags flgs env sigma t =
  norm_val (create_clos_infos flgs env sigma) (inject t)

let nf_beta env = clos_norm_flags beta env
let nf_betaiota env = clos_norm_flags betaiota env
let nf_betadeltaiota env =  clos_norm_flags betadeltaiota env


(* lazy weak head reduction functions *)
(* Pb: whd_val parcourt tout le terme, meme si aucune reduction n'a lieu *)
let whd_flags flgs env sigma t =
  whd_val (create_clos_infos flgs env sigma) (inject t)


(* Red reduction tactic: reduction to a product *)
let red_product env sigma c = 
  let rec redrec x =
    match x with
      | DOPN(AppL,cl) -> 
	  DOPN(AppL,Array.append [|redrec (array_hd cl)|] (array_tl cl))
      | DOPN(Const _,_) when evaluable_constant env x -> 
	  constant_value env x
      | DOPN(Evar ev,_) when Evd.is_defined sigma ev -> 
	  existential_value sigma x
      | DOPN(Abst _,_) when evaluable_abst env x -> 
	  abst_value env x 
      | DOP2(Cast,c,_) -> redrec c
      | DOP2(Prod,a,DLAM(x,b)) -> DOP2(Prod, a, DLAM(x, redrec b))  
      | _ -> error "Term not reducible"
  in 
  nf_betaiota env sigma (redrec c)

(* linear substitution (following pretty-printer) of the value of name in c.
 * n is the number of the next occurence of name.
 * ol is the occurence list to find. *)
let rec substlin env name n ol c =
  match c with
    | DOPN(Const sp,_) ->
        if sp = name then
          if List.hd ol = n then
            if evaluable_constant env c then 
	      (n+1, List.tl ol, constant_value env c)
            else
              errorlabstrm "substlin"
                [< print_sp sp; 'sTR " is not a defined constant" >]
          else 
	    ((n+1),ol,c)
        else 
	  (n,ol,c)

    | DOPN(Abst _,_) ->
        if path_of_abst c = name then
          if List.hd ol = n then 
	    (n+1, List.tl ol, abst_value env c)
          else 
	    (n+1,ol,c)
        else 
	  (n,ol,c)

    (* INEFFICIENT: OPTIMIZE *)
    | DOPN(AppL,tl) ->
        let c1 = array_hd tl and cl = array_tl tl in
        Array.fold_left 
	  (fun (n1,ol1,c1') c2 ->
	     (match ol1 with 
                | [] -> (n1,[],applist(c1',[c2]))
                | _  ->
                    let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
                    (n2,ol2,applist(c1',[c2']))))
          (substlin env name n ol c1) cl

    | DOP2(Lambda,c1,DLAM(na,c2)) ->
        let (n1,ol1,c1') = substlin env name n ol c1 in
        (match ol1 with 
           | [] -> (n1,[],DOP2(Lambda,c1',DLAM(na,c2)))
           | _  ->
               let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
               (n2,ol2,DOP2(Lambda,c1',DLAM(na,c2'))))

    | DOP2(Prod,c1,DLAM(na,c2)) ->
        let (n1,ol1,c1') = substlin env name n ol c1 in
        (match ol1 with 
           | [] -> (n1,[],DOP2(Prod,c1',DLAM(na,c2)))
           | _  ->
               let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
               (n2,ol2,DOP2(Prod,c1',DLAM(na,c2'))))
	
    | DOPN(MutCase _,_) -> 
	let (ci,p,d,llf) = destCase c in
        let rec substlist nn oll = function
          | []     -> (nn,oll,[])
          | f::lfe ->
              let (nn1,oll1,f') = substlin env name nn oll f in
              (match oll1 with
                 | [] -> (nn1,[],f'::lfe)
                 | _  ->
                     let (nn2,oll2,lfe') = substlist nn1 oll1 lfe in
                     (nn2,oll2,f'::lfe'))
	in
	let (n1,ol1,p') = substlin env name n ol p in  (* ATTENTION ERREUR *)
        (match ol1 with                                 (* si P pas affiche *)
           | [] -> (n1,[],mkMutCaseA ci p' d llf)
           | _  ->
               let (n2,ol2,d') = substlin env name n1 ol1 d in
               (match ol2 with
		  | [] -> (n2,[],mkMutCaseA ci p' d' llf)
		  | _  -> 
	              let (n3,ol3,lf') = substlist n2 ol2 (Array.to_list llf)
                      in (n3,ol3,mkMutCase ci p' d' lf')))
        
    | DOP2(Cast,c1,c2)   ->
        let (n1,ol1,c1') = substlin env name n ol c1 in
        (match ol1 with 
           | [] -> (n1,[],DOP2(Cast,c1',c2))
           | _  ->
               let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
               (n2,ol2,DOP2(Cast,c1',c2')))

    | DOPN(Fix _,_) -> 
        (warning "do not consider occurrences inside fixpoints"; (n,ol,c))
	
    | DOPN(CoFix _,_) -> 
        (warning "do not consider occurrences inside cofixpoints"; (n,ol,c))
	
    | _ -> (n,ol,c)
	  
let unfold env sigma name =
  let flag = 
    (UNIFORM,{ r_beta = true;
               r_delta = (fun op -> op=(Const name) or op=(Abst name));
               r_iota = true })
  in 
  clos_norm_flags flag env sigma


(* unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)
 * Unfolds the constant name in a term c following a list of occurrences occl.
 * at the occurrences of occ_list. If occ_list is empty, unfold all occurences.
 * Performs a betaiota reduction after unfolding. *)
let unfoldoccs env sigma (occl,name) c =
  match occl with
    | []  -> unfold env sigma name c
    | l -> 
        match substlin env name 1 (Sort.list (<) l) c with
          | (_,[],uc) -> nf_betaiota env sigma uc
          | (1,_,_) -> error ((string_of_path name)^" does not occur")
          | _ -> error ("bad occurrence numbers of "^(string_of_path name))

(* Unfold reduction tactic: *)
let unfoldn loccname env sigma c = 
  List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname

(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env sigma c =
  let rcom = red_product env sigma com in
  subst1 com (subst_term rcom c)

let fold_commands cl env sigma c =
  List.fold_right (fun com -> fold_one_com com env sigma) (List.rev cl) c


(* Pattern *)

(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
 * the specified occurrences. *)

let abstract_scheme env (locc,a,ta) t =
  let na = named_hd env ta Anonymous in
  if occur_meta ta then error "cannot find a type for the generalisation";
  if occur_meta a then 
    DOP2(Lambda,ta,DLAM(na,t))
  else 
    DOP2(Lambda, ta, DLAM(na,subst_term_occ locc a t))


let pattern_occs loccs_trm_typ env sigma c =
  let abstr_trm = List.fold_right (abstract_scheme env) loccs_trm_typ c in
  applist(abstr_trm, List.map (fun (_,t,_) -> t) loccs_trm_typ)


(*************************************)
(*** Reduction using substitutions ***)
(*************************************)

(* 1. Beta Reduction *)

let rec stacklam recfun env t stack =
  match (stack,t) with
    | (h::stacktl, DOP2(Lambda,_,DLAM(_,c))) ->
        stacklam recfun (h::env) c stacktl
    | _ -> recfun (substl env t) stack


let beta_applist (c,l) = stacklam (fun c l -> applist(c,l)) [] c l


let whd_beta_stack env sigma = 
  let rec whrec x stack = match x with
    | DOP2(Lambda,c1,DLAM(name,c2)) ->
	(match stack with
           | [] -> (x,[])
	   | a1::rest -> stacklam whrec [a1] c2 rest)
	
    | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl stack)
    | DOP2(Cast,c,_) -> whrec c stack
    | x -> (x,stack)
  in 
  whrec

let whd_beta env sigma x = applist (whd_beta_stack env sigma x [])


(* 2. Delta Reduction *)
		   
let whd_const_stack namelist env sigma = 
  let rec whrec x l =
    match x with
      | DOPN(Const sp,_) as c ->
	  if List.mem sp namelist then
            if evaluable_constant env c then
              whrec (constant_value env c) l
            else 
	      error "whd_const_stack"
	  else 
	    x,l

      | (DOPN(Abst sp,_)) as c ->
	  if List.mem sp namelist then
            if evaluable_abst env c then
              whrec (abst_value env c) l
            else 
	      error "whd_const_stack"
	  else 
	    x,l
	      
      | DOP2(Cast,c,_) -> whrec c l
      | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl l)
      | x -> x,l
  in 
  whrec

let whd_const namelist env sigma c = 
  applist(whd_const_stack namelist env sigma c [])

let whd_delta_stack env sigma = 
  let rec whrec x l =
    match x with
      | DOPN(Const _,_) as c ->
	  if evaluable_constant env c then
            whrec (constant_value env c) l
	  else 
	    x,l
      | DOPN(Evar ev,_) as c ->
	  if Evd.is_defined sigma ev then
            whrec (existential_value sigma c) l
	  else 
	    x,l
      | (DOPN(Abst _,_)) as c ->
	  if evaluable_abst env c then
            whrec (abst_value env c) l
	  else 
	    x,l
  | DOP2(Cast,c,_) -> whrec c l
  | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl l)
  | x -> x,l
  in 
  whrec

let whd_delta env sigma c = applist(whd_delta_stack env sigma c [])


let whd_betadelta_stack env sigma = 
  let rec whrec x l =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_constant env x then 
	    whrec (constant_value env x) l
          else 
	    (x,l)
      | DOPN(Evar ev,_) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma x) l
          else 
	    (x,l)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    whrec (abst_value env x) l
          else 
	    (x,l)
      | DOP2(Cast,c,_) -> whrec c l
      | DOPN(AppL,cl)  -> whrec (array_hd cl) (array_app_tl cl l)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match l with
             | [] -> (x,l)
             | (a::m) -> stacklam whrec [a] c m)
      | x -> (x,l)
  in 
  whrec

let whd_betadelta env sigma c = applist(whd_betadelta_stack env sigma c [])


let whd_betadeltat_stack env sigma = 
  let rec whrec x l =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_constant env x then 
	    whrec (constant_value env x) l
          else 
	    (x,l)
      | DOPN(Evar ev,_) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma x) l
          else 
	    (x,l)
      | DOPN(Abst _,_) ->
          if translucent_abst env x then 
	    whrec (abst_value env x) l
          else 
	    (x,l)
      | DOP2(Cast,c,_) -> whrec c l
      | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl l)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match l with
             | [] -> (x,l)
             | (a::m) -> stacklam whrec [a] c m)
      | x -> (x,l)
  in 
  whrec
       
let whd_betadeltat env sigma c = applist(whd_betadeltat_stack env sigma c [])

let whd_betadeltaeta_stack env sigma = 
  let rec whrec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_constant env x then
	    whrec (constant_value env x) stack
          else 
	    (x,stack)
      | DOPN(Evar ev,_) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then
	    whrec (abst_value env x) stack
          else 
	    (x,stack)
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl)    -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> 
		 (match applist (whrec c []) with 
                    | DOPN(AppL,cl) -> 
                        (match whrec (array_last cl) [] with 
                           | (Rel 1,[]) -> 
			       let napp = (Array.length cl) -1 in
                               if napp = 0 then (x,stack) else
                                 let lc = Array.sub cl 0 napp in
                                 let u = 
				   if napp = 1 then lc.(0) else DOPN(AppL,lc) 
                                 in 
				 if noccurn 1 u then (pop u,[]) else (x,stack)
                           | _ -> (x,stack))
                    | _ -> (x,stack))
             | (a::m) -> stacklam whrec [a] c m)
      | x -> (x,stack)
  in 
  whrec

let whd_betadeltaeta env sigma x = 
  applist(whd_betadeltaeta_stack env sigma x [])

(* 3. Iota reduction *)

type 'a miota_args = {
  mP      : constr;     (* the result type *)
  mconstr : constr;     (* the constructor *)
  mci     : case_info;  (* special info to re-build pattern *)
  mcargs  : 'a list;    (* the constructor's arguments *)
  mlf     : 'a array }  (* the branch code vector *)
		       
let reducible_mind_case = function
  | DOPN(MutConstruct _,_) | DOPN(CoFix _,_) -> true
  | _  -> false

let contract_cofix = function
  | DOPN(CoFix(bodynum),bodyvect) ->
      let nbodies = (Array.length bodyvect) -1 in
      let make_Fi j = DOPN(CoFix(j),bodyvect) in
      sAPPViList bodynum (array_last bodyvect) (list_tabulate make_Fi nbodies)
  | _ -> assert false

let mind_nparams env i =
  let mis = lookup_mind_specif i env in mis.mis_mib.mind_nparams

let reduce_mind_case env mia =
  match mia.mconstr with 
    | DOPN(MutConstruct((indsp,tyindx),i),_) ->
	let ind = DOPN(MutInd(indsp,tyindx),args_of_mconstr mia.mconstr) in
	let nparams = mind_nparams env ind in
	let real_cargs = snd (list_chop nparams mia.mcargs) in
        applist (mia.mlf.(i-1),real_cargs)
    | DOPN(CoFix _,_) as cofix ->
	let cofix_def = contract_cofix cofix in
	mkMutCaseA mia.mci mia.mP (applist(cofix_def,mia.mcargs)) mia.mlf
    | _ -> assert false

(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
   Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)

let contract_fix = function 
  | DOPN(Fix(recindices,bodynum),bodyvect) -> 
      let nbodies = Array.length recindices in
      let make_Fi j = DOPN(Fix(recindices,j),bodyvect) in
      sAPPViList bodynum (array_last bodyvect) (list_tabulate make_Fi nbodies)
  | _ -> assert false

let fix_recarg fix stack =
  match fix with 
    | DOPN(Fix(recindices,bodynum),_) ->
    	if 0 <= bodynum & bodynum < Array.length recindices then
	  let recargnum = Array.get recindices bodynum in
          (try 
	     Some (recargnum, List.nth stack recargnum)
           with Failure "nth" | Invalid_argument "List.nth" -> 
	     None)
    	else 
	  None
    | _ -> assert false

let reduce_fix whfun fix stack =
  match fix with 
    | DOPN(Fix(recindices,bodynum),bodyvect) ->
    	(match fix_recarg fix stack with
           | None -> (false,(fix,stack))
	   | Some (recargnum,recarg) ->
               let (recarg'hd,_ as recarg') = whfun recarg [] in
               let stack' = list_assign stack recargnum (applist recarg') in
	       (match recarg'hd with
                  | DOPN(MutConstruct _,_) -> 
		      (true,(contract_fix fix,stack'))
		  | _ -> (false,(fix,stack'))))
    | _ -> assert false

(* NB : Cette fonction alloue peu c'est l'appel 
     ``let (recarg'hd,_ as recarg') = whfun recarg [] in''
                                     --------------------
qui coute cher dans whd_betadeltaiota *)

let whd_betaiota_stack env sigma = 
  let rec whrec x stack =
    match x with
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl)    -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam whrec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = whrec d [] in
          if reducible_mind_case c then
            whrec (reduce_mind_case env
                     {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf, stack)
            
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
  in 
  whrec    

let whd_betaiota env sigma x = applist (whd_betaiota_stack env sigma x [])


let whd_betadeltatiota_stack env sigma = 
  let rec whrec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_constant env x then
            whrec (constant_value env x) stack
          else 
	    (x,stack)
      | DOPN(Evar ev,_) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if translucent_abst env x then
	    whrec (abst_value env x) stack
          else
	    (x,stack)
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl)    -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam whrec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = whrec d [] in
          if reducible_mind_case c then
	    whrec (reduce_mind_case env
                     {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf,stack)
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
 in 
  whrec   

let whd_betadeltatiota env sigma x = 
  applist(whd_betadeltatiota_stack env sigma x [])

let whd_betadeltaiota_stack env sigma =
  let rec bdi_rec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_constant env x then
	    bdi_rec (constant_value env x) stack
          else 
	    (x,stack)
      | DOPN(Evar ev,_) ->
          if Evd.is_defined sigma ev then 
	    bdi_rec (existential_value sigma x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    bdi_rec (abst_value env x) stack 
	  else 
	    (x,stack)
      | DOP2(Cast,c,_) -> bdi_rec c stack
      | DOPN(AppL,cl) ->  bdi_rec (array_hd cl)  (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam bdi_rec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = bdi_rec d [] in
          if reducible_mind_case c then
            bdi_rec (reduce_mind_case env
		       {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf,stack)
      | DOPN(Fix _,_) -> 
          let (reduced,(fix,stack)) = reduce_fix bdi_rec x stack in
          if reduced then bdi_rec fix stack else (fix,stack)
      | x -> (x,stack)
  in
  bdi_rec

let whd_betadeltaiota env sigma x = 
  applist(whd_betadeltaiota_stack env sigma x [])
				
				
let whd_betadeltaiotaeta_stack env sigma = 
  let rec whrec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_constant env x then 
	    whrec (constant_value env x) stack
          else 
	    (x,stack)
      | DOPN(Evar ev,_) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then
	    whrec (abst_value env x) stack
          else 
	    (x,stack)
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] ->
                 (match applist (whrec c []) with 
                    | DOPN(AppL,cl) -> 
                        (match whrec (array_last cl) [] with 
                           | (Rel 1,[]) ->
                               let napp = (Array.length cl) -1 in
                               if napp = 0 then 
				 (x,stack) 
			       else
                                 let lc = Array.sub cl 0 napp in
                                 let u = 
				   if napp = 1 then lc.(0) else DOPN(AppL,lc) 
                                 in 
				 if noccurn 1 u then (pop u,[]) else (x,stack)
                           | _ -> (x,stack))
                    | _ -> (x,stack))
             | (a::m) -> stacklam whrec [a] c m)

      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = whrec d [] in
          if reducible_mind_case c then
	    whrec (reduce_mind_case env
                     {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf,stack)
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
  in 
  whrec  

let whd_betadeltaiotaeta env sigma x = 
  applist(whd_betadeltaiotaeta_stack env sigma x [])

(********************************************************************)
(*                         Conversion                               *)
(********************************************************************)

type conv_pb = 
  | CONV 
  | CONV_LEQ

let pb_is_equal pb = pb = CONV

let pb_equal = function
  | CONV_LEQ -> CONV
  | CONV -> CONV

type 'a conversion_function = 
    unsafe_env -> 'a evar_map -> constr -> constr -> constraints

(* Conversion utility functions *)

type conversion_test = constraints -> constraints

exception NotConvertible

let convert_of_bool b c =
  if b then c else raise NotConvertible

let bool_and_convert b f = 
  if b then f else fun _ -> raise NotConvertible

let convert_and f1 f2 c = f2 (f1 c)

let convert_or f1 f2 c =
  try f1 c with NotConvertible -> f2 c

let convert_forall2 f v1 v2 c =
  array_fold_left2 (fun c x y -> f x y c) c v1 v2

(* Convertibility of sorts *)

let sort_cmp pb s0 s1 =
  match (s0,s1) with
    | (Prop c1, Prop c2) -> convert_of_bool (c1 = c2)
    | (Prop c1, Type u)  -> convert_of_bool (not (pb_is_equal pb))
    | (Type u1, Type u2) ->
	(match pb with
           | CONV -> enforce_eq u1 u2
	   | CONV_LEQ -> enforce_geq u2 u1)
    | (_, _) -> fun _ -> raise NotConvertible

let base_sort_cmp pb s0 s1 =
  match (s0,s1) with
    | (Prop c1, Prop c2) -> c1 = c2
    | (Prop c1, Type u)  -> not (pb_is_equal pb)
    | (Type u1, Type u2) -> true
    | (_, _) -> false

(* Conversion between  [lft1]term1 and [lft2]term2 *)

let rec ccnv cv_pb infos lft1 lft2 term1 term2 = 
  eqappr cv_pb infos (lft1, fhnf infos term1) (lft2, fhnf infos term2)

(* Conversion between [lft1]([^n1]hd1 v1) and [lft2]([^n2]hd2 v2) *)

and eqappr cv_pb infos appr1 appr2 =
  let (lft1,(n1,hd1,v1)) = appr1
  and (lft2,(n2,hd2,v2)) = appr2 in
  let el1 = el_shft n1 lft1
  and el2 = el_shft n2 lft2 in
  match (frterm_of hd1, frterm_of hd2) with
    (* case of leaves *)
    | (FOP0(Sort s1), FOP0(Sort s2)) -> 
	bool_and_convert
	  (Array.length v1 = 0 && Array.length v2 = 0)
	  (sort_cmp cv_pb s1 s2)
	  
    | (FVAR x1, FVAR x2) ->
	bool_and_convert (x1=x2)
	  (convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    | (FRel n, FRel m) ->
        bool_and_convert 
	  (reloc_rel n el1 = reloc_rel m el2)
          (convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    | (FOP0(Meta n), FOP0(Meta m)) ->
        bool_and_convert (n=m) 
	  (convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    (* 2 constants, 2 existentials or 2 abstractions *)
    | (FOPN(Const sp1,al1), FOPN(Const sp2,al2)) ->
	convert_or
	  (* try first intensional equality *)
	  (bool_and_convert (sp1 == sp2 or sp1 = sp2)
	     (convert_and
		(convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) al1 al2)
		(convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2)
		   v1 v2)))
          (* else expand the second occurrence (arbitrary heuristic) *)
          (match search_frozen_cst infos (Const sp2) al2 with
             | Some def2 -> 
		 eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
             | None -> (match search_frozen_cst infos (Const sp1) al1 with
                          | Some def1 -> eqappr cv_pb infos
				(lft1, fhnf_apply infos n1 def1 v1) appr2
			  | None -> fun _ -> raise NotConvertible))

    | (FOPN(Evar ev1,al1), FOPN(Evar ev2,al2)) ->
	convert_or
	  (* try first intensional equality *)
	  (bool_and_convert (ev1 == ev2)
	     (convert_and
		(convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) al1 al2)
		(convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2)
		   v1 v2)))
          (* else expand the second occurrence (arbitrary heuristic) *)
          (match search_frozen_cst infos (Evar ev2) al2 with
             | Some def2 -> 
		 eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
             | None -> (match search_frozen_cst infos (Evar ev1) al1 with
                          | Some def1 -> eqappr cv_pb infos
				(lft1, fhnf_apply infos n1 def1 v1) appr2
			  | None -> fun _ -> raise NotConvertible))

    | (FOPN(Abst sp1,al1), FOPN(Abst sp2,al2)) ->
	convert_or
	  (* try first intensional equality *)
          (bool_and_convert  (sp1 = sp2)
	     (convert_and
		(convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) al1 al2)
		(convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2)
		   v1 v2)))
          (* else expand the second occurrence (arbitrary heuristic) *)
          (match search_frozen_cst infos (Abst sp2) al2 with
             | Some def2 -> 
		 eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
             | None -> (match search_frozen_cst infos (Abst sp1) al2 with
                          | Some def1 -> eqappr cv_pb infos
				(lft1, fhnf_apply infos n1 def1 v1) appr2
			  | None -> fun _ -> raise NotConvertible))

    (* only one constant, existential or abstraction *)
    | (FOPN((Const _ | Evar _ | Abst _) as op,al1), _)      ->
        (match search_frozen_cst infos op al1 with
           | Some def1 -> 
	       eqappr cv_pb infos (lft1, fhnf_apply infos n1 def1 v1) appr2
           | None -> fun _ -> raise NotConvertible)

    | (_, FOPN((Const _ | Evar _ | Abst _) as op,al2))      ->
        (match search_frozen_cst infos op al2 with
           | Some def2 -> 
	       eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
           | None -> fun _ -> raise NotConvertible)
	
    (* other constructors *)
    | (FOP2(Lambda,c1,c2), FOP2(Lambda,c'1,c'2)) ->
        bool_and_convert
	  (Array.length v1 = 0 && Array.length v2 = 0)
          (convert_and
	     (ccnv (pb_equal cv_pb) infos el1 el2 c1 c'1)
             (ccnv (pb_equal cv_pb) infos el1 el2 c2 c'2))

    | (FOP2(Prod,c1,c2), FOP2(Prod,c'1,c'2)) ->
	bool_and_convert
          (Array.length v1 = 0 && Array.length v2 = 0)
	  (convert_and
             (ccnv (pb_equal cv_pb) infos el1 el2 c1 c'1) (* Luo's system *)
             (ccnv cv_pb infos el1 el2 c2 c'2))

    (* Inductive types:  MutInd MutConstruct MutCase Fix Cofix *)

         (* Le cas MutCase doit venir avant le cas general DOPN car, a
            priori, 2 termes a base de MutCase peuvent etre convertibles
            sans que les annotations des MutCase le soient *)

    | (FOPN(MutCase _,cl1), FOPN(MutCase _,cl2)) ->
        convert_and
	  (convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
          (convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

     | (FOPN(op1,cl1), FOPN(op2,cl2)) ->
	 bool_and_convert (op1 = op2)
	   (convert_and
              (convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
              (convert_forall2 (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2))

     (* binders *)
     | (FLAM(_,c1,_,_), FLAM(_,c2,_,_)) ->
	 bool_and_convert
           (Array.length v1 = 0 && Array.length v2 = 0)
           (ccnv cv_pb infos (el_lift el1) (el_lift el2) c1 c2)

     | (FLAMV(_,vc1,_,_), FLAMV(_,vc2,_,_)) ->
	 bool_and_convert
           (Array.length v1 = 0 & Array.length v2 = 0)
           (convert_forall2 
	      (ccnv cv_pb infos (el_lift el1) (el_lift el2)) vc1 vc2)

     | _ -> (fun _ -> raise NotConvertible)


let fconv cv_pb env sigma t1 t2 =
  let t1 = strong (fun _ _ -> strip_outer_cast) env sigma t1
  and t2 = strong (fun _ _ -> strip_outer_cast) env sigma t2 in
  if eq_constr t1 t2 then 
    Constraint.empty
  else
    let infos = create_clos_infos hnf_flags env sigma in
    ccnv cv_pb infos ELID ELID (inject t1) (inject t2) Constraint.empty

let conv env = fconv CONV env
let conv_leq env = fconv CONV_LEQ env 

let conv_forall2 f env sigma v1 v2 =
  array_fold_left2 
    (fun c x y -> let c' = f env sigma x y in Constraint.union c c')
    Constraint.empty
    v1 v2

let conv_forall2_i f env sigma v1 v2 =
  array_fold_left2_i 
    (fun i c x y -> let c' = f i env sigma x y in Constraint.union c c')
    Constraint.empty
    v1 v2

let test_conversion f env sigma x y =
  try let _ = f env sigma x y in true with NotConvertible -> false

let is_conv env sigma = test_conversion conv env sigma
let is_conv_leq env sigma = test_conversion conv_leq env sigma
let is_fconv = function | CONV -> is_conv | CONV_LEQ -> is_conv_leq

(********************************************************************)
(*             Special-Purpose Reduction                            *)
(********************************************************************)

let whd_meta metamap = function
  | DOP0(Meta p) as u -> (try List.assoc p metamap with Not_found -> u)
  | x -> x
	
(* Try to replace all metas. Does not replace metas in the metas' values
 * Differs from (strong whd_meta). *)
let plain_instance s c = 
  let rec irec = function
    | DOP0(Meta p) as u -> (try List.assoc p s with Not_found -> u)
    | DOP1(oper,c)      -> DOP1(oper, irec c)
    | DOP2(oper,c1,c2)  -> DOP2(oper, irec c1, irec c2)
    | DOPN(oper,cl)     -> DOPN(oper, Array.map irec cl)
    | DOPL(oper,cl)     -> DOPL(oper, List.map irec cl)
    | DLAM(x,c)         -> DLAM(x, irec c)
    | DLAMV(x,v)        -> DLAMV(x, Array.map irec v)
    | u                 -> u
  in 
  if s = [] then c else irec c
    
(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *)
let instance s env sigma c = 
  if s = [] then c else nf_betaiota env sigma (plain_instance s c)


(* pseudo-reduction rule:
 * [hnf_prod_app env s (Prod(_,B)) N --> B[N]
 * with an HNF on the first argument to produce a product.
 * if this does not work, then we use the string S as part of our
 * error message. *)

let hnf_prod_app env sigma s t n =
  match whd_betadeltaiota env sigma t with
    | DOP2(Prod,_,b) -> sAPP b n
    | _ ->
	errorlabstrm s [< 'sTR"Needed a product, but didn't find one in " ;
			  'sTR s ; 'fNL >]

let hnf_prod_appvect env sigma s t nl = 
  Array.fold_left (hnf_prod_app env sigma s) t nl

let hnf_prod_applist env sigma s t nl = 
  List.fold_left (hnf_prod_app env sigma s) t nl
				    
let hnf_lam_app env sigma s t n =
  match whd_betadeltaiota env sigma t with
    | DOP2(Lambda,_,b) -> sAPP b n
    | _ ->
	errorlabstrm s [< 'sTR"Needed a product, but didn't find one in " ;
			  'sTR s ; 'fNL >]

let hnf_lam_appvect env sigma s t nl = 
  Array.fold_left (hnf_lam_app env sigma s) t nl

let hnf_lam_applist env sigma s t nl = 
  List.fold_left (hnf_lam_app env sigma s) t nl

let splay_prod env sigma = 
  let rec decrec m c =
    match whd_betadeltaiota env sigma c with
      | DOP2(Prod,a,DLAM(n,c_0)) -> decrec ((n,a)::m) c_0
      | t -> m,t
  in 
  decrec []
  
let decomp_prod env sigma = 
  let rec decrec m c =
    match whd_betadeltaiota env sigma c with
      | DOP0(Sort _) as x -> m,x
      | DOP2(Prod,a,DLAM(n,c_0)) -> decrec (m+1) c_0
      | _ -> error "decomp_prod: Not a product"
  in 
  decrec 0
    
let decomp_n_prod env sigma n = 
  let rec decrec m ln c = if m = 0 then (ln,c) else 
    match whd_betadeltaiota env sigma c with
      | DOP2(Prod,a,DLAM(n,c_0)) -> decrec (m-1) ((n,a)::ln) c_0
      | _                      -> error "decomp_n_prod: Not enough products"
  in 
  decrec n []



(* Check that c is an "elimination constant"
    [xn:An]..[x1:A1](<P>MutCase (Rel i) of f1..fk end g1 ..gp)
or  [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip)) 
    with i1..ip distinct variables not occuring in t 
keep relevenant information ([i1,Ai1;..;ip,Aip],n,b)
with b = true in case of a fixpoint in order to compute 
an equivalent of Fix(f|t)[xi<-ai] as 
[yip:Bip]..[yi1:Bi1](F bn..b1) 
    == [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel 1)..(Rel p))
with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1]
   *)

let compute_consteval env sigma c = 
  let rec srec n labs c =
    match whd_betadeltaeta_stack env sigma c [] with 
      | (DOP2(Lambda,t,DLAM(_,g)),[])  -> srec (n+1) (t::labs) g
      | (DOPN(Fix((nv,i)),bodies),l)   -> 
          if List.length l > n then 
	    raise Elimconst 
          else
            let li = 
              List.map (function
                          | Rel k ->
                              if array_for_all (noccurn k) bodies then
				(k, List.nth labs (k-1)) 
			      else 
				raise Elimconst
                          | _ -> raise Elimconst) 
		l
            in 
	    if (list_distinct (List.map fst li)) then 
	      (li,n,true) 
            else 
	      raise Elimconst
      | (DOPN(MutCase _,_) as mc,lapp) -> 
          (match destCase mc with
             | (_,_,Rel _,_) -> ([],n,false)
             | _    -> raise Elimconst)
      | _ -> raise Elimconst
  in
  try Some (srec 0 [] c) with Elimconst -> None

(* One step of approximation *)

let rec apprec env sigma c stack =
  let (t,stack) = whd_betaiota_stack env sigma c stack in
  match t with
    | DOPN(MutCase _,_) ->
        let (ci,p,d,lf) = destCase t in
        let (cr,crargs) = whd_betadeltaiota_stack env sigma d [] in
        let rslt = mkMutCaseA ci p (applist(cr,crargs)) lf in
        if reducible_mind_case cr then 
	  apprec env sigma rslt stack
        else 
	  (t,stack)
    | DOPN(Fix _,_) ->
        let (reduced,(fix,stack)) = 
	  reduce_fix (whd_betadeltaiota_stack env sigma) t stack 
	in
        if reduced then apprec env sigma fix stack else (fix,stack)
    | _ -> (t,stack)

let hnf env sigma c = apprec env sigma c []

(* A reduction function like whd_betaiota but which keeps casts
 * and does not reduce redexes containing meta-variables.
 * ASSUMES THAT APPLICATIONS ARE BINARY ONES.
 * Used in Programs.
 * Added by JCF, 29/1/98. *)

let whd_programs_stack env sigma = 
  let rec whrec x stack =
    match x with
      | DOPN(AppL,cl)    ->
	  if occur_meta cl.(1) then
	    (x,stack)
	  else
	    whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam whrec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
	  if occur_meta d then
	    (x,stack)
	  else
            let (c,cargs) = whrec d [] in
            if reducible_mind_case c then
	      whrec (reduce_mind_case env
		       {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf})
		    stack
	    else
	      (mkMutCaseA ci p (applist(c,cargs)) lf, stack)
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
  in 
  whrec    

let whd_programs env sigma x = applist (whd_programs_stack env sigma x [])

let find_mrectype env sigma c =
  let (t,l) = whd_betadeltaiota_stack env sigma c [] in
  match t with
    | DOPN(MutInd (sp,i),_) ->  (t,l)
    | _ -> raise Induc

let find_minductype env sigma c =
  let (t,l) = whd_betadeltaiota_stack env sigma c [] in
  match t with
    | DOPN(MutInd (sp,i),_)
        when mind_type_finite (lookup_mind sp env) i -> (t,l)
    | _ -> raise Induc

let find_mcoinductype env sigma c =
  let (t,l) = whd_betadeltaiota_stack env sigma c [] in
  match t with
    | DOPN(MutInd (sp,i),_)
        when not (mind_type_finite (lookup_mind sp env) i) -> (t,l)
    | _ -> raise Induc

let minductype_spec env sigma c = 
  try 
    let (x,l) = find_minductype env sigma c in
    if l<>[] then anomaly "minductype_spec: Not a recursive type 1" else x
  with Induc -> 
    anomaly "minductype_spec: Not a recursive type 2"
      
let mrectype_spec env sigma c = 
  try 
    let (x,l) = find_mrectype env sigma c in
    if l<>[] then anomaly "mrectype_spec: Not a recursive type 1" else x
  with Induc -> 
    anomaly "mrectype_spec: Not a recursive type 2"

let check_mrectype_spec env sigma c =
  try 
    let (x,l) = find_mrectype env sigma c in
    if l<>[] then error "check_mrectype: Not a recursive type 1" else x
  with Induc -> 
    error "check_mrectype: Not a recursive type 2"


exception IsType

let is_arity env sigma = 
  let rec srec c = 
    match whd_betadeltaiota env sigma c with 
      | DOP0(Sort _) -> true
      | DOP2(Prod,_,DLAM(_,c')) -> srec c' 
      | DOP2(Lambda,_,DLAM(_,c')) -> srec c' 
      | _ -> false
  in 
  srec 
 
let info_arity env sigma = 
  let rec srec c = 
    match whd_betadeltaiota env sigma c with 
      | DOP0(Sort(Prop Null)) -> false 
      | DOP0(Sort(Prop Pos)) -> true 
      | DOP2(Prod,_,DLAM(_,c')) -> srec c' 
      | DOP2(Lambda,_,DLAM(_,c')) -> srec c' 
      | _ -> raise IsType
  in 
  srec 
    
let is_logic_arity env sigma c = 
  try (not (info_arity env sigma c)) with IsType -> false

let is_info_arity env sigma c = 
  try (info_arity env sigma c) with IsType -> true
   
let is_type_arity env sigma = 
  let rec srec c = 
    match whd_betadeltaiota env sigma c with 
      | DOP0(Sort(Type _)) -> true
      | DOP2(Prod,_,DLAM(_,c')) -> srec c' 
      | DOP2(Lambda,_,DLAM(_,c')) -> srec c' 
      | _ -> false
  in 
  srec 

let is_info_type env sigma t =
  let s = t.typ in
  (s = Prop Pos) ||
  (s <> Prop Null && 
   try info_arity env sigma t.body with IsType -> true)

let is_info_cast_type env sigma c = 
  match c with  
    | DOP2(Cast,c,t) -> 
	(try info_arity env sigma t 
         with IsType -> try info_arity env sigma c with IsType -> true)
    |  _ -> try info_arity env sigma c with IsType -> true
	   
let contents_of_cast_type env sigma c = 
  if is_info_cast_type env sigma c then Pos else Null

let is_info_sort = is_info_arity

(* calcul des arguments implicites *)

(* la seconde liste est ordonne'e *)

let ord_add x l =
  let rec aux l = match l with 
    | []    -> [x]
    | y::l' -> if y > x then x::l else if x = y then l else y::(aux l')
  in 
  aux l
    
let add_free_rels_until depth m acc =
  let rec frec depth loc acc = function
    | Rel n -> 
	if (n <= depth) & (n > loc) then (ord_add (depth-n+1) acc) else acc
    | DOPN(_,cl)    -> Array.fold_left (frec depth loc) acc cl
    | DOPL(_,cl)    -> List.fold_left (frec depth loc) acc cl
    | DOP2(_,c1,c2) -> frec depth loc (frec depth loc acc c1) c2
    | DOP1(_,c)     -> frec depth loc acc c
    | DLAM(_,c)     -> frec (depth+1) (loc+1) acc c
    | DLAMV(_,cl)   -> Array.fold_left (frec (depth+1) (loc+1)) acc cl
    | VAR _         -> acc
    | DOP0 _        -> acc
  in 
  frec depth 0 acc m 

(* calcule la liste des arguments implicites *)

let poly_args env sigma t =
  let rec aux n t = match (whd_betadeltaiota env sigma t) with
    | DOP2(Prod,a,DLAM(_,b)) -> add_free_rels_until n a (aux (n+1) b)
    | DOP2(Cast,t',_) -> aux n t'
    | _ -> []
  in 
  match (strip_outer_cast (whd_betadeltaiota env sigma t)) with 
    | DOP2(Prod,a,DLAM(_,b)) -> aux 1 b
    | _ -> []


(* Expanding existential variables (trad.ml, progmach.ml) *)
(* 1- whd_ise fails if an existential is undefined *)

exception Uninstantiated_evar of int

let rec whd_ise sigma = function
  | DOPN(Evar sp,_) as k ->
      if Evd.in_dom sigma sp then
        if Evd.is_defined sigma sp then
          whd_ise sigma (existential_value sigma k)
        else raise (Uninstantiated_evar sp)
      else k
  | DOP2(Cast,c,_) -> whd_ise sigma c
  | DOP0(Sort(Type _)) -> DOP0(Sort(Type dummy_univ))
  | c -> c


(* 2- undefined existentials are left unchanged *)
let rec whd_ise1 sigma = function
  | (DOPN(Evar sp,_) as k) ->
      if Evd.in_dom sigma sp & Evd.is_defined sigma sp then
        whd_ise1 sigma (existential_value sigma k)
      else 
	k
  | DOP2(Cast,c,_) -> whd_ise1 sigma c
  | DOP0(Sort(Type _)) -> DOP0(Sort(Type dummy_univ))
  | c -> c

let nf_ise1 sigma = strong (fun _ -> whd_ise1) empty_env sigma

(* Same as whd_ise1, but replaces the remaining ISEVAR by Metavariables
 * Similarly we have is_fmachine1_metas and is_resolve1_metas *)

let rec whd_ise1_metas sigma = function
  | (DOPN(Evar n,_) as k) ->
      if Evd.in_dom sigma n then
	if Evd.is_defined sigma n then
      	  whd_ise1_metas sigma (existential_value sigma k)
	else 
      	  let m = DOP0(Meta (new_meta())) in
	  DOP2(Cast,m,existential_type sigma k)
      else
	k
  | DOP2(Cast,c,_) -> whd_ise1_metas sigma c
  | c -> c


(* Fonction spéciale qui laisse les cast clés sous les Fix ou les MutCase *)

let under_outer_cast f = function
  | DOP2 (Cast,b,t) -> DOP2 (Cast,f b,f t)
  | c -> f c

let rec strip_all_casts t = 
  match t with
    | DOP2 (Cast, b, _) -> strip_all_casts b
    | DOP0 _ as t -> t
    (* Cas ad hoc *)
    | DOPN(Fix _ as f,v) -> 
	let n = Array.length v in
	let ts = Array.sub v 0 (n-1) in
	let b = v.(n-1) in 
	DOPN(f, Array.append 
	       (Array.map strip_all_casts ts)
	       [|under_outer_cast strip_all_casts b|])
    | DOPN(CoFix _ as f,v) -> 
	let n = Array.length v in
	let ts = Array.sub v 0 (n-1) in
	let b = v.(n-1) in 
	DOPN(f, Array.append 
	       (Array.map strip_all_casts ts)
	       [|under_outer_cast strip_all_casts b|])
    | DOP1(oper,c) -> DOP1(oper,strip_all_casts c)
    | DOP2(oper,c1,c2) -> DOP2(oper,strip_all_casts c1,strip_all_casts c2)
    | DOPN(oper,cl) -> DOPN(oper,Array.map strip_all_casts cl)
    | DOPL(oper,cl) -> DOPL(oper,List.map strip_all_casts cl)
    | DLAM(na,c) -> DLAM(na,strip_all_casts c)
    | DLAMV(na,c) -> DLAMV(na,Array.map (under_outer_cast strip_all_casts) c)
    | VAR _ as t -> t
    | Rel _ as t -> t