1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created under Benjamin Werner account by Bruno Barras to implement
a call-by-value conversion algorithm and a lazy reduction machine
with sharing, Nov 1996 *)
(* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *)
(* Irreversibility of opacity by Bruno Barras *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Equal inductive types by Jacek Chrzaszcz as part of the module
system, Aug 2002 *)
open Errors
open Util
open Names
open Term
open Vars
open Univ
open Environ
open Closure
open Esubst
open Context.Rel.Declaration
let rec is_empty_stack = function
[] -> true
| Zupdate _::s -> is_empty_stack s
| Zshift _::s -> is_empty_stack s
| _ -> false
(* Compute the lift to be performed on a term placed in a given stack *)
let el_stack el stk =
let n =
List.fold_left
(fun i z ->
match z with
Zshift n -> i+n
| _ -> i)
0
stk in
el_shft n el
let compare_stack_shape stk1 stk2 =
let rec compare_rec bal stk1 stk2 =
match (stk1,stk2) with
([],[]) -> Int.equal bal 0
| ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2
| (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2
| (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2
| (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2
| (Zproj (n1,m1,p1)::s1, Zproj (n2,m2,p2)::s2) ->
Int.equal bal 0 && compare_rec 0 s1 s2
| (ZcaseT(c1,_,_,_)::s1, ZcaseT(c2,_,_,_)::s2) ->
Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
| (Zfix(_,a1)::s1, Zfix(_,a2)::s2) ->
Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
| (_,_) -> false in
compare_rec 0 stk1 stk2
type lft_constr_stack_elt =
Zlapp of (lift * fconstr) array
| Zlproj of constant * lift
| Zlfix of (lift * fconstr) * lft_constr_stack
| Zlcase of case_info * lift * fconstr * fconstr array
and lft_constr_stack = lft_constr_stack_elt list
let rec zlapp v = function
Zlapp v2 :: s -> zlapp (Array.append v v2) s
| s -> Zlapp v :: s
let pure_stack lfts stk =
let rec pure_rec lfts stk =
match stk with
[] -> (lfts,[])
| zi::s ->
(match (zi,pure_rec lfts s) with
(Zupdate _,lpstk) -> lpstk
| (Zshift n,(l,pstk)) -> (el_shft n l, pstk)
| (Zapp a, (l,pstk)) ->
(l,zlapp (Array.map (fun t -> (l,t)) a) pstk)
| (Zproj (n,m,c), (l,pstk)) ->
(l, Zlproj (c,l)::pstk)
| (Zfix(fx,a),(l,pstk)) ->
let (lfx,pa) = pure_rec l a in
(l, Zlfix((lfx,fx),pa)::pstk)
| (ZcaseT(ci,p,br,e),(l,pstk)) ->
(l,Zlcase(ci,l,mk_clos e p,Array.map (mk_clos e) br)::pstk))
in
snd (pure_rec lfts stk)
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
let whd_betaiota env t =
whd_val (create_clos_infos betaiota env) (inject t)
let nf_betaiota env t =
norm_val (create_clos_infos betaiota env) (inject t)
let whd_betaiotazeta env x =
match kind_of_term x with
| (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> x
| _ -> whd_val (create_clos_infos betaiotazeta env) (inject x)
let whd_betadeltaiota env t =
match kind_of_term t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> t
| _ -> whd_val (create_clos_infos betadeltaiota env) (inject t)
let whd_betadeltaiota_nolet env t =
match kind_of_term t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t
| _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t)
(********************************************************************)
(* Conversion *)
(********************************************************************)
(* Conversion utility functions *)
(* functions of this type are called from the kernel *)
type 'a kernel_conversion_function = env -> 'a -> 'a -> unit
(* functions of this type can be called from outside the kernel *)
type 'a extended_conversion_function =
?l2r:bool -> ?reds:Names.transparent_state -> env ->
?evars:((existential->constr option) * UGraph.t) ->
'a -> 'a -> unit
exception NotConvertible
exception NotConvertibleVect of int
(* Convertibility of sorts *)
(* The sort cumulativity is
Prop <= Set <= Type 1 <= ... <= Type i <= ...
and this holds whatever Set is predicative or impredicative
*)
type conv_pb =
| CONV
| CUMUL
let is_cumul = function CUMUL -> true | CONV -> false
type 'a universe_compare =
{ (* Might raise NotConvertible *)
compare : env -> conv_pb -> sorts -> sorts -> 'a -> 'a;
compare_instances: flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a;
}
type 'a universe_state = 'a * 'a universe_compare
type ('a,'b) generic_conversion_function = env -> 'b universe_state -> 'a -> 'a -> 'b
type 'a infer_conversion_function = env -> UGraph.t -> 'a -> 'a -> Univ.constraints
let sort_cmp_universes env pb s0 s1 (u, check) =
(check.compare env pb s0 s1 u, check)
(* [flex] should be true for constants, false for inductive types and
constructors. *)
let convert_instances ~flex u u' (s, check) =
(check.compare_instances ~flex u u' s, check)
let conv_table_key infos k1 k2 cuniv =
if k1 == k2 then cuniv else
match k1, k2 with
| ConstKey (cst, u), ConstKey (cst', u') when eq_constant_key cst cst' ->
if Univ.Instance.equal u u' then cuniv
else
let flex = evaluable_constant cst (info_env infos)
&& RedFlags.red_set (info_flags infos) (RedFlags.fCONST cst)
in convert_instances ~flex u u' cuniv
| VarKey id, VarKey id' when Id.equal id id' -> cuniv
| RelKey n, RelKey n' when Int.equal n n' -> cuniv
| _ -> raise NotConvertible
let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv =
let rec cmp_rec pstk1 pstk2 cuniv =
match (pstk1,pstk2) with
| (z1::s1, z2::s2) ->
let cu1 = cmp_rec s1 s2 cuniv in
(match (z1,z2) with
| (Zlapp a1,Zlapp a2) ->
Array.fold_right2 f a1 a2 cu1
| (Zlproj (c1,l1),Zlproj (c2,l2)) ->
if not (eq_constant c1 c2) then
raise NotConvertible
else cu1
| (Zlfix(fx1,a1),Zlfix(fx2,a2)) ->
let cu2 = f fx1 fx2 cu1 in
cmp_rec a1 a2 cu2
| (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) ->
if not (fmind ci1.ci_ind ci2.ci_ind) then
raise NotConvertible;
let cu2 = f (l1,p1) (l2,p2) cu1 in
Array.fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2
| _ -> assert false)
| _ -> cuniv in
if compare_stack_shape stk1 stk2 then
cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv
else raise NotConvertible
let rec no_arg_available = function
| [] -> true
| Zupdate _ :: stk -> no_arg_available stk
| Zshift _ :: stk -> no_arg_available stk
| Zapp v :: stk -> Int.equal (Array.length v) 0 && no_arg_available stk
| Zproj _ :: _ -> true
| ZcaseT _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_nth_arg_available n = function
| [] -> true
| Zupdate _ :: stk -> no_nth_arg_available n stk
| Zshift _ :: stk -> no_nth_arg_available n stk
| Zapp v :: stk ->
let k = Array.length v in
if n >= k then no_nth_arg_available (n-k) stk
else false
| Zproj _ :: _ -> true
| ZcaseT _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_case_available = function
| [] -> true
| Zupdate _ :: stk -> no_case_available stk
| Zshift _ :: stk -> no_case_available stk
| Zapp _ :: stk -> no_case_available stk
| Zproj (_,_,p) :: _ -> false
| ZcaseT _ :: _ -> false
| Zfix _ :: _ -> true
let in_whnf (t,stk) =
match fterm_of t with
| (FLetIn _ | FCaseT _ | FApp _
| FCLOS _ | FLIFT _ | FCast _) -> false
| FLambda _ -> no_arg_available stk
| FConstruct _ -> no_case_available stk
| FCoFix _ -> no_case_available stk
| FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk
| (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _ | FProj _) -> true
| FLOCKED -> assert false
let unfold_projection infos p c =
let unf = Projection.unfolded p in
if unf || RedFlags.red_set infos.i_flags (RedFlags.fCONST (Projection.constant p)) then
(match try Some (lookup_projection p (info_env infos)) with Not_found -> None with
| Some pb ->
let s = Zproj (pb.Declarations.proj_npars, pb.Declarations.proj_arg,
Projection.constant p) in
Some (c, s)
| None -> None)
else None
(* Conversion between [lft1]term1 and [lft2]term2 *)
let rec ccnv cv_pb l2r infos lft1 lft2 term1 term2 cuniv =
eqappr cv_pb l2r infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv
(* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *)
and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv =
Control.check_for_interrupt ();
(* First head reduce both terms *)
let whd = whd_stack (infos_with_reds infos betaiotazeta) in
let rec whd_both (t1,stk1) (t2,stk2) =
let st1' = whd t1 stk1 in
let st2' = whd t2 stk2 in
(* Now, whd_stack on term2 might have modified st1 (due to sharing),
and st1 might not be in whnf anymore. If so, we iterate ccnv. *)
if in_whnf st1' then (st1',st2') else whd_both st1' st2' in
let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in
let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in
(* compute the lifts that apply to the head of the term (hd1 and hd2) *)
let el1 = el_stack lft1 v1 in
let el2 = el_stack lft2 v2 in
match (fterm_of hd1, fterm_of hd2) with
(* case of leaves *)
| (FAtom a1, FAtom a2) ->
(match kind_of_term a1, kind_of_term a2 with
| (Sort s1, Sort s2) ->
if not (is_empty_stack v1 && is_empty_stack v2) then
anomaly (Pp.str "conversion was given ill-typed terms (Sort)");
sort_cmp_universes (env_of_infos infos) cv_pb s1 s2 cuniv
| (Meta n, Meta m) ->
if Int.equal n m
then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| _ -> raise NotConvertible)
| (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) ->
if Evar.equal ev1 ev2 then
let cuniv = convert_stacks l2r infos lft1 lft2 v1 v2 cuniv in
convert_vect l2r infos el1 el2
(Array.map (mk_clos env1) args1)
(Array.map (mk_clos env2) args2) cuniv
else raise NotConvertible
(* 2 index known to be bound to no constant *)
| (FRel n, FRel m) ->
if Int.equal (reloc_rel n el1) (reloc_rel m el2)
then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
(* 2 constants, 2 local defined vars or 2 defined rels *)
| (FFlex fl1, FFlex fl2) ->
(try
let cuniv = conv_table_key infos fl1 fl2 cuniv in
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
with NotConvertible ->
(* else the oracle tells which constant is to be expanded *)
let oracle = Closure.oracle_of_infos infos in
let (app1,app2) =
if Conv_oracle.oracle_order Univ.out_punivs oracle l2r fl1 fl2 then
match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd def1 v1), appr2)
| None ->
(match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd def2 v2))
| None -> raise NotConvertible)
else
match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd def2 v2))
| None ->
(match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd def1 v1), appr2)
| None -> raise NotConvertible)
in
eqappr cv_pb l2r infos app1 app2 cuniv)
| (FProj (p1,c1), FProj (p2, c2)) ->
(* Projections: prefer unfolding to first-order unification,
which will happen naturally if the terms c1, c2 are not in constructor
form *)
(match unfold_projection infos p1 c1 with
| Some (def1,s1) ->
eqappr cv_pb l2r infos (lft1, whd def1 (s1 :: v1)) appr2 cuniv
| None ->
match unfold_projection infos p2 c2 with
| Some (def2,s2) ->
eqappr cv_pb l2r infos appr1 (lft2, whd def2 (s2 :: v2)) cuniv
| None ->
if Constant.equal (Projection.constant p1) (Projection.constant p2)
&& compare_stack_shape v1 v2 then
let u1 = ccnv CONV l2r infos el1 el2 c1 c2 cuniv in
convert_stacks l2r infos lft1 lft2 v1 v2 u1
else (* Two projections in WHNF: unfold *)
raise NotConvertible)
| (FProj (p1,c1), t2) ->
(match unfold_projection infos p1 c1 with
| Some (def1,s1) ->
eqappr cv_pb l2r infos (lft1, whd def1 (s1 :: v1)) appr2 cuniv
| None ->
(match t2 with
| FFlex fl2 ->
(match unfold_reference infos fl2 with
| Some def2 ->
eqappr cv_pb l2r infos appr1 (lft2, whd def2 v2) cuniv
| None -> raise NotConvertible)
| _ -> raise NotConvertible))
| (t1, FProj (p2,c2)) ->
(match unfold_projection infos p2 c2 with
| Some (def2,s2) ->
eqappr cv_pb l2r infos appr1 (lft2, whd def2 (s2 :: v2)) cuniv
| None ->
(match t1 with
| FFlex fl1 ->
(match unfold_reference infos fl1 with
| Some def1 ->
eqappr cv_pb l2r infos (lft1, whd def1 v1) appr2 cuniv
| None -> raise NotConvertible)
| _ -> raise NotConvertible))
(* other constructors *)
| (FLambda _, FLambda _) ->
(* Inconsistency: we tolerate that v1, v2 contain shift and update but
we throw them away *)
if not (is_empty_stack v1 && is_empty_stack v2) then
anomaly (Pp.str "conversion was given ill-typed terms (FLambda)");
let (_,ty1,bd1) = destFLambda mk_clos hd1 in
let (_,ty2,bd2) = destFLambda mk_clos hd2 in
let cuniv = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in
ccnv CONV l2r infos (el_lift el1) (el_lift el2) bd1 bd2 cuniv
| (FProd (_,c1,c2), FProd (_,c'1,c'2)) ->
if not (is_empty_stack v1 && is_empty_stack v2) then
anomaly (Pp.str "conversion was given ill-typed terms (FProd)");
(* Luo's system *)
let cuniv = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in
ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) c2 c'2 cuniv
(* Eta-expansion on the fly *)
| (FLambda _, _) ->
let () = match v1 with
| [] -> ()
| _ ->
anomaly (Pp.str "conversion was given unreduced term (FLambda)")
in
let (_,_ty1,bd1) = destFLambda mk_clos hd1 in
eqappr CONV l2r infos
(el_lift lft1, (bd1, [])) (el_lift lft2, (hd2, eta_expand_stack v2)) cuniv
| (_, FLambda _) ->
let () = match v2 with
| [] -> ()
| _ ->
anomaly (Pp.str "conversion was given unreduced term (FLambda)")
in
let (_,_ty2,bd2) = destFLambda mk_clos hd2 in
eqappr CONV l2r infos
(el_lift lft1, (hd1, eta_expand_stack v1)) (el_lift lft2, (bd2, [])) cuniv
(* only one constant, defined var or defined rel *)
| (FFlex fl1, c2) ->
(match unfold_reference infos fl1 with
| Some def1 ->
eqappr cv_pb l2r infos (lft1, whd def1 v1) appr2 cuniv
| None ->
match c2 with
| FConstruct ((ind2,j2),u2) ->
(try
let v2, v1 =
eta_expand_ind_stack (info_env infos) ind2 hd2 v2 (snd appr1)
in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
with Not_found -> raise NotConvertible)
| _ -> raise NotConvertible)
| (c1, FFlex fl2) ->
(match unfold_reference infos fl2 with
| Some def2 ->
eqappr cv_pb l2r infos appr1 (lft2, whd def2 v2) cuniv
| None ->
match c1 with
| FConstruct ((ind1,j1),u1) ->
(try let v1, v2 =
eta_expand_ind_stack (info_env infos) ind1 hd1 v1 (snd appr2)
in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
with Not_found -> raise NotConvertible)
| _ -> raise NotConvertible)
(* Inductive types: MutInd MutConstruct Fix Cofix *)
| (FInd (ind1,u1), FInd (ind2,u2)) ->
if eq_ind ind1 ind2
then
(let cuniv = convert_instances false u1 u2 cuniv in
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv)
else raise NotConvertible
| (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) ->
if Int.equal j1 j2 && eq_ind ind1 ind2
then
(let cuniv = convert_instances false u1 u2 cuniv in
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv)
else raise NotConvertible
(* Eta expansion of records *)
| (FConstruct ((ind1,j1),u1), _) ->
(try
let v1, v2 =
eta_expand_ind_stack (info_env infos) ind1 hd1 v1 (snd appr2)
in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
with Not_found -> raise NotConvertible)
| (_, FConstruct ((ind2,j2),u2)) ->
(try
let v2, v1 =
eta_expand_ind_stack (info_env infos) ind2 hd2 v2 (snd appr1)
in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
with Not_found -> raise NotConvertible)
| (FFix (((op1, i1),(_,tys1,cl1)),e1), FFix(((op2, i2),(_,tys2,cl2)),e2)) ->
if Int.equal i1 i2 && Array.equal Int.equal op1 op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in
let cuniv =
convert_vect l2r infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) ->
if Int.equal op1 op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in
let cuniv =
convert_vect l2r infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in
convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
(* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *)
| ( (FLetIn _, _) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_)
| (_, FLetIn _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _)
| (FLOCKED,_) | (_,FLOCKED) ) -> assert false
(* In all other cases, terms are not convertible *)
| _ -> raise NotConvertible
and convert_stacks l2r infos lft1 lft2 stk1 stk2 cuniv =
compare_stacks
(fun (l1,t1) (l2,t2) cuniv -> ccnv CONV l2r infos l1 l2 t1 t2 cuniv)
(eq_ind)
lft1 stk1 lft2 stk2 cuniv
and convert_vect l2r infos lft1 lft2 v1 v2 cuniv =
let lv1 = Array.length v1 in
let lv2 = Array.length v2 in
if Int.equal lv1 lv2
then
let rec fold n cuniv =
if n >= lv1 then cuniv
else
let cuniv = ccnv CONV l2r infos lft1 lft2 v1.(n) v2.(n) cuniv in
fold (n+1) cuniv in
fold 0 cuniv
else raise NotConvertible
let clos_gen_conv trans cv_pb l2r evars env univs t1 t2 =
let reds = Closure.RedFlags.red_add_transparent betaiotazeta trans in
let infos = create_clos_infos ~evars reds env in
ccnv cv_pb l2r infos el_id el_id (inject t1) (inject t2) univs
let check_eq univs u u' =
if not (UGraph.check_eq univs u u') then raise NotConvertible
let check_leq univs u u' =
if not (UGraph.check_leq univs u u') then raise NotConvertible
let check_sort_cmp_universes env pb s0 s1 univs =
match (s0,s1) with
| (Prop c1, Prop c2) when is_cumul pb ->
begin match c1, c2 with
| Null, _ | _, Pos -> () (* Prop <= Set *)
| _ -> raise NotConvertible
end
| (Prop c1, Prop c2) -> if c1 != c2 then raise NotConvertible
| (Prop c1, Type u) ->
if not (type_in_type env) then
let u0 = univ_of_sort s0 in
(match pb with
| CUMUL -> check_leq univs u0 u
| CONV -> check_eq univs u0 u)
| (Type u, Prop c) -> raise NotConvertible
| (Type u1, Type u2) ->
if not (type_in_type env) then
(match pb with
| CUMUL -> check_leq univs u1 u2
| CONV -> check_eq univs u1 u2)
let checked_sort_cmp_universes env pb s0 s1 univs =
check_sort_cmp_universes env pb s0 s1 univs; univs
let check_convert_instances ~flex u u' univs =
if UGraph.check_eq_instances univs u u' then univs
else raise NotConvertible
let checked_universes =
{ compare = checked_sort_cmp_universes;
compare_instances = check_convert_instances }
let infer_eq (univs, cstrs as cuniv) u u' =
if UGraph.check_eq univs u u' then cuniv
else
univs, (Univ.enforce_eq u u' cstrs)
let infer_leq (univs, cstrs as cuniv) u u' =
if UGraph.check_leq univs u u' then cuniv
else
let cstrs' = Univ.enforce_leq u u' cstrs in
univs, cstrs'
let infer_cmp_universes env pb s0 s1 univs =
match (s0,s1) with
| (Prop c1, Prop c2) when is_cumul pb ->
begin match c1, c2 with
| Null, _ | _, Pos -> univs (* Prop <= Set *)
| _ -> raise NotConvertible
end
| (Prop c1, Prop c2) -> if c1 == c2 then univs else raise NotConvertible
| (Prop c1, Type u) ->
let u0 = univ_of_sort s0 in
(match pb with
| CUMUL -> infer_leq univs u0 u
| CONV -> infer_eq univs u0 u)
| (Type u, Prop c) -> raise NotConvertible
| (Type u1, Type u2) ->
if not (type_in_type env) then
(match pb with
| CUMUL -> infer_leq univs u1 u2
| CONV -> infer_eq univs u1 u2)
else univs
let infer_convert_instances ~flex u u' (univs,cstrs) =
(univs, Univ.enforce_eq_instances u u' cstrs)
let inferred_universes : (UGraph.t * Univ.Constraint.t) universe_compare =
{ compare = infer_cmp_universes;
compare_instances = infer_convert_instances }
let gen_conv cv_pb l2r reds env evars univs t1 t2 =
let b =
if cv_pb = CUMUL then leq_constr_univs univs t1 t2
else eq_constr_univs univs t1 t2
in
if b then ()
else
let _ = clos_gen_conv reds cv_pb l2r evars env (univs, checked_universes) t1 t2 in
()
(* Profiling *)
let gen_conv cv_pb ?(l2r=false) ?(reds=full_transparent_state) env ?(evars=(fun _->None), universes env) =
let evars, univs = evars in
if Flags.profile then
let fconv_universes_key = Profile.declare_profile "trans_fconv_universes" in
Profile.profile8 fconv_universes_key gen_conv cv_pb l2r reds env evars univs
else gen_conv cv_pb l2r reds env evars univs
let conv = gen_conv CONV
let conv_leq = gen_conv CUMUL
let generic_conv cv_pb ~l2r evars reds env univs t1 t2 =
let (s, _) =
clos_gen_conv reds cv_pb l2r evars env univs t1 t2
in s
let infer_conv_universes cv_pb l2r evars reds env univs t1 t2 =
let b, cstrs =
if cv_pb == CUMUL then Constr.leq_constr_univs_infer univs t1 t2
else Constr.eq_constr_univs_infer univs t1 t2
in
if b then cstrs
else
let univs = ((univs, Univ.Constraint.empty), inferred_universes) in
let ((_,cstrs), _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in
cstrs
(* Profiling *)
let infer_conv_universes =
if Flags.profile then
let infer_conv_universes_key = Profile.declare_profile "infer_conv_universes" in
Profile.profile8 infer_conv_universes_key infer_conv_universes
else infer_conv_universes
let infer_conv ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state)
env univs t1 t2 =
infer_conv_universes CONV l2r evars ts env univs t1 t2
let infer_conv_leq ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state)
env univs t1 t2 =
infer_conv_universes CUMUL l2r evars ts env univs t1 t2
(* This reference avoids always having to link C code with the kernel *)
let vm_conv = ref (fun cv_pb env ->
gen_conv cv_pb env ~evars:((fun _->None), universes env))
let set_vm_conv (f:conv_pb -> Term.types kernel_conversion_function) = vm_conv := f
let vm_conv cv_pb env t1 t2 =
try
!vm_conv cv_pb env t1 t2
with Not_found | Invalid_argument _ ->
Pp.msg_warning (Pp.str "Bytecode compilation failed, falling back to standard conversion");
gen_conv cv_pb env t1 t2
let default_conv cv_pb ?(l2r=false) env t1 t2 =
gen_conv cv_pb env t1 t2
let default_conv_leq = default_conv CUMUL
(*
let convleqkey = Profile.declare_profile "Kernel_reduction.conv_leq";;
let conv_leq env t1 t2 =
Profile.profile4 convleqkey conv_leq env t1 t2;;
let convkey = Profile.declare_profile "Kernel_reduction.conv";;
let conv env t1 t2 =
Profile.profile4 convleqkey conv env t1 t2;;
*)
(* Application with on-the-fly reduction *)
let beta_applist c l =
let rec app subst c l =
match kind_of_term c, l with
| Lambda(_,_,c), arg::l -> app (arg::subst) c l
| _ -> applist (substl subst c, l) in
app [] c l
let beta_appvect c v = beta_applist c (Array.to_list v)
let beta_app c a = beta_applist c [a]
(* Compatibility *)
let betazeta_appvect = lambda_appvect_assum
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
(* pseudo-reduction rule:
* [hnf_prod_app env (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env t n =
match kind_of_term (whd_betadeltaiota env t) with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product")
let hnf_prod_applist env t nl =
List.fold_left (hnf_prod_app env) t nl
(* Dealing with arities *)
let dest_prod env =
let rec decrec env m c =
let t = whd_betadeltaiota env c in
match kind_of_term t with
| Prod (n,a,c0) ->
let d = LocalAssum (n,a) in
decrec (push_rel d env) (Context.Rel.add d m) c0
| _ -> m,t
in
decrec env Context.Rel.empty
(* The same but preserving lets in the context, not internal ones. *)
let dest_prod_assum env =
let rec prodec_rec env l ty =
let rty = whd_betadeltaiota_nolet env ty in
match kind_of_term rty with
| Prod (x,t,c) ->
let d = LocalAssum (x,t) in
prodec_rec (push_rel d env) (Context.Rel.add d l) c
| LetIn (x,b,t,c) ->
let d = LocalDef (x,b,t) in
prodec_rec (push_rel d env) (Context.Rel.add d l) c
| Cast (c,_,_) -> prodec_rec env l c
| _ ->
let rty' = whd_betadeltaiota env rty in
if Term.eq_constr rty' rty then l, rty
else prodec_rec env l rty'
in
prodec_rec env Context.Rel.empty
let dest_lam_assum env =
let rec lamec_rec env l ty =
let rty = whd_betadeltaiota_nolet env ty in
match kind_of_term rty with
| Lambda (x,t,c) ->
let d = LocalAssum (x,t) in
lamec_rec (push_rel d env) (Context.Rel.add d l) c
| LetIn (x,b,t,c) ->
let d = LocalDef (x,b,t) in
lamec_rec (push_rel d env) (Context.Rel.add d l) c
| Cast (c,_,_) -> lamec_rec env l c
| _ -> l,rty
in
lamec_rec env Context.Rel.empty
exception NotArity
let dest_arity env c =
let l, c = dest_prod_assum env c in
match kind_of_term c with
| Sort s -> l,s
| _ -> raise NotArity
let is_arity env c =
try
let _ = dest_arity env c in
true
with NotArity -> false
|