aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/reduction.ml
blob: 7c244c280e308abbd2a79329bc383efa81bd5d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

(* $Id$ *)

open Pp
open Util
open Names
open Term
open Univ
open Evd
open Declarations
open Environ
open Instantiate
open Closure
open Esubst

exception Elimconst

(* The type of (machine) states (= lambda-bar-calculus' cuts) *) 
type state = constr * constr stack

type 'a contextual_reduction_function = env -> 'a evar_map -> constr -> constr
type 'a reduction_function = 'a contextual_reduction_function
type local_reduction_function = constr -> constr

type 'a contextual_stack_reduction_function = 
    env -> 'a evar_map -> constr -> constr * constr list
type 'a stack_reduction_function = 'a contextual_stack_reduction_function
type local_stack_reduction_function = constr -> constr * constr list

type 'a contextual_state_reduction_function = 
    env -> 'a evar_map -> state -> state
type 'a state_reduction_function = 'a contextual_state_reduction_function
type local_state_reduction_function = state -> state

(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)

let rec whd_state (x, stack as s) =
  match kind_of_term x with
    | IsApp (f,cl) -> whd_state (f, append_stack cl stack)
    | IsCast (c,_)  -> whd_state (c, stack)
    | _             -> s

let appterm_of_stack (f,s) = (f,list_of_stack s)

let whd_stack x = appterm_of_stack (whd_state (x, empty_stack))
let whd_castapp_stack = whd_stack

let stack_reduction_of_reduction red_fun env sigma s =
  let t = red_fun env sigma (app_stack s) in
  whd_stack t

let strong whdfun env sigma t = 
  let rec strongrec env t =
    map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in
  strongrec env t

let local_strong whdfun = 
  let rec strongrec t = map_constr strongrec (whdfun t) in
  strongrec

let rec strong_prodspine redfun c = 
  let x = redfun c in
  match kind_of_term x with
    | IsProd (na,a,b) -> mkProd (na,a,strong_prodspine redfun b)
    | _ -> x

(****************************************************************************)
(*                   Reduction Functions                                    *)
(****************************************************************************)

(* lazy reduction functions. The infos must be created for each term *)
let clos_norm_flags flgs env sigma t =
  norm_val (create_clos_infos flgs env sigma) (inject t)

let nf_beta env = clos_norm_flags beta env
let nf_betaiota env = clos_norm_flags betaiota env
let nf_betadeltaiota env =  clos_norm_flags betadeltaiota env

(* lazy weak head reduction functions *)
let whd_flags flgs env sigma t =
  whd_val (create_clos_infos flgs env sigma) (inject t)

(*************************************)
(*** Reduction using substitutions ***)
(*************************************)

(* Naive Implementation
type flags = BETA | DELTA | EVAR | IOTA

let red_beta = List.mem BETA
let red_delta = List.mem DELTA
let red_evar = List.mem EVAR
let red_eta = List.mem ETA
let red_iota = List.mem IOTA

(* Local *)
let beta = [BETA]
let betaevar = [BETA;EVAR]
let betaiota = [BETA;IOTA]

(* Contextual *)
let delta = [DELTA;EVAR]
let betadelta = [BETA;DELTA;EVAR]
let betadeltaeta = [BETA;DELTA;EVAR;ETA]
let betadeltaiota = [BETA;DELTA;EVAR;IOTA]
let betadeltaiotaeta = [BETA;DELTA;EVAR;IOTA;ETA]
let betaiotaevar = [BETA;IOTA;EVAR]
let betaeta = [BETA;ETA]
*)

(* Compact Implementation *)
type flags = int
let fbeta = 1 and fdelta = 2 and fevar = 4 and feta = 8 and fiota = 16
							and fletin = 32

let red_beta f = f land fbeta <> 0
let red_delta f = f land fdelta <> 0
let red_evar f = f land fevar <> 0
let red_eta f = f land feta <> 0
let red_iota f = f land fiota <> 0
let red_letin f = f land fletin <> 0


(* Local *)
let beta = fbeta
let betaevar = fbeta lor fevar
let betaiota = fbeta lor fiota

(* Contextual *)
let delta = fdelta lor fevar
let betadelta = fbeta lor fdelta lor fletin lor fevar
let betadeltaeta = fbeta lor fdelta lor fletin lor fevar lor feta
let betadeltaiota = fbeta lor fdelta lor fletin lor fevar lor fiota
let betadeltaiota_nolet = fbeta lor fdelta lor fevar lor fiota
let betadeltaiotaeta = fbeta lor fdelta lor fletin lor fevar lor fiota lor feta
let betaiotaevar = fbeta lor fiota lor fevar
let betaetalet = fbeta lor feta lor fletin

(* Beta Reduction tools *)

let rec stacklam recfun env t stack =
  match (decomp_stack stack,kind_of_term t) with
    | Some (h,stacktl), IsLambda (_,_,c) -> stacklam recfun (h::env) c stacktl
    | _ -> recfun (substl env t, stack)

let beta_applist (c,l) =
  stacklam app_stack [] c (append_stack (Array.of_list l) empty_stack)

(* Iota reduction tools *)

type 'a miota_args = {
  mP      : constr;     (* the result type *)
  mconstr : constr;     (* the constructor *)
  mci     : case_info;  (* special info to re-build pattern *)
  mcargs  : 'a list;    (* the constructor's arguments *)
  mlf     : 'a array }  (* the branch code vector *)
		       
let reducible_mind_case c = match kind_of_term c with
  | IsMutConstruct _ | IsCoFix _ -> true
  | _  -> false

let contract_cofix (bodynum,(types,names,bodies as typedbodies)) =
  let nbodies = Array.length bodies in
  let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in
  substl (list_tabulate make_Fi nbodies) bodies.(bodynum)

let reduce_mind_case mia =
  match kind_of_term mia.mconstr with
    | IsMutConstruct (ind_sp,i as cstr_sp, args) ->
	let ncargs = (fst mia.mci).(i-1) in
	let real_cargs = list_lastn ncargs mia.mcargs in
        applist (mia.mlf.(i-1),real_cargs)
    | IsCoFix cofix ->
	let cofix_def = contract_cofix cofix in
	mkMutCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
    | _ -> assert false

(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
   Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)

let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) =
  let nbodies = Array.length recindices in
  let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in
  substl (list_tabulate make_Fi nbodies) bodies.(bodynum)

let fix_recarg ((recindices,bodynum),_) stack =
  if 0 <= bodynum & bodynum < Array.length recindices then
    let recargnum = Array.get recindices bodynum in
    (try 
       Some (recargnum, stack_nth stack recargnum)
     with Not_found ->
       None)
  else 
    None

type fix_reduction_result = NotReducible | Reduced of state

let reduce_fix whdfun fix stack =
  match fix_recarg fix stack with
    | None -> NotReducible
    | Some (recargnum,recarg) ->
        let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in
        let stack' = stack_assign stack recargnum (app_stack recarg') in
	(match kind_of_term recarg'hd with
           | IsMutConstruct _ -> Reduced (contract_fix fix, stack')
	   | _ -> NotReducible)

(* Generic reduction function *)

let rec whd_state_gen flags env sigma = 
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsRel n when red_delta flags ->
	  (match lookup_rel_value n env with
	     | Some body -> whrec (lift n body, stack)
	     | None -> s)
      | IsVar id when red_delta flags ->
	  (match lookup_named_value id env with
	     | Some body -> whrec (body, stack)
	     | None -> s)
      | IsEvar ev when red_evar flags ->
	  (match existential_opt_value sigma ev with
	     | Some body -> whrec (body, stack)
	     | None -> s)
      | IsConst const when red_delta flags ->
	  (match constant_opt_value env const with
	     | Some  body -> whrec (body, stack)
	     | None -> s)
      | IsLetIn (_,b,_,c) when red_letin flags -> stacklam whrec [b] c stack
      | IsCast (c,_) -> whrec (c, stack)
      | IsApp (f,cl)  -> whrec (f, append_stack cl stack)
      | IsLambda (na,t,c) ->
          (match decomp_stack stack with
             | Some (a,m) when red_beta flags -> stacklam whrec [a] c m
             | None when red_eta flags ->
		 let env' = push_rel_assum (na,t) env in
		 let whrec' = whd_state_gen flags env' sigma in
                 (match kind_of_term (app_stack (whrec' (c, empty_stack))) with
                    | IsApp (f,cl) ->
			let napp = Array.length cl in
			if napp > 0 then
			  let x', l' = whrec' (array_last cl, empty_stack) in
                          match kind_of_term x', decomp_stack l' with
                            | IsRel 1, None ->
				let lc = Array.sub cl 0 (napp-1) in
				let u = if napp=1 then f else appvect (f,lc) in
				if noccurn 1 u then (pop u,empty_stack) else s
                            | _ -> s
			else s
		    | _ -> s)
	     | _ -> s)

      | IsMutCase (ci,p,d,lf) when red_iota flags ->
          let (c,cargs) = whrec (d, empty_stack) in
          if reducible_mind_case c then
            whrec (reduce_mind_case
                     {mP=p; mconstr=c; mcargs=list_of_stack cargs;
		      mci=ci; mlf=lf}, stack)
          else 
	    (mkMutCase (ci, p, app_stack (c,cargs), lf), stack)
            
      | IsFix fix when red_iota flags ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)

      | x -> s
  in 
  whrec

let local_whd_state_gen flags = 
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsLetIn (_,b,_,c) when red_letin flags -> stacklam whrec [b] c stack
      | IsCast (c,_) -> whrec (c, stack)
      | IsApp (f,cl)  -> whrec (f, append_stack cl stack)
      | IsLambda (_,_,c) ->
          (match decomp_stack stack with
             | Some (a,m) when red_beta flags -> stacklam whrec [a] c m
             | None when red_eta flags ->
                 (match kind_of_term (app_stack (whrec (c, empty_stack))) with 
                    | IsApp (f,cl) ->
			let napp = Array.length cl in
			if napp > 0 then
			  let x', l' = whrec (array_last cl, empty_stack) in
                          match kind_of_term x', decomp_stack l' with
                            | IsRel 1, None ->
				let lc = Array.sub cl 0 (napp-1) in
				let u = if napp=1 then f else appvect (f,lc) in
				if noccurn 1 u then (pop u,empty_stack) else s
                            | _ -> s
			else s
		    | _ -> s)
	     | _ -> s)

      | IsMutCase (ci,p,d,lf) when red_iota flags ->
          let (c,cargs) = whrec (d, empty_stack) in
          if reducible_mind_case c then
            whrec (reduce_mind_case
                     {mP=p; mconstr=c; mcargs=list_of_stack cargs;
		      mci=ci; mlf=lf}, stack)
          else 
	    (mkMutCase (ci, p, app_stack (c,cargs), lf), stack)
            
      | IsFix fix when red_iota flags ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)

      | x -> s
  in 
  whrec

(* 1. Beta Reduction Functions *)
(*
let whd_beta_state =
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsLambda (name,c1,c2) ->
	  (match decomp_stack stack with
             | None -> (x,empty_stack)
	     | Some (a1,rest) -> stacklam whrec [a1] c2 rest)

      | IsCast (c,_) -> whrec (c, stack)
      | IsApp (f,cl) -> whrec (f, append_stack cl stack)
      | x -> s
  in
  whrec
*)

let whd_beta_state = local_whd_state_gen beta
let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack))
let whd_beta x = app_stack (whd_beta_state (x,empty_stack))

(* Nouveau ! *)
let whd_betaetalet_state = local_whd_state_gen betaetalet
let whd_betaetalet_stack x =
  appterm_of_stack (whd_betaetalet_state (x, empty_stack))
let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack))

(* 2. Delta Reduction Functions *)

(*
let whd_delta_state env sigma = 
  let rec whrec (x, l as s) =
    match kind_of_term x with
      | IsConst const when evaluable_constant env const ->
	  whrec (constant_value env const, l)
      | IsEvar (ev,args) when Evd.is_defined sigma ev ->
          whrec (existential_value sigma (ev,args), l)
      | IsLetIn (_,b,_,c) -> stacklam whrec [b] c l
      | IsCast (c,_) -> whrec (c, l)
      | IsApp (f,cl) -> whrec (f, append_stack cl l)
      | x -> s
  in 
  whrec
*)

let whd_delta_state e = whd_state_gen delta e
let whd_delta_stack env sigma x =
  appterm_of_stack (whd_delta_state env sigma (x, empty_stack))
let whd_delta env sigma c =
  app_stack (whd_delta_state env sigma (c, empty_stack))

(*
let whd_betadelta_state env sigma = 
  let rec whrec (x, l as s) =
    match kind_of_term x with
      | IsConst const ->
          if evaluable_constant env const then 
	    whrec (constant_value env const, l)
          else 
	    s
      | IsEvar (ev,args) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma (ev,args), l)
          else 
	    s
      | IsLetIn (_,b,_,c) -> stacklam whrec [b] c l
      | IsCast (c,_) -> whrec (c, l)
      | IsApp (f,cl)  -> whrec (f, append_stack cl l)
      | IsLambda (_,_,c) ->
          (match decomp_stack l with
             | None -> s
             | Some (a,m) -> stacklam whrec [a] c m)
      | x -> s
  in 
  whrec
*)

let whd_betadelta_state e = whd_state_gen betadelta e
let whd_betadelta_stack env sigma x =
  appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack))
let whd_betadelta env sigma c =
  app_stack (whd_betadelta_state env sigma (c, empty_stack))


(*
let whd_betaevar_stack env sigma = 
  let rec whrec (x, l as s) =
    match kind_of_term x with
      | IsEvar (ev,args) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma (ev,args), l)
          else 
	    s
      | IsCast (c,_) -> whrec (c, l)
      | IsApp (f,cl)  -> whrec (f, append_stack cl l)
      | IsLambda (_,_,c) ->
          (match decomp_stack l with
             | None -> s
             | Some (a,m) -> stacklam whrec [a] c m)
      | x -> s
  in 
  whrec
*)

let whd_betaevar_state e = whd_state_gen betaevar e
let whd_betaevar_stack env sigma c =
  appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack))
let whd_betaevar env sigma c =
  app_stack (whd_betaevar_state env sigma (c, empty_stack))

(*
let whd_betadeltaeta_state env sigma = 
  let rec whrec (x, l as s) =
    match kind_of_term x with
      | IsConst const when evaluable_constant env const ->
	  whrec (constant_value env const, l)
      | IsEvar (ev,args) when Evd.is_defined sigma ev ->
	  whrec (existential_value sigma (ev,args), l)
      | IsLetIn (_,b,_,c) -> stacklam whrec [b] c l
      | IsCast (c,_) -> whrec (c, l)
      | IsApp (f,cl)  -> whrec (f, append_stack cl l)
      | IsLambda (_,_,c) ->
          (match decomp_stack l with
             | None ->
                 (match kind_of_term (app_stack (whrec (c, empty_stack))) with 
                    | IsApp (f,cl) ->
			let napp = Array.length cl in
			if napp > 0 then
			  let x',l' = whrec (array_last cl, empty_stack) in
                          match kind_of_term x', decomp_stack l' with
                            | IsRel 1, None ->
				let lc = Array.sub cl 0 (napp - 1) in
				let u = if napp=1 then f else appvect (f,lc) in
				if noccurn 1 u then (pop u,empty_stack) else s
                            | _ -> s
			else s
                    | _ -> s)
             | Some (a,m) -> stacklam whrec [a] c m)
      | x -> s
  in 
  whrec
*)

let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e
let whd_betadeltaeta_stack env sigma x =
  appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
let whd_betadeltaeta env sigma x = 
  app_stack (whd_betadeltaeta_state env sigma (x, empty_stack))

(* 3. Iota reduction Functions *)

(* NB : Cette fonction alloue peu c'est l'appel 
     ``let (recarg'hd,_ as recarg') = whfun recarg empty_stack in''
                                     --------------------
qui coute cher dans whd_betadeltaiota *)

(*
let whd_betaiota_state = 
  let rec whrec (x,stack as s) =
    match kind_of_term x with
      | IsCast (c,_)     -> whrec (c, stack)
      | IsApp (f,cl)    -> whrec (f, append_stack cl stack)
      | IsLambda (_,_,c) ->
          (match decomp_stack stack with
             | None -> s
             | Some (a,m) -> stacklam whrec [a] c m)
      | IsMutCase (ci,p,d,lf) ->
          let (c,cargs) = whrec (d, empty_stack) in
          if reducible_mind_case c then
            whrec (reduce_mind_case
                     {mP=p; mconstr=c; mcargs=list_of_stack cargs;
		      mci=ci; mlf=lf}, stack)
          else 
	    (mkMutCase (ci, p, app_stack (c,cargs), lf), stack)
            
      | IsFix fix ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)
      | _ -> s
  in 
  whrec
*)

let whd_betaiota_state = local_whd_state_gen betaiota
let whd_betaiota_stack x =
  appterm_of_stack (whd_betaiota_state (x, empty_stack))
let whd_betaiota x =
  app_stack (whd_betaiota_state (x, empty_stack))

(*
let whd_betaiotaevar_state env sigma = 
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsEvar (ev,args) ->
          if Evd.is_defined sigma ev then 
	    whrec (existential_value sigma (ev,args), stack)
          else 
	    s
      | IsCast (c,_) -> whrec (c, stack)
      | IsApp (f,cl)    -> whrec (f, append_stack cl stack)
      | IsLambda (_,_,c) ->
          (match decomp_stack stack with
             | None -> s
             | Some (a,m) -> stacklam whrec [a] c m)
      | IsMutCase (ci,p,d,lf) ->
          let (c,cargs) = whrec (d, empty_stack) in
          if reducible_mind_case c then
	    whrec (reduce_mind_case
                     {mP=p; mconstr=c; mcargs=list_of_stack cargs;
		      mci=ci; mlf=lf}, stack)
          else 
	    (mkMutCase (ci, p, app_stack (c,cargs), lf), stack)
      | IsFix fix ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)
      | _ -> s
 in 
  whrec
*)

let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e
let whd_betaiotaevar_stack env sigma x =
  appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
let whd_betaiotaevar env sigma x = 
  app_stack (whd_betaiotaevar_state env sigma (x, empty_stack))

(*
let whd_betadeltaiota_state env sigma =
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsConst const when evaluable_constant env const ->
	  whrec (constant_value env const, stack)
      | IsEvar (ev,args) when Evd.is_defined sigma ev ->
	  whrec (existential_value sigma (ev,args), stack)
      | IsLetIn (_,b,_,c) -> stacklam whrec [b] c stack
      | IsCast (c,_) -> whrec (c, stack)
      | IsApp (f,cl)    -> whrec (f, append_stack cl stack)
      | IsLambda (_,_,c) ->
          (match decomp_stack stack with
             | None -> s
             | Some (a,m) -> stacklam whrec [a] c m)
      | IsMutCase (ci,p,d,lf) ->
          let (c,cargs) = whrec (d, empty_stack) in
          if reducible_mind_case c then
	    whrec (reduce_mind_case
                     {mP=p; mconstr=c; mcargs=list_of_stack cargs;
		      mci=ci; mlf=lf}, stack)
          else 
	    (mkMutCase (ci, p, app_stack (c,cargs), lf), stack)
      | IsFix fix ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)
      | _ -> s
  in
  whrec
*)

let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e
let whd_betadeltaiota_stack env sigma x =
  appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
let whd_betadeltaiota env sigma x = 
  app_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
				
(*				
let whd_betadeltaiotaeta_state env sigma = 
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsConst const when evaluable_constant env const ->
	  whrec (constant_value env const, stack)
      | IsEvar (ev,args) when Evd.is_defined sigma ev -> 
	  whrec (existential_value sigma (ev,args), stack)
      | IsLetIn (_,b,_,c) -> stacklam whrec [b] c stack
      | IsCast (c,_) -> whrec (c, stack)
      | IsApp (f,cl)    -> whrec (f, append_stack cl stack)
      | IsLambda (_,_,c) ->
          (match decomp_stack stack with
             | None ->
                 (match kind_of_term (app_stack (whrec (c, empty_stack))) with 
                    | IsApp (f,cl) ->
			let napp = Array.length cl in
			if napp > 0 then
			  let x', l' = whrec (array_last cl, empty_stack) in
                          match kind_of_term x', decomp_stack l' with
                            | IsRel 1, None ->
				let lc = Array.sub cl 0 (napp-1) in
				let u = if napp=1 then f else appvect (f,lc) in
				if noccurn 1 u then (pop u,empty_stack) else s
                            | _ -> s
			else s
                    | _ -> s)
             | Some (a,m) -> stacklam whrec [a] c m)

      | IsMutCase (ci,p,d,lf) ->
          let (c,cargs) = whrec (d, empty_stack) in
          if reducible_mind_case c then
	    whrec (reduce_mind_case
                     {mP=p; mconstr=c; mcargs=list_of_stack cargs;
		      mci=ci; mlf=lf}, stack)
          else 
	    (mkMutCase (ci, p, app_stack (c,cargs), lf), stack)
      | IsFix fix ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)
      | _ -> s
  in 
  whrec
*)

let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e
let whd_betadeltaiotaeta_stack env sigma x =
  appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
let whd_betadeltaiotaeta env sigma x = 
  app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))

let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e
let whd_betadeltaiota_nolet_stack env sigma x =
  appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
let whd_betadeltaiota_nolet env sigma x = 
  app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))

(********************************************************************)
(*                         Conversion                               *)
(********************************************************************)

type conv_pb = 
  | CONV 
  | CONV_LEQ

let pb_is_equal pb = pb = CONV

let pb_equal = function
  | CONV_LEQ -> CONV
  | CONV -> CONV

type 'a conversion_function = 
    env -> 'a evar_map -> constr -> constr -> constraints

(* Conversion utility functions *)

type conversion_test = constraints -> constraints

exception NotConvertible

let convert_of_bool b c =
  if b then c else raise NotConvertible

let bool_and_convert b f c = 
  if b then f c else raise NotConvertible

let convert_and f1 f2 c = f2 (f1 c)

let convert_or f1 f2 c =
  try f1 c with NotConvertible -> f2 c

let convert_forall2 f v1 v2 c =
  if Array.length v1 = Array.length v2
  then array_fold_left2 (fun c x y -> f x y c) c v1 v2
  else raise NotConvertible

let convert_stacks f v1 v2 c =
  convert_forall2 f (array_of_stack v1) (array_of_stack v2) c

(* Convertibility of sorts *)

let sort_cmp pb s0 s1 =
  match (s0,s1) with
    | (Prop c1, Prop c2) -> convert_of_bool (c1 = c2)
    | (Prop c1, Type u)  -> convert_of_bool (not (pb_is_equal pb))
    | (Type u1, Type u2) ->
	(match pb with
           | CONV -> enforce_eq u1 u2
	   | CONV_LEQ -> enforce_geq u2 u1)
    | (_, _) -> fun _ -> raise NotConvertible

let base_sort_cmp pb s0 s1 =
  match (s0,s1) with
    | (Prop c1, Prop c2) -> c1 = c2
    | (Prop c1, Type u)  -> not (pb_is_equal pb)
    | (Type u1, Type u2) -> true
    | (_, _) -> false

(* Conversion between  [lft1]term1 and [lft2]term2 *)

let rec ccnv cv_pb infos lft1 lft2 term1 term2 = 
  eqappr cv_pb infos (lft1, fhnf infos term1) (lft2, fhnf infos term2)

(* Conversion between [lft1]([^n1]hd1 v1) and [lft2]([^n2]hd2 v2) *)

and eqappr cv_pb infos appr1 appr2 =
  let (lft1,(n1,hd1,v1)) = appr1
  and (lft2,(n2,hd2,v2)) = appr2 in
  let el1 = el_shft n1 lft1
  and el2 = el_shft n2 lft2 in
  match (fterm_of hd1, fterm_of hd2) with
    (* case of leaves *)
    | (FAtom a1, FAtom a2) ->
	(match kind_of_term a1, kind_of_term a2 with
	   | (IsSort s1, IsSort s2) -> 
	       bool_and_convert
		 (stack_args_size v1 = 0 && stack_args_size v2 = 0)
		 (sort_cmp cv_pb s1 s2)
	   | (IsMeta n, IsMeta m) ->
               bool_and_convert (n=m) 
		 (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2)
		    v1 v2)
	   | _ -> fun _ -> raise NotConvertible)

    (* 2 index known to be bound to no constant *)
    | (FRel n, FRel m) ->
        bool_and_convert 
          (reloc_rel n el1 = reloc_rel m el2)
          (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    (* 2 constants, 2 existentials or 2 local defined vars or 2 defined rels *)
    | (FFlex fl1, FFlex fl2) ->
	convert_or
	  (* try first intensional equality *)
	  (bool_and_convert (fl1 = fl2)
	     (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2))
          (* else expand the second occurrence (arbitrary heuristic) *)
          (fun u ->
	     match unfold_reference infos fl2 with
             | Some def2 -> 
		 eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2) u
             | None -> (match unfold_reference infos fl1 with
                          | Some def1 -> eqappr cv_pb infos
				(lft1, fhnf_apply infos n1 def1 v1) appr2 u
			  | None -> raise NotConvertible))

    (* only one constant, existential, defined var or defined rel *)
    | (FFlex fl1, _)      ->
        (match unfold_reference infos fl1 with
           | Some def1 -> 
	       eqappr cv_pb infos (lft1, fhnf_apply infos n1 def1 v1) appr2
           | None -> fun _ -> raise NotConvertible)
    | (_, FFlex fl2)      ->
        (match unfold_reference infos fl2 with
           | Some def2 -> 
	       eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
           | None -> fun _ -> raise NotConvertible)
	
    (* other constructors *)
    | (FLambda (_,c1,c2,_,_), FLambda (_,c'1,c'2,_,_)) ->
        bool_and_convert
	  (stack_args_size v1 = 0 && stack_args_size v2 = 0)
          (convert_and
	     (ccnv (pb_equal cv_pb) infos el1 el2 c1 c'1)
             (ccnv (pb_equal cv_pb) infos (el_lift el1) (el_lift el2) c2 c'2))

    | (FLetIn _, _) | (_, FLetIn _) -> anomaly "Normally removed by fhnf"

    | (FProd (_,c1,c2,_,_), FProd (_,c'1,c'2,_,_)) ->
	bool_and_convert
          (stack_args_size v1 = 0 && stack_args_size v2 = 0)
	  (convert_and
             (ccnv (pb_equal cv_pb) infos el1 el2 c1 c'1) (* Luo's system *)
             (ccnv cv_pb infos (el_lift el1) (el_lift el2) c2 c'2))

    (* Inductive types:  MutInd MutConstruct MutCase Fix Cofix *)

      (* Les annotations du MutCase ne servent qu'à l'affichage *)

    | (FCases (_,p1,c1,cl1), FCases (_,p2,c2,cl2)) ->
	convert_and
	  (ccnv (pb_equal cv_pb) infos el1 el2 p1 p2)
	  (convert_and
	     (ccnv (pb_equal cv_pb) infos el1 el2 c1 c2)
	     (convert_and
		(convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
		(convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)
	     ))

     | (FInd (op1,cl1), FInd(op2,cl2)) ->
	 bool_and_convert (op1 = op2)
	   (convert_and
              (convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
              (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2))
     | (FConstruct (op1,cl1), FConstruct(op2,cl2)) ->
	 bool_and_convert (op1 = op2)
	   (convert_and
              (convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
              (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2))
     | (FFix (op1,(tys1,_,cl1),_,_), FFix(op2,(tys2,_,cl2),_,_)) ->
	 let n = Array.length cl1 in
	 bool_and_convert (op1 = op2)
	   (convert_and
              (convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) tys1 tys2)
	      (convert_and
		 (convert_forall2 (ccnv (pb_equal cv_pb) infos 
				     (el_liftn n el1) (el_liftn n el2))
		    cl1 cl2)
		 (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2)
		    v1 v2)))
     | (FCoFix (op1,(tys1,_,cl1),_,_), FCoFix(op2,(tys2,_,cl2),_,_)) ->
	 let n = Array.length cl1 in
	 bool_and_convert (op1 = op2)
	   (convert_and
              (convert_forall2 (ccnv (pb_equal cv_pb) infos el1 el2) tys1 tys2)
	      (convert_and
		 (convert_forall2 (ccnv (pb_equal cv_pb) infos
				     (el_liftn n el1) (el_liftn n el2))
		    cl1 cl2)
		 (convert_stacks (ccnv (pb_equal cv_pb) infos lft1 lft2)
		    v1 v2)))

     | _ -> (fun _ -> raise NotConvertible)


let fconv cv_pb env sigma t1 t2 =
  if eq_constr t1 t2 then 
    Constraint.empty
  else
    let infos = create_clos_infos hnf_flags env sigma in
    ccnv cv_pb infos ELID ELID (inject t1) (inject t2)
      Constraint.empty

let conv env = fconv CONV env
let conv_leq env = fconv CONV_LEQ env 

(*
let convleqkey = Profile.declare_profile "conv_leq";;
let conv_leq env sigma t1 t2 = Profile.profile4 convleqkey conv_leq env sigma t1 t2;;


let convkey = Profile.declare_profile "conv";;
let conv env sigma t1 t2 = Profile.profile4 convleqkey conv env sigma t1 t2;;
*)

let conv_forall2 f env sigma v1 v2 =
  array_fold_left2 
    (fun c x y -> let c' = f env sigma x y in Constraint.union c c')
    Constraint.empty
    v1 v2

let conv_forall2_i f env sigma v1 v2 =
  array_fold_left2_i 
    (fun i c x y -> let c' = f i env sigma x y in Constraint.union c c')
    Constraint.empty
    v1 v2

let test_conversion f env sigma x y =
  try let _ = f env sigma x y in true with NotConvertible -> false

let is_conv env sigma = test_conversion conv env sigma
let is_conv_leq env sigma = test_conversion conv_leq env sigma
let is_fconv = function | CONV -> is_conv | CONV_LEQ -> is_conv_leq

(********************************************************************)
(*             Special-Purpose Reduction                            *)
(********************************************************************)

let whd_meta metamap c = match kind_of_term c with
  | IsMeta p -> (try List.assoc p metamap with Not_found -> c)
  | _ -> c
	
(* Try to replace all metas. Does not replace metas in the metas' values
 * Differs from (strong whd_meta). *)
let plain_instance s c = 
  let rec irec u = match kind_of_term u with
    | IsMeta p -> (try List.assoc p s with Not_found -> u)
    | IsCast (m,_) when isMeta m ->
	(try List.assoc (destMeta m) s with Not_found -> u)
    | _ -> map_constr irec u
  in 
  if s = [] then c else irec c
    
(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *)
let instance s c = 
  if s = [] then c else local_strong whd_betaiota (plain_instance s c)


(* pseudo-reduction rule:
 * [hnf_prod_app env s (Prod(_,B)) N --> B[N]
 * with an HNF on the first argument to produce a product.
 * if this does not work, then we use the string S as part of our
 * error message. *)

let hnf_prod_app env sigma t n =
  match kind_of_term (whd_betadeltaiota env sigma t) with
    | IsProd (_,_,b) -> subst1 n b
    | _ -> anomaly "hnf_prod_app: Need a product"

let hnf_prod_appvect env sigma t nl = 
  Array.fold_left (hnf_prod_app env sigma) t nl

let hnf_prod_applist env sigma t nl = 
  List.fold_left (hnf_prod_app env sigma) t nl
				    
let hnf_lam_app env sigma t n =
  match kind_of_term (whd_betadeltaiota env sigma t) with
    | IsLambda (_,_,b) -> subst1 n b
    | _ -> anomaly "hnf_lam_app: Need an abstraction"

let hnf_lam_appvect env sigma t nl = 
  Array.fold_left (hnf_lam_app env sigma) t nl

let hnf_lam_applist env sigma t nl = 
  List.fold_left (hnf_lam_app env sigma) t nl

let splay_prod env sigma = 
  let rec decrec env m c =
    let t = whd_betadeltaiota env sigma c in
    match kind_of_term t with
      | IsProd (n,a,c0) ->
	  decrec (push_rel_assum (n,a) env)
	    ((n,a)::m) c0
      | _ -> m,t
  in 
  decrec env []

let splay_prod_assum env sigma = 
  let rec prodec_rec env l c =
    let t = whd_betadeltaiota_nolet env sigma c in
    match kind_of_term c with
    | IsProd (x,t,c)  ->
	prodec_rec (push_rel_assum (x,t) env)
	  (Sign.add_rel_assum (x, t) l) c
    | IsLetIn (x,b,t,c) ->
	prodec_rec (push_rel_def (x,b, t) env)
	  (Sign.add_rel_def (x,b, t) l) c
    | IsCast (c,_)    -> prodec_rec env l c
    | _               -> l,t
  in
  prodec_rec env Sign.empty_rel_context

let splay_arity env sigma c =
  let l, c = splay_prod env sigma c in
  match kind_of_term c with
    | IsSort s -> l,s
    | _ -> error "not an arity"

let sort_of_arity env c = snd (splay_arity env Evd.empty c)
  
let decomp_n_prod env sigma n = 
  let rec decrec env m ln c = if m = 0 then (ln,c) else 
    match kind_of_term (whd_betadeltaiota env sigma c) with
      | IsProd (n,a,c0) ->
	  decrec (push_rel_assum (n,a) env)
	    (m-1) (Sign.add_rel_assum (n,a) ln) c0
      | _                      -> error "decomp_n_prod: Not enough products"
  in 
  decrec env n Sign.empty_rel_context

(* One step of approximation *)

let rec apprec env sigma s =
  let (t, stack as s) = whd_betaiota_state s in
  match kind_of_term t with
    | IsMutCase (ci,p,d,lf) ->
        let (cr,crargs) = whd_betadeltaiota_stack env sigma d in
        let rslt = mkMutCase (ci, p, applist (cr,crargs), lf) in
        if reducible_mind_case cr then 
	  apprec env sigma (rslt, stack)
        else 
	  s
    | IsFix fix ->
	  (match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with
             | Reduced s -> apprec env sigma s
	     | NotReducible -> s)
    | _ -> s

let hnf env sigma c = apprec env sigma (c, empty_stack)

(* A reduction function like whd_betaiota but which keeps casts
 * and does not reduce redexes containing meta-variables.
 * ASSUMES THAT APPLICATIONS ARE BINARY ONES.
 * Used in Programs.
 * Added by JCF, 29/1/98. *)

let whd_programs_stack env sigma = 
  let rec whrec (x, stack as s) =
    match kind_of_term x with
      | IsApp (f,([|c|] as cl)) ->
	  if occur_meta c then s else whrec (f, append_stack cl stack)
      | IsLambda (_,_,c) ->
          (match decomp_stack stack with
             | None -> s
             | Some (a,m) -> stacklam whrec [a] c m)
      | IsMutCase (ci,p,d,lf) ->
	  if occur_meta d then
	    s
	  else
            let (c,cargs) = whrec (d, empty_stack) in
            if reducible_mind_case c then
	      whrec (reduce_mind_case
		       {mP=p; mconstr=c; mcargs=list_of_stack cargs;
			mci=ci; mlf=lf}, stack)
	    else
	      (mkMutCase (ci, p, app_stack(c,cargs), lf), stack)
      | IsFix fix ->
	  (match reduce_fix whrec fix stack with
             | Reduced s' -> whrec s'
	     | NotReducible -> s)
      | _ -> s
  in 
  whrec

let whd_programs env sigma x =
  app_stack (whd_programs_stack env sigma (x, empty_stack))

exception IsType

let find_conclusion env sigma =
  let rec decrec env c =
    let t = whd_betadeltaiota env sigma c in
    match kind_of_term t with
      | IsProd (x,t,c0) -> decrec (push_rel_assum (x,t) env) c0
      | IsLambda (x,t,c0) -> decrec (push_rel_assum (x,t) env) c0
      | t -> t
  in 
  decrec env

let is_arity env sigma c =
  match find_conclusion env sigma c with
    | IsSort _ -> true
    | _ -> false
 
let info_arity env sigma c =
  match find_conclusion env sigma c with
    | IsSort (Prop Null) -> false 
    | IsSort (Prop Pos) -> true 
    | _ -> raise IsType
    
let is_info_arity env sigma c =
  try (info_arity env sigma c) with IsType -> true
  
let is_type_arity env sigma c = 
  match find_conclusion env sigma c with
    | IsSort (Type _) -> true
    | _ -> false

let is_info_type env sigma t =
  let s = t.utj_type in
  (s = Prop Pos) ||
  (s <> Prop Null && 
   try info_arity env sigma t.utj_val with IsType -> true)

(* Expanding existential variables (pretyping.ml) *)
(* 1- whd_ise fails if an existential is undefined *)

exception Uninstantiated_evar of int

let rec whd_ise sigma c =
  match kind_of_term c with
    | IsEvar (ev,args) when Evd.in_dom sigma ev ->
	if Evd.is_defined sigma ev then
          whd_ise sigma (existential_value sigma (ev,args))
	else raise (Uninstantiated_evar ev)
  | _ -> c


(* 2- undefined existentials are left unchanged *)
let rec whd_ise1 sigma c =
  match kind_of_term c with
    | IsEvar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev ->
	whd_ise1 sigma (existential_value sigma (ev,args))
    | _ -> c

let nf_ise1 sigma = local_strong (whd_ise1 sigma)

(* A form of [whd_ise1] with type "reduction_function" *)
let whd_evar env = whd_ise1