aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/reduction.ml
blob: 5636bbbc81766ad9ca6c3ac997f800b1738fba71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

(* $Id$ *)

open Pp
open Util
open Names
open Generic
open Term
open Univ
open Evd
open Constant
open Inductive
open Environ
open Closure

let mt_evd = Evd.mt_evd

exception Redelimination
exception Induc
exception Elimconst

type 'a reduction_function = 'a unsafe_env -> constr -> constr
type 'a stack_reduction_function = 'a unsafe_env -> constr -> constr list 
  -> constr * constr list

(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)

let rec under_casts f env = function
  | DOP2(Cast,c,t) -> DOP2(Cast,under_casts f env c, t)
  | c              -> f env c

let rec whd_stack env x stack =
  match x with
    | DOPN(AppL,cl)  -> whd_stack env cl.(0) (array_app_tl cl stack)
    | DOP2(Cast,c,_) -> whd_stack env c stack
    | _              -> (x,stack)
	  
let stack_reduction_of_reduction red_fun env x stack =
  let t = red_fun env (applistc x stack) in
  whd_stack env t []

let strong whdfun env = 
  let rec strongrec = function
    | DOP0 _ as t -> t
    (* Cas ad hoc *)
    | DOP1(oper,c) -> DOP1(oper,strongrec c)
    | DOP2(oper,c1,c2) -> DOP2(oper,strongrec c1,strongrec c2)
    | DOPN(oper,cl) -> DOPN(oper,Array.map strongrec cl)
    | DOPL(oper,cl) -> DOPL(oper,List.map strongrec cl)
    | DLAM(na,c) -> DLAM(na,strongrec c)
    | DLAMV(na,c) -> DLAMV(na,Array.map strongrec c)
    | VAR _ as t -> t
    | Rel _ as t -> t
  in
  strongrec

let rec strong_prodspine redfun env c = 
  match redfun env c with
    | DOP2(Prod,a,DLAM(na,b)) ->
        DOP2(Prod,a,DLAM(na,strong_prodspine redfun env b))
    | x -> x


(****************************************************************************)
(*                   Reduction Functions                                    *)
(****************************************************************************)


(* call by value reduction functions *)
let cbv_norm_flags flags env t =
  cbv_norm (create_cbv_infos flags env) t

let cbv_beta env = cbv_norm_flags beta env
let cbv_betaiota env = cbv_norm_flags betaiota env
let cbv_betadeltaiota env =  cbv_norm_flags betadeltaiota env

let compute = cbv_betadeltaiota


(* lazy reduction functions. The infos must be created for each term *)
let clos_norm_flags flgs env t =
  norm_val (create_clos_infos flgs env) (inject t)

let nf_beta env = clos_norm_flags beta env
let nf_betaiota env = clos_norm_flags betaiota env
let nf_betadeltaiota env =  clos_norm_flags betadeltaiota env


(* lazy weak head reduction functions *)
(* Pb: whd_val parcourt tout le terme, meme si aucune reduction n'a lieu *)
let whd_flags flgs env t =
  whd_val (create_clos_infos flgs env) (inject t)


(* Red reduction tactic: reduction to a product *)
let red_product env c = 
  let rec redrec x =
    match x with
      | DOPN(AppL,cl) -> 
	  DOPN(AppL,Array.append [|redrec (array_hd cl)|] (array_tl cl))
      | DOPN(Const _,_) when evaluable_const env x -> const_value env x
      | DOPN(Abst _,_) when evaluable_abst env x -> abst_value env x 
      | DOP2(Cast,c,_) -> redrec c
      | DOP2(Prod,a,DLAM(x,b)) -> DOP2(Prod, a, DLAM(x, redrec b))  
      | _ -> error "Term not reducible"
  in 
  nf_betaiota env (redrec c)


(* Substitute only a list of locations locs, the empty list is interpreted
   as substitute all, if 0 is in the list then no substitution is done 
   the list may contain only negative occurrences that will not be substituted *)
(* Aurait sa place dans term.ml mais term.ml ne connait pas printer.ml *)
let subst_term_occ locs c t = 
  let rec substcheck except k occ c t =
    if except or List.exists (function u -> u>=occ) locs then
      substrec except k occ c t
    else 
      (occ,t)
  and substrec except k occ c t =
    if eq_constr t c then
      if except then 
	if List.mem (-occ) locs then (occ+1,t) else (occ+1,Rel(k))
      else 
	if List.mem occ locs then (occ+1,Rel(k)) else  (occ+1,t)
    else 
      match t with
	| DOPN(Const sp,tl) -> occ,t
	|  DOPN(MutConstruct _,tl) -> occ,t
	|  DOPN(MutInd _,tl) -> occ,t
	|  DOPN(i,cl) -> 
	     let (occ',cl') =   
               Array.fold_left 
		 (fun (nocc',lfd) f ->
		    let (nocc'',f') = substcheck except k nocc' c f in
                    (nocc'',f'::lfd)) 
		 (occ,[]) cl
             in 
	     (occ',DOPN(i,Array.of_list (List.rev cl')))
	|  DOP2(i,t1,t2) -> 
	     let (nocc1,t1')=substrec except k occ c t1 in
             let (nocc2,t2')=substcheck except k nocc1 c t2 in
             nocc2,DOP2(i,t1',t2')
	|  DOP1(i,t) -> 
	     let (nocc,t')= substrec except k occ c t in
	     nocc,DOP1(i,t')
	|  DLAM(n,t) -> 
	     let (occ',t') = substcheck except (k+1) occ (lift 1 c) t in
             (occ',DLAM(n,t'))
	|  DLAMV(n,cl) -> 
	     let (occ',cl') =   
               Array.fold_left 
		 (fun (nocc',lfd) f ->
		    let (nocc'',f') = 
		      substcheck except (k+1) nocc' (lift 1 c) f
                    in (nocc'',f'::lfd)) 
		 (occ,[]) cl
             in 
	     (occ',DLAMV(n,Array.of_list (List.rev cl') ))
	|  _               -> occ,t
  in 
  if locs = [] then 
    subst_term c t
  else if List.mem 0 locs then 
    t
  else 
    let except = List.for_all (fun n -> n<0) locs in
    let (nbocc,t') = substcheck except 1 1 c t in
    if List.exists (fun o -> o>=nbocc or o<= -nbocc) locs then
      errorlabstrm "subst_occ" 
	[< 'sTR "Only "; 'iNT (nbocc-1); 'sTR " occurrences of";
	   'bRK(1,1); Printer.prterm c; 'sPC;
	   'sTR "in"; 'bRK(1,1); Printer.prterm t>]
    else 
      t'

(* linear substitution (following pretty-printer) of the value of name in c.
 * n is the number of the next occurence of name.
 * ol is the occurence list to find. *)
let rec substlin env name n ol c =
  match c with
    | DOPN(Const sp,_) ->
        if (path_of_const c)=name then
          if (List.hd ol)=n then
            if evaluable_const env c then 
	      ((n+1),(List.tl ol), const_value env c)
            else
              errorlabstrm "substlin"
                [< 'sTR(string_of_path sp);
                   'sTR " is not a defined constant" >]
          else 
	    ((n+1),ol,c)
        else 
	  (n,ol,c)

    | DOPN(Abst _,_) ->
        if (path_of_abst c)=name then
          if (List.hd ol)=n then 
	    ((n+1),(List.tl ol), abst_value env c)
          else 
	    ((n+1),ol,c)
        else 
	  (n,ol,c)

(* INEFFICIENT: OPTIMIZE *)
    | DOPN(AppL,tl) ->
        let c1 = array_hd tl and cl = array_tl tl in
        Array.fold_left 
	  (fun (n1,ol1,c1') c2 ->
	     (match ol1 with 
                | [] -> (n1,[],applist(c1',[c2]))
                | _  ->
                    let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
                    (n2,ol2,applist(c1',[c2']))))
          (substlin env name n ol c1) cl

    | DOP2(Lambda,c1,DLAM(na,c2)) ->
        let (n1,ol1,c1') = substlin env name n ol c1 in
        (match ol1 with 
           | [] -> (n1,[],DOP2(Lambda,c1',DLAM(na,c2)))
           | _  ->
               let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
               (n2,ol2,DOP2(Lambda,c1',DLAM(na,c2'))))

    | DOP2(Prod,c1,DLAM(na,c2)) ->
        let (n1,ol1,c1') = substlin env name n ol c1 in
        (match ol1 with 
           | [] -> (n1,[],DOP2(Prod,c1',DLAM(na,c2)))
           | _  ->
               let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
               (n2,ol2,DOP2(Prod,c1',DLAM(na,c2'))))
	
    | DOPN(MutCase _,_) -> 
	let (ci,p,d,llf) = destCase c in
        let rec substlist nn oll = function
          | []     -> (nn,oll,[])
          | f::lfe ->
              let (nn1,oll1,f') = substlin env name nn oll f in
              (match oll1 with
                 | [] -> (nn1,[],f'::lfe)
                 | _  ->
                     let (nn2,oll2,lfe') = substlist nn1 oll1 lfe in
                     (nn2,oll2,f'::lfe'))
	in
	let (n1,ol1,p') = substlin env name n ol p in  (* ATTENTION ERREUR *)
        (match ol1 with                                 (* si P pas affiche *)
           | [] -> (n1,[],mkMutCaseA ci p' d llf)
           | _  ->
               let (n2,ol2,d') = substlin env name n1 ol1 d in
               (match ol2 with
		  | [] -> (n2,[],mkMutCaseA ci p' d' llf)
		  | _  -> 
	              let (n3,ol3,lf') = substlist n2 ol2 (Array.to_list llf)
                      in (n3,ol3,mkMutCase ci p' d' lf')))
        
    | DOP2(Cast,c1,c2)   ->
        let (n1,ol1,c1') = substlin env name n ol c1 in
        (match ol1 with 
           | [] -> (n1,[],DOP2(Cast,c1',c2))
           | _  ->
               let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
               (n2,ol2,DOP2(Cast,c1',c2')))

    | DOPN(Fix _,_) -> 
        (warning "do not consider occurrences inside fixpoints"; (n,ol,c))
	
    | DOPN(CoFix _,_) -> 
        (warning "do not consider occurrences inside cofixpoints"; (n,ol,c))
	
    | _ -> (n,ol,c)
	  
let unfold env name =
  let flag = 
    (UNIFORM,{ r_beta = true;
               r_delta = (fun op -> op=(Const name) or op=(Abst name));
               r_iota = true })
  in 
  clos_norm_flags flag env


(* unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)
 * Unfolds the constant name in a term c following a list of occurrences occl.
 * at the occurrences of occ_list. If occ_list is empty, unfold all occurences.
 * Performs a betaiota reduction after unfolding. *)
let unfoldoccs env (occl,name) c =
  match occl with
    | []  -> unfold env name c
    | l -> 
        match substlin env name 1 (Sort.list (<) l) c with
          | (_,[],uc) -> nf_betaiota env uc
          | (1,_,_) -> error ((string_of_path name)^" does not occur")
          | _ -> error ("bad occurrence numbers of "^(string_of_path name))

(* Unfold reduction tactic: *)
let unfoldn loccname env c = 
  List.fold_left (fun c occname -> unfoldoccs env occname c) c loccname

(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env c =
  let rcom = red_product env com in
  subst1 com (subst_term rcom c)

let fold_commands cl env c =
  List.fold_right (fun com -> fold_one_com com env) (List.rev cl) c


(* Pattern *)

(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
 * the specified occurrences. *)

let abstract_scheme env (locc,a,ta) t =
  let na = named_hd env ta Anonymous in
  if occur_meta ta then
    error "cannot find a type for the generalisation"
  else if occur_meta a then 
    DOP2(Lambda,ta,DLAM(na,t))
  else 
    DOP2(Lambda, ta, DLAM(na,subst_term_occ locc a t))


let pattern_occs loccs_trm_typ env c =
  let abstr_trm = List.fold_right (abstract_scheme env) loccs_trm_typ c in
  applist(abstr_trm, List.map (fun (_,t,_) -> t) loccs_trm_typ)


(*************************************)
(*** Reduction using substitutions ***)
(*************************************)

(* 1. Beta Reduction *)

let rec stacklam recfun env t stack =
  match (stack,t) with
    | (h::stacktl, DOP2(Lambda,_,DLAM(_,c))) ->
        stacklam recfun (h::env) c stacktl
    | _ -> recfun (substl env t) stack


let beta_applist (c,l) = stacklam (fun c l -> applist(c,l)) [] c l


let whd_beta_stack env = 
  let rec whrec x stack = match x with
    | DOP2(Lambda,c1,DLAM(name,c2)) ->
	(match stack with
           | [] -> (x,[])
	   | a1::rest -> stacklam whrec [a1] c2 rest)
	
    | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl stack)
    | DOP2(Cast,c,_) -> whrec c stack
    | x -> (x,stack)
  in 
  whrec

let whd_beta env x = applist (whd_beta_stack env x [])


(* 2. Delta Reduction *)
		   
let whd_const_stack namelist env = 
  let rec whrec x l =
    match x with
      | DOPN(Const sp,_) as c ->
	  if List.mem sp namelist then
            if evaluable_const env c then
              whrec (const_value env c) l
            else 
	      error "whd_const_stack"
	  else 
	    x,l

      | (DOPN(Abst sp,_)) as c ->
	  if List.mem sp namelist then
            if evaluable_abst env c then
              whrec (abst_value env c) l
            else 
	      error "whd_const_stack"
	  else 
	    x,l
	      
      | DOP2(Cast,c,_) -> whrec c l
      | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl l)
      | x -> x,l
  in 
  whrec

let whd_const namelist env c = applist(whd_const_stack namelist env c [])

let whd_delta_stack env = 
  let rec whrec x l =
    match x with
      | DOPN(Const _,_) as c ->
	  if evaluable_const env c then
            whrec (const_value env c) l
	  else 
	    x,l
      | (DOPN(Abst _,_)) as c ->
	  if evaluable_abst env c then
            whrec (abst_value env c) l
	  else 
	    x,l
  | DOP2(Cast,c,_) -> whrec c l
  | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl l)
  | x -> x,l
  in 
  whrec

let whd_delta env c = applist(whd_delta_stack env c [])


let whd_betadelta_stack env = 
  let rec whrec x l =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_const env x then 
	    whrec (const_value env x) l
          else 
	    (x,l)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    whrec (abst_value env x) l
          else 
	    (x,l)
      | DOP2(Cast,c,_) -> whrec c l
      | DOPN(AppL,cl)  -> whrec (array_hd cl) (array_app_tl cl l)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match l with
             | [] -> (x,l)
             | (a::m) -> stacklam whrec [a] c m)
      | x -> (x,l)
  in 
  whrec

let whd_betadelta env c = applist(whd_betadelta_stack env c [])


let whd_betadeltat_stack env = 
  let rec whrec x l =
    match x with
      | DOPN(Const _,_) ->
          if translucent_const env x then 
	    whrec (const_value env x) l
          else 
	    (x,l)
      | DOPN(Abst _,_) ->
          if translucent_abst env x then 
	    whrec (abst_value env x) l
          else 
	    (x,l)
      | DOP2(Cast,c,_) -> whrec c l
      | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl l)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match l with
             | [] -> (x,l)
             | (a::m) -> stacklam whrec [a] c m)
      | x -> (x,l)
  in 
  whrec
       
let whd_betadeltat env c = applist(whd_betadeltat_stack env c [])

let whd_betadeltaeta_stack env = 
  let rec whrec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_const env x then
	    whrec (const_value env x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then
	    whrec (abst_value env x) stack
          else 
	    (x,stack)
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl)    -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> 
		 (match applist (whrec c []) with 
                    | DOPN(AppL,cl) -> 
                        (match whrec (array_last cl) [] with 
                           | (Rel 1,[]) -> 
			       let napp = (Array.length cl) -1 in
                               if napp = 0 then (x,stack) else
                                 let lc = Array.sub cl 0 napp in
                                 let u = 
				   if napp = 1 then lc.(0) else DOPN(AppL,lc) 
                                 in 
				 if noccurn 1 u then (pop u,[]) else (x,stack)
                           | _ -> (x,stack))
                    | _ -> (x,stack))
             | (a::m) -> stacklam whrec [a] c m)
      | x -> (x,stack)
  in 
  whrec

let whd_betadeltaeta env x = applist(whd_betadeltaeta_stack env x [])

(* 3. Iota reduction *)

type 'a miota_args = {
  mP      : constr;     (* the result type *)
  mconstr : constr;     (* the constructor *)
  mci     : case_info;  (* special info to re-build pattern *)
  mcargs  : 'a list;    (* the constructor's arguments *)
  mlf     : 'a array }  (* the branch code vector *)
		       
let reducible_mind_case c =
  match c with 
    | DOPN(MutConstruct _,_) | DOPN(CoFix _,_) -> true
    | _  -> false

let contract_cofix = function
  | DOPN(CoFix(bodynum),bodyvect) ->
      let nbodies = (Array.length bodyvect) -1 in
      let make_Fi j = DOPN(CoFix(j),bodyvect) in
      sAPPViList bodynum (array_last bodyvect) (list_tabulate make_Fi nbodies)
  | _ -> assert false

let reduce_mind_case env mia =
  match mia.mconstr with 
    | DOPN(MutConstruct((indsp,tyindx),i),_) ->
	let ind = DOPN(MutInd(indsp,tyindx),args_of_mconstr mia.mconstr) in
	let nparams    = mind_nparams env ind in
	let real_cargs = snd (list_chop nparams mia.mcargs) in
        applist (mia.mlf.(i-1),real_cargs)
    | DOPN(CoFix _,_) as cofix ->
	let cofix_def = contract_cofix cofix in
	mkMutCaseA mia.mci mia.mP (applist(cofix_def,mia.mcargs)) mia.mlf
    | _ -> assert false

(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce

   Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})]

 *)
let contract_fix = function 
  | DOPN(Fix(recindices,bodynum),bodyvect) -> 
      let nbodies = Array.length recindices in
      let make_Fi j = DOPN(Fix(recindices,j),bodyvect) in
      sAPPViList bodynum (array_last bodyvect) (list_tabulate make_Fi nbodies)
  | _ -> assert false

let fix_recarg fix stack =
  match fix with 
    | DOPN(Fix(recindices,bodynum),_) ->
    	if 0 <= bodynum & bodynum < Array.length recindices then
	  let recargnum = Array.get recindices bodynum in
          (try Some(recargnum, List.nth stack recargnum)
           with Failure "nth" | Invalid_argument "List.nth" -> None)
    	else None
    | _ -> assert false

let reduce_fix whfun fix stack =
  match fix with 
    | DOPN(Fix(recindices,bodynum),bodyvect) ->
    	(match fix_recarg fix stack with
           | None -> (false,(fix,stack))
	   | Some (recargnum,recarg) ->
               let (recarg'hd,_ as recarg') = whfun recarg [] in
               let stack' = list_assign stack recargnum (applist recarg') in
	       (match recarg'hd with
                  | DOPN(MutConstruct _,_) -> 
		      (true,(contract_fix fix,stack'))
		  | _ -> (false,(fix,stack'))))
    | _ -> assert false

(* NB : Cette fonction alloue peu c'est l'appel 
     ``let (recarg'hd,_ as recarg') = whfun recarg [] in''
                                     --------------------
qui coute cher dans whd_betadeltaiota *)

let whd_betaiota_stack env = 
  let rec whrec x stack =
    match x with
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl)    -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam whrec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = whrec d [] in
          if reducible_mind_case c then
            whrec (reduce_mind_case env
                     {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf, stack)
            
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
  in 
  whrec    

let whd_betaiota env x = applist (whd_betaiota_stack env x [])


let whd_betadeltatiota_stack env = 
  let rec whrec x stack =
    match x with
      | DOPN(Const _,_) ->
          if translucent_const env x then
            whrec (const_value env x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if translucent_abst env x then
	    whrec (abst_value env x) stack
          else
	    (x,stack)
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl)    -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam whrec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = whrec d [] in
          if reducible_mind_case c then
	    whrec (reduce_mind_case env
                     {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf,stack)
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
 in 
  whrec   

let whd_betadeltatiota env x = applist(whd_betadeltatiota_stack env x [])

let whd_betadeltaiota_stack env =
  let rec bdi_rec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_const env x then
	    bdi_rec (const_value env x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    bdi_rec (abst_value env x) stack 
	  else 
	    (x,stack)
      | DOP2(Cast,c,_) -> bdi_rec c stack
      | DOPN(AppL,cl) ->  bdi_rec (array_hd cl)  (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam bdi_rec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = bdi_rec d [] in
          if reducible_mind_case c then
            bdi_rec (reduce_mind_case env
		       {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf,stack)
      | DOPN(Fix _,_) -> 
          let (reduced,(fix,stack)) = reduce_fix bdi_rec x stack in
          if reduced then bdi_rec fix stack else (fix,stack)
      | x -> (x,stack)
  in
  bdi_rec

let whd_betadeltaiota env x = applist(whd_betadeltaiota_stack env x [])
				
				
let whd_betadeltaiotaeta_stack env = 
  let rec whrec x stack =
    match x with
      | DOPN(Const _,_) ->
          if evaluable_const env x then 
	    whrec (const_value env x) stack
          else 
	    (x,stack)
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then
	    whrec (abst_value env x) stack
          else 
	    (x,stack)
      | DOP2(Cast,c,_) -> whrec c stack
      | DOPN(AppL,cl) -> whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] ->
                 (match applist (whrec c []) with 
                    | DOPN(AppL,cl) -> 
                        (match whrec (array_last cl) [] with 
                           | (Rel 1,[]) ->
                               let napp = (Array.length cl) -1 in
                               if napp = 0 then 
				 (x,stack) 
			       else
                                 let lc = Array.sub cl 0 napp in
                                 let u = 
				   if napp = 1 then lc.(0) else DOPN(AppL,lc) 
                                 in 
				 if noccurn 1 u then (pop u,[]) else (x,stack)
                           | _ -> (x,stack))
                    | _ -> (x,stack))
             | (a::m) -> stacklam whrec [a] c m)

      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
          let (c,cargs) = whrec d [] in
          if reducible_mind_case c then
	    whrec (reduce_mind_case env
                     {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf}) stack
          else 
	    (mkMutCaseA ci p (applist(c,cargs)) lf,stack)
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
  in 
  whrec  

let whd_betadeltaiotaeta env x = applist(whd_betadeltaiotaeta_stack env x [])

(********************************************************************)
(*                         Conversion                               *)
(********************************************************************)

type conversion_result =
  | Convertible of universes
  | NotConvertible

type 'a conversion_function = 
    'a unsafe_env -> constr -> constr -> conversion_result

(* Conversion utility functions *)

let convert_of_constraint f u =
  match f u with
    | Consistent u' -> Convertible u'
    | Inconsistent -> NotConvertible

let convert_of_bool b u =
  if b then Convertible u else NotConvertible

let bool_and_convert b f = 
  if b then f else fun _ -> NotConvertible

let convert_and f1 f2 u = 
  match f1 u with
    | Convertible u' -> f2 u'
    | NotConvertible -> NotConvertible

let convert_or f1 f2 u =
  match f1 u with
    | NotConvertible -> f2 u
    | c -> c

let forall2_conv f v1 v2 u =
  array_fold_left2 
    (fun a x y -> match a with
       | NotConvertible -> NotConvertible
       | Convertible u -> f x y u)
    (Convertible u) v1 v2

(* Convertibility of sorts *)

let sort_cmp pb s0 s1 =
  match (s0,s1) with
    | (Prop c1, Prop c2) -> convert_of_bool (c1 = c2)
    | (Prop c1, Type u)  -> convert_of_bool (not (pb_is_equal pb))
    | (Type u1, Type u2) ->
	(match pb with
           | CONV -> convert_of_constraint (enforce_eq u1 u2)
	   | CONV_LEQ -> convert_of_constraint (enforce_geq u2 u1)
	   | _ -> fun g -> Convertible g)
    | (_, _) -> fun _ -> NotConvertible

(* Conversion between  [lft1]term1 and [lft2]term2 *)

let rec ccnv cv_pb infos lft1 lft2 term1 term2 = 
  eqappr cv_pb infos (lft1, fhnf infos term1) (lft2, fhnf infos term2)

(* Conversion between [lft1]([^n1]hd1 v1) and [lft2]([^n2]hd2 v2) *)

and eqappr cv_pb infos appr1 appr2 =
  let (lft1,(n1,hd1,v1)) = appr1
  and (lft2,(n2,hd2,v2)) = appr2 in
  let el1 = el_shft n1 lft1
  and el2 = el_shft n2 lft2 in
  match (frterm_of hd1, frterm_of hd2) with
    (* case of leaves *)
    | (FOP0(Sort s1), FOP0(Sort s2)) -> 
	bool_and_convert
	  (Array.length v1 = 0 && Array.length v2 = 0)
	  (sort_cmp cv_pb s1 s2)
	  
    | (FVAR x1, FVAR x2) ->
	bool_and_convert (x1=x2)
	  (forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    | (FRel n, FRel m) ->
        bool_and_convert 
	  (reloc_rel n el1 = reloc_rel m el2)
          (forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    | (FOP0(Meta(n)), FOP0(Meta(m))) ->
        bool_and_convert (n=m) 
	  (forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

    | (FOP0 Implicit, FOP0 Implicit) ->
        convert_of_bool (Array.length v1 = 0 & Array.length v2 = 0)

    (* 2 constants or 2 abstractions *)
    | (FOPN(Const sp1,al1), FOPN(Const sp2,al2)) ->
	convert_or
	  (* try first intensional equality *)
	  (bool_and_convert (sp1 == sp2 or sp1 = sp2)
	     (convert_and
		(forall2_conv (ccnv (pb_equal cv_pb) infos el1 el2) al1 al2)
		(forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)))
          (* else expand the second occurrence (arbitrary heuristic) *)
          (match search_frozen_cst infos (Const sp2) al2 with
             | Some def2 -> 
		 eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
             | None -> (match search_frozen_cst infos (Const sp1) al1 with
                          | Some def1 -> eqappr cv_pb infos
				(lft1, fhnf_apply infos n1 def1 v1) appr2
			  | None -> fun _ -> NotConvertible))

    | (FOPN(Abst sp1,al1), FOPN(Abst sp2,al2)) ->
	convert_or
	  (* try first intensional equality *)
          (bool_and_convert  (sp1 = sp2)
	     (convert_and
		(forall2_conv (ccnv (pb_equal cv_pb) infos el1 el2) al1 al2)
		(forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)))
          (* else expand the second occurrence (arbitrary heuristic) *)
          (match search_frozen_cst infos (Abst sp2) al2 with
             | Some def2 -> 
		 eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
             | None -> (match search_frozen_cst infos (Abst sp1) al2 with
                          | Some def1 -> eqappr cv_pb infos
				(lft1, fhnf_apply infos n1 def1 v1) appr2
			  | None -> fun _ -> NotConvertible))

    (* only one constant or abstraction *)
    | (FOPN((Const _ | Abst _) as op,al1), _)      ->
        (match search_frozen_cst infos op al1 with
           | Some def1 -> 
	       eqappr cv_pb infos (lft1, fhnf_apply infos n1 def1 v1) appr2
           | None -> fun _ -> NotConvertible)

    | (_, FOPN((Const _ | Abst _) as op,al2))      ->
        (match search_frozen_cst infos op al2 with
           | Some def2 -> 
	       eqappr cv_pb infos appr1 (lft2, fhnf_apply infos n2 def2 v2)
           | None -> fun _ -> NotConvertible)
	
    (* other constructors *)
    | (FOP2(Lambda,c1,c2), FOP2(Lambda,c'1,c'2)) ->
        bool_and_convert
	  (Array.length v1 = 0 && Array.length v2 = 0)
          (convert_and
	     (ccnv (pb_equal cv_pb) infos el1 el2 c1 c'1)
             (ccnv (pb_equal cv_pb) infos el1 el2 c2 c'2))

    | (FOP2(Prod,c1,c2), FOP2(Prod,c'1,c'2)) ->
	bool_and_convert
          (Array.length v1 = 0 && Array.length v2 = 0)
	  (convert_and
             (ccnv (pb_equal cv_pb) infos el1 el2 c1 c'1) (* Luo's system *)
             (ccnv cv_pb infos el1 el2 c2 c'2))

    (* Inductive types:  MutInd MutConstruct MutCase Fix Cofix *)

         (* Le cas MutCase doit venir avant le cas general DOPN car, a
            priori, 2 termes a base de MutCase peuvent etre convertibles
            sans que les annotations des MutCase le soient *)

    | (FOPN(MutCase _,cl1), FOPN(MutCase _,cl2)) ->
        convert_and
	  (forall2_conv (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
          (forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2)

     | (FOPN(op1,cl1), FOPN(op2,cl2)) ->
	 bool_and_convert (op1 = op2)
	   (convert_and
              (forall2_conv (ccnv (pb_equal cv_pb) infos el1 el2) cl1 cl2)
              (forall2_conv (ccnv (pb_equal cv_pb) infos lft1 lft2) v1 v2))

     (* binders *)
     | (FLAM(_,c1,_,_), FLAM(_,c2,_,_)) ->
	 bool_and_convert
           (Array.length v1 = 0 && Array.length v2 = 0)
           (ccnv cv_pb infos (el_lift el1) (el_lift el2) c1 c2)

     | (FLAMV(_,vc1,_,_), FLAMV(_,vc2,_,_)) ->
	 bool_and_convert
           (Array.length v1 = 0 & Array.length v2 = 0)
           (forall2_conv 
	      (ccnv cv_pb infos (el_lift el1) (el_lift el2)) vc1 vc2)

     | _ -> (fun _ -> NotConvertible)


let fconv cv_pb env t1 t2 =
  let t1 = strong (fun _ -> strip_outer_cast) env t1
  and t2 = strong (fun _ -> strip_outer_cast) env t2 in
  let univ = universes env in
  if eq_constr t1 t2 then 
    Convertible univ
  else
    let infos = create_clos_infos hnf_flags env in
    ccnv cv_pb infos ELID ELID (inject t1) (inject t2) univ

let conv       env term1 term2 = fconv CONV env term1 term2
let conv_leq   env term1 term2 = fconv CONV_LEQ env term1 term2
let conv_x     env term1 term2 = fconv CONV_X env term1 term2
let conv_x_leq env term1 term2 = fconv CONV_X_LEQ env term1 term2


(********************************************************************)
(*             Special-Purpose Reduction                            *)
(********************************************************************)

let whd_meta env = function
  | DOP0(Meta p) as u -> (try List.assoc p (metamap env) with Not_found -> u)
  | x -> x
	
(* Try to replace all metas. Does not replace metas in the metas' values
 * Differs from (strong whd_meta). *)
let plain_instance env c = 
  let s = metamap env in
  let rec irec = function
    | DOP0(Meta p) as u -> (try List.assoc p s with Not_found -> u)
    | DOP1(oper,c)      -> DOP1(oper, irec c)
    | DOP2(oper,c1,c2)  -> DOP2(oper, irec c1, irec c2)
    | DOPN(oper,cl)     -> DOPN(oper, Array.map irec cl)
    | DOPL(oper,cl)     -> DOPL(oper, List.map irec cl)
    | DLAM(x,c)         -> DLAM(x, irec c)
    | DLAMV(x,v)        -> DLAMV(x, Array.map irec v)
    | u                 -> u
  in 
  if s = [] then c else irec c
    
(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *)
let instance env c = 
  let s = metamap env in
  if s = [] then c else nf_betaiota env (plain_instance env c)


(* pseudo-reduction rule:
 * [hnf_prod_app env s (Prod(_,B)) N --> B[N]
 * with an HNF on the first argument to produce a product.
 * if this does not work, then we use the string S as part of our
 * error message.
 *)
let hnf_prod_app env s t n =
  match whd_betadeltaiota env t with
    | DOP2(Prod,_,b) -> sAPP b n
    | _ ->
	errorlabstrm s [< 'sTR"Needed a product, but didn't find one in " ;
			  'sTR s ; 'fNL >]

let hnf_prod_appvect env s t nL = Array.fold_left (hnf_prod_app env s) t nL
let hnf_prod_applist env s t nL = List.fold_left (hnf_prod_app env s) t nL
				    
let hnf_lam_app env s t n =
  match whd_betadeltaiota env t with
    | DOP2(Lambda,_,b) -> sAPP b n
    | _ ->
	errorlabstrm s [< 'sTR"Needed a product, but didn't find one in " ;
			  'sTR s ; 'fNL >]

let hnf_lam_appvect env s t nL = Array.fold_left (hnf_lam_app env s) t nL
let hnf_lam_applist env s t nL = List.fold_left (hnf_lam_app env s) t nL

let splay_prod env = 
  let rec decrec m c =
    match whd_betadeltaiota env c with
      | DOP2(Prod,a,DLAM(n,c_0))            -> decrec ((n,a)::m) c_0
      | t -> m,t
  in 
  decrec []
  
let decomp_prod env = 
  let rec decrec m c =
    match whd_betadeltaiota env c with
      | DOP0(Sort _) as x -> m,x
      | DOP2(Prod,a,DLAM(n,c_0))            -> decrec (m+1) c_0
      | _                      -> error "decomp_prod: Not a product"
  in 
  decrec 0
    
let decomp_n_prod env n = 
  let rec decrec m ln c = if m = 0 then (ln,c) else 
    match whd_betadeltaiota env c with
      | DOP2(Prod,a,DLAM(n,c_0)) -> decrec (m-1) ((n,a)::ln) c_0
      | _                      -> error "decomp_n_prod: Not enough products"
  in 
  decrec n []

(* Special iota reduction... *)

let contract_cofix_use_function f cofix =
  match cofix with 
    | DOPN(CoFix(bodynum),bodyvect) ->
  	let nbodies =  (Array.length bodyvect) -1 in
  	let make_Fi j = DOPN(CoFix(j),bodyvect) in
  	let lbodies = list_assign (list_tabulate make_Fi nbodies) bodynum f in
  	sAPPViList bodynum (array_last bodyvect) lbodies
    | _ -> assert false

let reduce_mind_case_use_function env f mia =
  match mia.mconstr with 
    | DOPN(MutConstruct((indsp,tyindx),i),_) ->
	let ind = DOPN(MutInd(indsp,tyindx),args_of_mconstr mia.mconstr) in
	let nparams    = mind_nparams env ind in
	let real_cargs = snd(list_chop nparams mia.mcargs) in
	applist (mia.mlf.(i-1),real_cargs)
    | DOPN(CoFix _,_) as cofix ->
	let cofix_def = contract_cofix_use_function f cofix in
	mkMutCaseA mia.mci mia.mP (applist(cofix_def,mia.mcargs)) mia.mlf
    | _ -> assert false
	  
let special_red_case env whfun p c ci lf  =
  let rec redrec c l = 
    let (constr,cargs) = whfun c l in 
    match constr with 
      | DOPN(Const _,_) as g -> 
          if (evaluable_const env g) then
            let gvalue = (const_value env g) in
            if reducible_mind_case  gvalue then
              reduce_mind_case_use_function env g
                {mP=p; mconstr=gvalue; mcargs=cargs; mci=ci; mlf=lf}
            else 
	      redrec gvalue cargs
          else 
	    raise Redelimination
      | _ ->
          if reducible_mind_case constr then
            reduce_mind_case env
              {mP=p; mconstr=constr; mcargs=cargs; mci=ci; mlf=lf}
          else 
	    raise Redelimination
  in 
  redrec c []


(* F is convertible to DOPN(Fix(recindices,bodynum),bodyvect) make 
the reduction using this extra information *)

let contract_fix_use_function f fix =
  match fix with 
    | DOPN(Fix(recindices,bodynum),bodyvect) ->
  	let nbodies = Array.length recindices in
  	let make_Fi j = DOPN(Fix(recindices,j),bodyvect) in
  	let lbodies = list_assign (list_tabulate make_Fi nbodies) bodynum f in
	  sAPPViList bodynum (array_last bodyvect) lbodies
    | _ -> assert false


let reduce_fix_use_function f whfun fix stack =
  match fix with 
    | DOPN (Fix(recindices,bodynum),bodyvect) ->
	(match fix_recarg fix stack with
           | None -> (false,(fix,stack))
	   | Some (recargnum,recarg) ->
               let (recarg'hd,_ as recarg')= whfun recarg [] in
               let stack' = list_assign stack recargnum (applist recarg') in
	       (match recarg'hd with
                  | DOPN(MutConstruct _,_) ->
		      (true,(contract_fix_use_function f fix,stack'))
		  | _ -> (false,(fix,stack'))))
    | _ -> assert false


(* Check that c is an "elimination constant"
    [xn:An]..[x1:A1](<P>MutCase (Rel i) of f1..fk end g1 ..gp)
or  [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip)) 
    with i1..ip distinct variables not occuring in t 
keep relevenant information ([i1,Ai1;..;ip,Aip],n,b)
with b = true in case of a fixpoint in order to compute 
an equivalent of Fix(f|t)[xi<-ai] as 
[yip:Bip]..[yi1:Bi1](F bn..b1) 
    == [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel 1)..(Rel p))
with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1]
   *)

let compute_consteval env c = 
  let rec srec n labs c =
    match whd_betadeltaeta_stack env c [] with 
      | (DOP2(Lambda,t,DLAM(_,g)),[])  -> srec (n+1) (t::labs) g
      | (DOPN(Fix((nv,i)),bodies),l)   -> 
          if List.length l > n then 
	    raise Elimconst 
          else
            let li = 
              List.map (function
                          | Rel k ->
                              if array_for_all (noccurn k) bodies then
				(k, List.nth labs (k-1)) 
			      else 
				raise Elimconst
                          | _ -> raise Elimconst) 
		l
            in 
	    if (list_distinct (List.map fst li)) then 
	      (li,n,true) 
            else 
	      raise Elimconst
      | (DOPN(MutCase _,_) as mc,lapp) -> 
          (match destCase mc with
             | (_,_,Rel _,_) -> ([],n,false)
             | _    -> raise Elimconst)
      | _ -> raise Elimconst
  in
  try Some (srec 0 [] c) with Elimconst -> None

let is_elim env c =
  let (sp, cl) = destConst c in
  if evaluable_const env c && defined_const env c && (not (is_existential c))
  then
    let (_,cb) = const_of_path env sp in 
    begin match cb.const_eval with
      | Some _ -> ()
      | None -> 
	  (match cb.const_body with
	     | Some {contents = Cooked b} ->
		 cb.const_eval <- Some (compute_consteval env b)
	     | Some {contents = Recipe _} ->
		 anomalylabstrm "Reduction.is_elim"
		   [< 'sTR"Found an uncooked transparent constant," ; 'sPC ;
		      'sTR"which is supposed to be impossible" >]
	     | _ -> assert false)
    end;
    match (cb.const_eval) with
      | Some (Some x) -> x
      | Some None -> raise Elimconst
      | _ -> assert false
  else 
    raise Elimconst

(* takes the fn first elements of the list and gives them back lifted by ln 
   and in reverse order *)

let rev_firstn_liftn fn ln = 
  let rec rfprec p res l = 
    if p = 0 then 
      res 
    else
      match l with
        | [] -> invalid_arg "Reduction.rev_firstn_liftn"
        | a::rest -> rfprec (p-1) ((lift ln a)::res) rest
  in 
  rfprec fn [] 

let make_elim_fun env f largs =
  try 
    let (lv,n,b) = is_elim env f 
    and ll = List.length largs in
    if ll < n then 
      raise Redelimination 
    else
      if b then
	let labs,_ = list_chop n largs in
	let p = List.length lv in
        let la' = 
	  list_map_i 
	    (fun q aq ->
	       try (Rel (p+1-(list_index (n+1-q) (List.map fst lv)))) 
	       with Failure _ -> aq) 
	    1
            (List.map (lift p) labs) 
	in
        list_fold_left_i 
	  (fun i c (k,a) -> 
             DOP2(Lambda,(substl (rev_firstn_liftn (n-k) (-i) la') a),
		  DLAM(Name(id_of_string"x"),c))) 
	  0 (applistc f la') lv
      else 
	f
  with 
    | Elimconst | Failure _ -> raise Redelimination

let rec red_elim_const env k largs =
  if not(evaluable_const env k) then raise Redelimination else
    let f = make_elim_fun env k largs in
    match whd_betadeltaeta_stack env (const_value env k) largs with
      | (DOPN(MutCase _,_) as mc,lrest) ->
          let (ci,p,c,lf) = destCase mc in
          (special_red_case env (construct_const env) p c ci lf, lrest)
      | (DOPN(Fix _,_) as fix,lrest) -> 
          let (b,(c,rest)) = 
	    reduce_fix_use_function f (construct_const env) fix lrest
          in 
	  if b then (nf_beta env c, rest) else raise Redelimination
      | _ -> assert false

and construct_const env c stack = 
  let rec hnfstack x stack =
    match x with
      | (DOPN(Const _,_)) as k  ->
          (try
             let (c',lrest) = red_elim_const env k stack in
             hnfstack c' lrest
           with 
	     | Redelimination ->
		 if evaluable_const env k then
		   let cval = const_value env k in
		   (match cval with
		      | DOPN (CoFix _,_) -> (k,stack)
                      | _                -> hnfstack cval stack) 
		 else 
		   raise Redelimination)
      | (DOPN(Abst _,_) as a) ->
          if evaluable_abst env a then 
	    hnfstack (abst_value env a) stack
          else 
	    raise Redelimination
      | DOP2(Cast,c,_) -> hnfstack c stack
      | DOPN(AppL,cl) -> hnfstack (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with 
             | [] -> assert false
             | c'::rest -> stacklam hnfstack [c'] c rest)
      | DOPN(MutCase _,_) as c_0 ->
          let (ci,p,c,lf) = destCase c_0 in
          hnfstack (special_red_case env (construct_const env) p c ci lf) stack
      | DOPN(MutConstruct _,_) as c_0 -> c_0,stack
      | DOPN(CoFix _,_) as c_0 -> c_0,stack
      | DOPN(Fix (_) ,_) as fix -> 
          let (reduced,(fix,stack')) = reduce_fix hnfstack fix stack in
          if reduced then hnfstack fix stack' else raise Redelimination
      | _ -> raise Redelimination
  in 
  hnfstack c stack

(* Hnf reduction tactic: *)
let hnf_constr env c = 
  let rec redrec x largs =
    match x with
      | DOP2(Lambda,t,DLAM(n,c)) ->
          (match largs with
             | []      -> applist(x,largs)
             | a::rest -> stacklam redrec [a] c rest)
      | DOPN(AppL,cl)   -> redrec (array_hd cl) (array_app_tl cl largs)
      | DOPN(Const _,_) ->
          (try
             let (c',lrest) = red_elim_const env x largs in
             redrec c' lrest
           with Redelimination ->
             if evaluable_const env x then
               let c = const_value env x in
               match c with 
                 | DOPN(CoFix _,_) -> x
                 | _ ->  redrec c largs
             else 
	       applist(x,largs))
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    redrec (abst_value env x) largs
          else 
	    applist(x,largs)
      | DOP2(Cast,c,_) -> redrec c largs
      | DOPN(MutCase _,_) ->
          let (ci,p,c,lf) = destCase x in
          (try
             redrec (special_red_case env (whd_betadeltaiota_stack env)
		       p c ci lf) largs
           with Redelimination -> 
	     applist(x,largs))
      | (DOPN(Fix _,_)) ->
          let (reduced,(fix,stack)) = 
            reduce_fix (whd_betadeltaiota_stack env) x largs
          in 
	  if reduced then redrec fix stack else applist(x,largs)
      | _ -> applist(x,largs)
  in 
  redrec c []


(* Simpl reduction tactic: same as simplify, but also reduces elimination constants *)
let whd_nf env c = 
  let rec nf_app c stack =
    match c with
      | DOP2(Lambda,c1,DLAM(name,c2))    ->
          (match stack with
             | [] -> (c,[])
             | a1::rest -> stacklam nf_app [a1] c2 rest)
      | DOPN(AppL,cl)      -> nf_app (array_hd cl) (array_app_tl cl stack)
      | DOP2(Cast,c,_) -> nf_app c stack
      | DOPN(Const _,_) ->
          (try
             let (c',lrest) = red_elim_const env c stack in
             nf_app c' lrest
           with Redelimination -> 
	     (c,stack))
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase c in
          (try
             nf_app (special_red_case env nf_app p d ci lf) stack
           with Redelimination -> 
	     (c,stack))
      | DOPN(Fix _,_) ->
          let (reduced,(fix,rest)) = reduce_fix nf_app c stack in
          if reduced then nf_app fix rest else (fix,stack)
      | _ -> (c,stack)
  in 
  applist (nf_app c [])

let nf env c = strong (whd_nf env) env c


(* Generic reduction: reduction functions used in reduction tactics *)
type red_expr =
  | Red
  | Hnf
  | Simpl
  | Cbv of flags
  | Lazy of flags
  | Unfold of (int list * section_path) list
  | Fold of constr list
  | Change of constr
  | Pattern of (int list * constr * constr) list

let reduction_of_redexp = function
  | Red -> red_product
  | Hnf -> hnf_constr
  | Simpl -> nf
  | Cbv f -> cbv_norm_flags f
  | Lazy f -> clos_norm_flags f
  | Unfold ubinds -> unfoldn ubinds
  | Fold cl -> fold_commands cl
  | Change t -> (fun _ _ -> t)
  | Pattern lp -> pattern_occs lp

(* Other reductions *)

let one_step_reduce env = 
  let rec redrec largs x =
    match x with
      | DOP2(Lambda,t,DLAM(n,c))  ->
          (match largs with
             | []      -> error "Not reducible 1"
             | a::rest -> applistc (subst1 a c) rest)
      | DOPN(AppL,cl) -> redrec (array_app_tl cl largs) (array_hd cl)
      | DOPN(Const _,_) ->
          (try
             let (c',l) = red_elim_const env x largs in
             applistc c' l
           with Redelimination ->
	     if evaluable_const env x then
	       applistc (const_value env x) largs
	     else 
	       error "Not reductible 1")
      | DOPN(Abst _,_) ->
          if evaluable_abst env x then 
	    applistc (abst_value env x) largs
          else 
	    error "Not reducible 0"
      | DOPN(MutCase _,_) ->
          let (ci,p,c,lf) = destCase x in
          (try  
	     applistc (special_red_case env 
			 (whd_betadeltaiota_stack env) p c ci lf) largs 
           with Redelimination -> 
	     error "Not reducible 2")
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = 
	    reduce_fix (whd_betadeltaiota_stack env) x largs
          in 
	  if reduced then applistc fix stack else error "Not reducible 3"
      | DOP2(Cast,c,_) -> redrec largs c
      | _ -> error "Not reducible 3"
  in 
  redrec []

(* One step of approximation *)

let rec apprec env c stack =
  let (t,stack) = whd_betaiota_stack env c stack in
  match t with
    | DOPN(MutCase _,_) ->
        let (ci,p,d,lf) = destCase t in
        let (cr,crargs) = whd_betadeltaiota_stack env d [] in
        let rslt = mkMutCaseA ci p (applist(cr,crargs)) lf in
        if reducible_mind_case cr then 
	  apprec env rslt stack
        else 
	  (t,stack)
    | DOPN(Fix _,_) ->
        let (reduced,(fix,stack)) = 
	  reduce_fix (whd_betadeltaiota_stack env) t stack 
	in
        if reduced then apprec env fix stack else (fix,stack)
    | _ -> (t,stack)

let hnf env c = apprec env c []


(* A reduction function like whd_betaiota but which keeps casts
 * and does not reduce redexes containing meta-variables.
 * ASSUMES THAT APPLICATIONS ARE BINARY ONES.
 * Used in Programs.
 * Added by JCF, 29/1/98. *)

let whd_programs_stack env = 
  let rec whrec x stack =
    match x with
      | DOPN(AppL,cl)    ->
	  if occur_meta cl.(1) then
	    (x,stack)
	  else
	    whrec (array_hd cl) (array_app_tl cl stack)
      | DOP2(Lambda,_,DLAM(_,c)) ->
          (match stack with
             | [] -> (x,stack)
             | (a::m) -> stacklam whrec [a] c m)
      | DOPN(MutCase _,_) ->
          let (ci,p,d,lf) = destCase x in
	  if occur_meta d then
	    (x,stack)
	  else
            let (c,cargs) = whrec d [] in
            if reducible_mind_case c then
	      whrec (reduce_mind_case env
		       {mP=p; mconstr=c; mcargs=cargs; mci=ci; mlf=lf})
		    stack
	    else
	      (mkMutCaseA ci p (applist(c,cargs)) lf, stack)
      | DOPN(Fix _,_) ->
          let (reduced,(fix,stack)) = reduce_fix whrec x stack in
          if reduced then whrec fix stack else (fix,stack)
      | x -> (x,stack)
  in 
  whrec    

let whd_programs env x = applist (whd_programs_stack env x [])


(* Used in several tactics, moved from tactics.ml *)
(* -- Eduardo                                     *)

(* 
 * put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
 * return name, B and t' 
*)

let reduce_to_mind env t = 
  let rec elimrec t l = 
    match whd_castapp_stack t [] with
      | (DOPN(MutInd _,_) as mind,_) -> (mind,t,prod_it t l)
      | (DOPN(Const _,_),_) -> 
          (try 
	     let t' = nf_betaiota env (one_step_reduce env t) in
             elimrec t' l
           with UserError _ -> 
	     errorlabstrm "tactics__reduce_to_mind"
               [< 'sTR"Not an inductive product: it is a constant." >])
      | (DOPN(MutCase _,_),_) ->
          (try 
	     let t' = nf_betaiota env (one_step_reduce env t) in
             elimrec t' l
           with UserError _ -> 
	     errorlabstrm "tactics__reduce_to_mind"
               [< 'sTR"Not an inductive product: it is a case analysis." >])
      | (DOP2(Cast,c,_),[]) -> elimrec c l
      | (DOP2(Prod,ty,DLAM(n,t')),[]) -> elimrec t' ((n,ty)::l)
      | _ -> error "Not an inductive product"
  in 
  elimrec t []
    
let reduce_to_ind env t =
  let (mind,redt,c) = reduce_to_mind env t in
  (mind_path mind, redt, c)

let find_mrectype env c =
  let (t,l) = whd_betadeltaiota_stack env c [] in
  match t with
    | DOPN(MutInd (sp,i),_) ->  (t,l)
    | _ -> raise Induc

let find_minductype env c =
  let (t,l) = whd_betadeltaiota_stack env c [] in
  match t with
    | DOPN(MutInd (sp,i),_)
        when mind_type_finite (snd (mind_of_path sp)) i -> (t,l)
    | _ -> raise Induc

let find_mcoinductype env c =
  let (t,l) = whd_betadeltaiota_stack env c [] in
  match t with
    | DOPN(MutInd (sp,i),_)
        when not (mind_type_finite (snd (mind_of_path sp)) i) -> (t,l)
    | _ -> raise Induc

let minductype_spec env c = 
  try 
    let (x,l) = find_minductype env c in
    if l<>[] then anomaly "minductype_spec: Not a recursive type 1" else x
  with Induc -> 
    anomaly "minductype_spec: Not a recursive type 2"
      
let mrectype_spec env c = 
  try 
    let (x,l) = find_mrectype env c in
    if l<>[] then anomaly "mrectype_spec: Not a recursive type 1" else x
  with Induc -> 
    anomaly "mrectype_spec: Not a recursive type 2"

let check_mrectype_spec env c =
  try 
    let (x,l) = find_mrectype env c in
    if l<>[] then error "check_mrectype: Not a recursive type 1" else x
  with Induc -> 
    error "check_mrectype: Not a recursive type 2"


exception IsType

let info_arity env = 
  let rec srec c = 
    match whd_betadeltaiota env c with 
      | DOP0(Sort(Prop(Null)))  -> false 
      | DOP0(Sort(Prop(Pos)))  -> true 
      | DOP2(Prod,_,DLAM(_,c')) -> srec c' 
      | DOP2(Lambda,_,DLAM(_,c')) -> srec c' 
      | _ -> raise IsType
  in 
  srec 
    
let is_type_arity env = 
  let rec srec c = 
    match whd_betadeltaiota env c with 
      | DOP0(Sort(Type(_)))  -> true
      | DOP2(Prod,_,DLAM(_,c')) -> srec c' 
      | DOP2(Lambda,_,DLAM(_,c')) -> srec c' 
      | _ -> false
  in 
  srec 
    
let is_logic_arity env c = 
  try (not (info_arity env c)) with IsType -> false

let is_info_arity env c = 
  try (info_arity env c) with IsType -> true
   
let is_info_cast_type env c = 
  match c with  
    | DOP2(Cast,c,t) -> 
	(try info_arity env t 
         with IsType -> try info_arity env c with IsType -> true)
    |  _ -> try info_arity env c with IsType -> true
	   
let contents_of_cast_type env c = 
  if is_info_cast_type env c then Pos else Null

let is_info_sort = is_info_arity

(* calcul des arguments implicites *)

(* la seconde liste est ordonne'e *)

let ord_add x l =
  let rec aux l = match l with 
    | []    -> [x]
    | y::l' -> if y > x then x::l else if x = y then l else y::(aux l')
  in 
  aux l
    
let add_free_rels_until depth m acc =
  let rec frec depth loc acc = function
    | Rel n -> 
	if (n <= depth) & (n > loc) then (ord_add (depth-n+1) acc) else acc
    | DOPN(_,cl)    -> Array.fold_left (frec depth loc) acc cl
    | DOPL(_,cl)    -> List.fold_left (frec depth loc) acc cl
    | DOP2(_,c1,c2) -> frec depth loc (frec depth loc acc c1) c2
    | DOP1(_,c)     -> frec depth loc acc c
    | DLAM(_,c)     -> frec (depth+1) (loc+1) acc c
    | DLAMV(_,cl)   -> Array.fold_left (frec (depth+1) (loc+1)) acc cl
    | VAR _         -> acc
    | DOP0 _        -> acc
  in 
  frec depth 0 acc m 

(* calcule la liste des arguments implicites *)

let poly_args env t =
  let rec aux n t = match (whd_betadeltaiota env t) with
    | DOP2(Prod,a,DLAM(_,b)) -> add_free_rels_until n a (aux (n+1) b)
    | DOP2(Cast,t',_) -> aux n t'
    | _ -> []
  in 
  match (strip_outer_cast (whd_betadeltaiota env t)) with 
    | DOP2(Prod,a,DLAM(_,b)) -> aux 1 b
    | _ -> []

(* Expanding existential variables (trad.ml, progmach.ml) *)
(* 1- whd_ise fails if an existential is undefined *)
let rec whd_ise env = function
  | DOPN(Const sp,_) as k ->
      if Evd.in_dom (evar_map env) sp then
        if defined_const env k then
          whd_ise env (const_value env k)
        else
          errorlabstrm "whd_ise"
            [< 'sTR"There is an unknown subterm I cannot solve" >]
      else 
	k
  | DOP2(Cast,c,_) -> whd_ise env c
  | DOP0(Sort(Type(_))) -> DOP0(Sort(Type(dummy_univ)))
  | c -> c


(* 2- undefined existentials are left unchanged *)
let rec whd_ise1 env = function
  | (DOPN(Const sp,_) as k) ->
      if Evd.in_dom (evar_map env) sp & defined_const env k then
        whd_ise1 env (const_value env k)
      else 
	k
  | DOP2(Cast,c,_) -> whd_ise1 env c
  | DOP0(Sort(Type(_))) -> DOP0(Sort(Type(dummy_univ)))
  | c -> c

let nf_ise1 env = strong (whd_ise1 env) env

(* Same as whd_ise1, but replaces the remaining ISEVAR by Metavariables
 * Similarly we have is_fmachine1_metas and is_resolve1_metas *)

let rec whd_ise1_metas env = function
  | (DOPN(Const sp,_) as k) ->
      if Evd.in_dom (evar_map env) sp then
	if defined_const env k then
      	  whd_ise1_metas env (const_value env k)
	else 
      	  let m = DOP0(Meta (new_meta())) in
	  DOP2(Cast,m,const_type env k)
      else
	k
  | DOP2(Cast,c,_) -> whd_ise1_metas env c
  | c -> c

(* Fonction spéciale qui laisse les cast clés sous les Fix ou les MutCase *)

let under_outer_cast f = function
  | DOP2 (Cast,b,t) -> DOP2 (Cast,f b,f t)
  | c -> f c

let rec strip_all_casts t = 
  match t with
    | DOP2 (Cast, b, _) -> strip_all_casts b
    | DOP0 _ as t -> t
    (* Cas ad hoc *)
    | DOPN(Fix _ as f,v) -> 
	let n = Array.length v in
	let ts = Array.sub v 0 (n-1) in
	let b = v.(n-1) in 
	DOPN(f, Array.append 
	       (Array.map strip_all_casts ts)
	       [|under_outer_cast strip_all_casts b|])
    | DOPN(CoFix _ as f,v) -> 
	let n = Array.length v in
	let ts = Array.sub v 0 (n-1) in
	let b = v.(n-1) in 
	DOPN(f, Array.append 
	       (Array.map strip_all_casts ts)
	       [|under_outer_cast strip_all_casts b|])
    | DOP1(oper,c) -> DOP1(oper,strip_all_casts c)
    | DOP2(oper,c1,c2) -> DOP2(oper,strip_all_casts c1,strip_all_casts c2)
    | DOPN(oper,cl) -> DOPN(oper,Array.map strip_all_casts cl)
    | DOPL(oper,cl) -> DOPL(oper,List.map strip_all_casts cl)
    | DLAM(na,c) -> DLAM(na,strip_all_casts c)
    | DLAMV(na,c) -> DLAMV(na,Array.map (under_outer_cast strip_all_casts) c)
    | VAR _ as t -> t
    | Rel _ as t -> t