1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Univ
open Term
open Mod_subst
type work_list = (Instance.t * Id.t array) Cmap.t *
(Instance.t * Id.t array) Mindmap.t
type cooking_info = {
modlist : work_list;
abstract : Context.Named.t * Univ.universe_level_subst * Univ.AUContext.t }
type proofterm = (constr * Univ.universe_context_set) Future.computation
type opaque =
| Indirect of substitution list * DirPath.t * int (* subst, lib, index *)
| Direct of cooking_info list * proofterm
type opaquetab = {
opaque_val : (cooking_info list * proofterm) Int.Map.t;
(** Actual proof terms *)
opaque_len : int;
(** Size of the above map *)
opaque_dir : DirPath.t;
}
let empty_opaquetab = {
opaque_val = Int.Map.empty;
opaque_len = 0;
opaque_dir = DirPath.initial;
}
(* hooks *)
let default_get_opaque dp _ =
CErrors.user_err Pp.(pr_sequence str ["Cannot access opaque proofs in library"; DirPath.to_string dp])
let default_get_univ dp _ =
CErrors.user_err (Pp.pr_sequence Pp.str [
"Cannot access universe constraints of opaque proofs in library ";
DirPath.to_string dp])
let get_opaque = ref default_get_opaque
let get_univ = ref default_get_univ
let set_indirect_opaque_accessor f = (get_opaque := f)
let set_indirect_univ_accessor f = (get_univ := f)
(* /hooks *)
let create cu = Direct ([],cu)
let turn_indirect dp o tab = match o with
| Indirect (_,_,i) ->
if not (Int.Map.mem i tab.opaque_val)
then CErrors.anomaly (Pp.str "Indirect in a different table.")
else CErrors.anomaly (Pp.str "Already an indirect opaque.")
| Direct (d,cu) ->
(** Uncomment to check dynamically that all terms turned into
indirections are hashconsed. *)
(* let check_hcons c = let c' = hcons_constr c in assert (c' == c); c in *)
(* let cu = Future.chain ~pure:true cu (fun (c, u) -> check_hcons c; c, u) in *)
let id = tab.opaque_len in
let opaque_val = Int.Map.add id (d,cu) tab.opaque_val in
let opaque_dir =
if DirPath.equal dp tab.opaque_dir then tab.opaque_dir
else if DirPath.equal tab.opaque_dir DirPath.initial then dp
else CErrors.anomaly
(Pp.str "Using the same opaque table for multiple dirpaths.") in
let ntab = { opaque_val; opaque_dir; opaque_len = id + 1 } in
Indirect ([],dp,id), ntab
let subst_opaque sub = function
| Indirect (s,dp,i) -> Indirect (sub::s,dp,i)
| Direct _ -> CErrors.anomaly (Pp.str "Substituting a Direct opaque.")
let iter_direct_opaque f = function
| Indirect _ -> CErrors.anomaly (Pp.str "Not a direct opaque.")
| Direct (d,cu) ->
Direct (d,Future.chain cu (fun (c, u) -> f c; c, u))
let discharge_direct_opaque ~cook_constr ci = function
| Indirect _ -> CErrors.anomaly (Pp.str "Not a direct opaque.")
| Direct (d,cu) ->
Direct (ci::d,Future.chain cu (fun (c, u) -> cook_constr c, u))
let join_opaque { opaque_val = prfs; opaque_dir = odp } = function
| Direct (_,cu) -> ignore(Future.join cu)
| Indirect (_,dp,i) ->
if DirPath.equal dp odp then
let fp = snd (Int.Map.find i prfs) in
ignore(Future.join fp)
let uuid_opaque { opaque_val = prfs; opaque_dir = odp } = function
| Direct (_,cu) -> Some (Future.uuid cu)
| Indirect (_,dp,i) ->
if DirPath.equal dp odp
then Some (Future.uuid (snd (Int.Map.find i prfs)))
else None
let force_proof { opaque_val = prfs; opaque_dir = odp } = function
| Direct (_,cu) ->
fst(Future.force cu)
| Indirect (l,dp,i) ->
let pt =
if DirPath.equal dp odp
then Future.chain (snd (Int.Map.find i prfs)) fst
else !get_opaque dp i in
let c = Future.force pt in
force_constr (List.fold_right subst_substituted l (from_val c))
let force_constraints { opaque_val = prfs; opaque_dir = odp } = function
| Direct (_,cu) -> snd(Future.force cu)
| Indirect (_,dp,i) ->
if DirPath.equal dp odp
then snd (Future.force (snd (Int.Map.find i prfs)))
else match !get_univ dp i with
| None -> Univ.ContextSet.empty
| Some u -> Future.force u
let get_constraints { opaque_val = prfs; opaque_dir = odp } = function
| Direct (_,cu) -> Some(Future.chain cu snd)
| Indirect (_,dp,i) ->
if DirPath.equal dp odp
then Some(Future.chain (snd (Int.Map.find i prfs)) snd)
else !get_univ dp i
let get_proof { opaque_val = prfs; opaque_dir = odp } = function
| Direct (_,cu) -> Future.chain cu fst
| Indirect (l,dp,i) ->
let pt =
if DirPath.equal dp odp
then Future.chain (snd (Int.Map.find i prfs)) fst
else !get_opaque dp i in
Future.chain pt (fun c ->
force_constr (List.fold_right subst_substituted l (from_val c)))
module FMap = Future.UUIDMap
let a_constr = Future.from_val (Term.mkRel 1)
let a_univ = Future.from_val Univ.ContextSet.empty
let a_discharge : cooking_info list = []
let dump { opaque_val = otab; opaque_len = n } =
let opaque_table = Array.make n a_constr in
let univ_table = Array.make n a_univ in
let disch_table = Array.make n a_discharge in
let f2t_map = ref FMap.empty in
Int.Map.iter (fun n (d,cu) ->
let c, u = Future.split2 cu in
Future.sink u;
Future.sink c;
opaque_table.(n) <- c;
univ_table.(n) <- u;
disch_table.(n) <- d;
f2t_map := FMap.add (Future.uuid cu) n !f2t_map)
otab;
opaque_table, univ_table, disch_table, !f2t_map
|