1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Errors
open Names
open Term
open Context
open Declarations
open Util
open Nativevalues
open Nativeinstr
open Nativelambda
open Pre_env
(** This file defines the mllambda code generation phase of the native
compiler. mllambda represents a fragment of ML, and can easily be printed
to OCaml code. *)
(** Local names **)
type lname = { lname : name; luid : int }
let dummy_lname = { lname = Anonymous; luid = -1 }
module LNord =
struct
type t = lname
let compare l1 l2 = l1.luid - l2.luid
end
module LNmap = Map.Make(LNord)
module LNset = Set.Make(LNord)
let lname_ctr = ref (-1)
let reset_lname = lname_ctr := -1
let fresh_lname n =
incr lname_ctr;
{ lname = n; luid = !lname_ctr }
(** Global names **)
type gname =
| Gind of string * pinductive (* prefix, inductive name *)
| Gconstruct of string * pconstructor (* prefix, constructor name *)
| Gconstant of string * pconstant (* prefix, constant name *)
| Gproj of string * constant (* prefix, constant name *)
| Gcase of label option * int
| Gpred of label option * int
| Gfixtype of label option * int
| Gnorm of label option * int
| Gnormtbl of label option * int
| Ginternal of string
| Grel of int
| Gnamed of identifier
let eq_gname gn1 gn2 =
match gn1, gn2 with
| Gind (s1, ind1), Gind (s2, ind2) ->
String.equal s1 s2 && Univ.eq_puniverses eq_ind ind1 ind2
| Gconstruct (s1, c1), Gconstruct (s2, c2) ->
String.equal s1 s2 && Univ.eq_puniverses eq_constructor c1 c2
| Gconstant (s1, c1), Gconstant (s2, c2) ->
String.equal s1 s2 && Univ.eq_puniverses Constant.equal c1 c2
| Gcase (None, i1), Gcase (None, i2) -> Int.equal i1 i2
| Gcase (Some l1, i1), Gcase (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2
| Gpred (None, i1), Gpred (None, i2) -> Int.equal i1 i2
| Gpred (Some l1, i1), Gpred (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2
| Gfixtype (None, i1), Gfixtype (None, i2) -> Int.equal i1 i2
| Gfixtype (Some l1, i1), Gfixtype (Some l2, i2) ->
Int.equal i1 i2 && Label.equal l1 l2
| Gnorm (None, i1), Gnorm (None, i2) -> Int.equal i1 i2
| Gnorm (Some l1, i1), Gnorm (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2
| Gnormtbl (None, i1), Gnormtbl (None, i2) -> Int.equal i1 i2
| Gnormtbl (Some l1, i1), Gnormtbl (Some l2, i2) ->
Int.equal i1 i2 && Label.equal l1 l2
| Ginternal s1, Ginternal s2 -> String.equal s1 s2
| Grel i1, Grel i2 -> Int.equal i1 i2
| Gnamed id1, Gnamed id2 -> Id.equal id1 id2
| _ -> false
open Hashset.Combine
let gname_hash gn = match gn with
| Gind (s, (ind,u)) ->
combinesmall 1 (combine3 (String.hash s) (ind_hash ind) (Univ.Instance.hash u))
| Gconstruct (s, (c,u)) ->
combinesmall 2 (combine3 (String.hash s) (constructor_hash c) (Univ.Instance.hash u))
| Gconstant (s, (c,u)) ->
combinesmall 3 (combine3 (String.hash s) (Constant.hash c) (Univ.Instance.hash u))
| Gcase (l, i) -> combinesmall 4 (combine (Option.hash Label.hash l) (Int.hash i))
| Gpred (l, i) -> combinesmall 5 (combine (Option.hash Label.hash l) (Int.hash i))
| Gfixtype (l, i) -> combinesmall 6 (combine (Option.hash Label.hash l) (Int.hash i))
| Gnorm (l, i) -> combinesmall 7 (combine (Option.hash Label.hash l) (Int.hash i))
| Gnormtbl (l, i) -> combinesmall 8 (combine (Option.hash Label.hash l) (Int.hash i))
| Ginternal s -> combinesmall 9 (String.hash s)
| Grel i -> combinesmall 10 (Int.hash i)
| Gnamed id -> combinesmall 11 (Id.hash id)
| Gproj (s, p) -> combinesmall 12 (combine (String.hash s) (Constant.hash p))
let case_ctr = ref (-1)
let reset_gcase () = case_ctr := -1
let fresh_gcase l =
incr case_ctr;
Gcase (l,!case_ctr)
let pred_ctr = ref (-1)
let reset_gpred () = pred_ctr := -1
let fresh_gpred l =
incr pred_ctr;
Gpred (l,!pred_ctr)
let fixtype_ctr = ref (-1)
let reset_gfixtype () = fixtype_ctr := -1
let fresh_gfixtype l =
incr fixtype_ctr;
Gfixtype (l,!fixtype_ctr)
let norm_ctr = ref (-1)
let reset_norm () = norm_ctr := -1
let fresh_gnorm l =
incr norm_ctr;
Gnorm (l,!norm_ctr)
let normtbl_ctr = ref (-1)
let reset_normtbl () = normtbl_ctr := -1
let fresh_gnormtbl l =
incr normtbl_ctr;
Gnormtbl (l,!normtbl_ctr)
(** Symbols (pre-computed values) **)
type symbol =
| SymbValue of Nativevalues.t
| SymbSort of sorts
| SymbName of name
| SymbConst of constant
| SymbMatch of annot_sw
| SymbInd of inductive
| SymbMeta of metavariable
| SymbEvar of existential
| SymbLevel of Univ.Level.t
let dummy_symb = SymbValue (dummy_value ())
let eq_symbol sy1 sy2 =
match sy1, sy2 with
| SymbValue v1, SymbValue v2 -> Pervasives.(=) v1 v2 (** FIXME: how is this even valid? *)
| SymbSort s1, SymbSort s2 -> Sorts.equal s1 s2
| SymbName n1, SymbName n2 -> Name.equal n1 n2
| SymbConst kn1, SymbConst kn2 -> Constant.equal kn1 kn2
| SymbMatch sw1, SymbMatch sw2 -> eq_annot_sw sw1 sw2
| SymbInd ind1, SymbInd ind2 -> eq_ind ind1 ind2
| SymbMeta m1, SymbMeta m2 -> Int.equal m1 m2
| SymbEvar (evk1,args1), SymbEvar (evk2,args2) ->
Evar.equal evk1 evk2 && Array.for_all2 eq_constr args1 args2
| SymbLevel l1, SymbLevel l2 -> Univ.Level.equal l1 l2
| _, _ -> false
let hash_symbol symb =
match symb with
| SymbValue v -> combinesmall 1 (Hashtbl.hash v) (** FIXME *)
| SymbSort s -> combinesmall 2 (Sorts.hash s)
| SymbName name -> combinesmall 3 (Name.hash name)
| SymbConst c -> combinesmall 4 (Constant.hash c)
| SymbMatch sw -> combinesmall 5 (hash_annot_sw sw)
| SymbInd ind -> combinesmall 6 (ind_hash ind)
| SymbMeta m -> combinesmall 7 m
| SymbEvar (evk,args) ->
let evh = Evar.hash evk in
let hl = Array.fold_left (fun h t -> combine h (Constr.hash t)) evh args in
combinesmall 8 hl
| SymbLevel l -> combinesmall 9 (Univ.Level.hash l)
module HashedTypeSymbol = struct
type t = symbol
let equal = eq_symbol
let hash = hash_symbol
end
module HashtblSymbol = Hashtbl.Make(HashedTypeSymbol)
let symb_tbl = HashtblSymbol.create 211
let clear_symbols () = HashtblSymbol.clear symb_tbl
type symbols = symbol array
let empty_symbols = [||]
let get_value tbl i =
match tbl.(i) with
| SymbValue v -> v
| _ -> anomaly (Pp.str "get_value failed")
let get_sort tbl i =
match tbl.(i) with
| SymbSort s -> s
| _ -> anomaly (Pp.str "get_sort failed")
let get_name tbl i =
match tbl.(i) with
| SymbName id -> id
| _ -> anomaly (Pp.str "get_name failed")
let get_const tbl i =
match tbl.(i) with
| SymbConst kn -> kn
| _ -> anomaly (Pp.str "get_const failed")
let get_match tbl i =
match tbl.(i) with
| SymbMatch case_info -> case_info
| _ -> anomaly (Pp.str "get_match failed")
let get_ind tbl i =
match tbl.(i) with
| SymbInd ind -> ind
| _ -> anomaly (Pp.str "get_ind failed")
let get_meta tbl i =
match tbl.(i) with
| SymbMeta m -> m
| _ -> anomaly (Pp.str "get_meta failed")
let get_evar tbl i =
match tbl.(i) with
| SymbEvar ev -> ev
| _ -> anomaly (Pp.str "get_evar failed")
let get_level tbl i =
match tbl.(i) with
| SymbLevel u -> u
| _ -> anomaly (Pp.str "get_level failed")
let push_symbol x =
try HashtblSymbol.find symb_tbl x
with Not_found ->
let i = HashtblSymbol.length symb_tbl in
HashtblSymbol.add symb_tbl x i; i
let symbols_tbl_name = Ginternal "symbols_tbl"
let get_symbols () =
let tbl = Array.make (HashtblSymbol.length symb_tbl) dummy_symb in
HashtblSymbol.iter (fun x i -> tbl.(i) <- x) symb_tbl; tbl
(** Lambda to Mllambda **)
type primitive =
| Mk_prod
| Mk_sort
| Mk_ind
| Mk_const
| Mk_sw
| Mk_fix of rec_pos * int
| Mk_cofix of int
| Mk_rel of int
| Mk_var of identifier
| Mk_proj
| Is_accu
| Is_int
| Cast_accu
| Upd_cofix
| Force_cofix
| Mk_uint
| Mk_int
| Mk_bool
| Val_to_int
| Mk_I31_accu
| Decomp_uint
| Mk_meta
| Mk_evar
| MLand
| MLle
| MLlt
| MLinteq
| MLlsl
| MLlsr
| MLland
| MLlor
| MLlxor
| MLadd
| MLsub
| MLmul
| MLmagic
| MLarrayget
| Mk_empty_instance
| Coq_primitive of Primitives.t * (prefix * constant) option
let eq_primitive p1 p2 =
match p1, p2 with
| Mk_prod, Mk_prod -> true
| Mk_sort, Mk_sort -> true
| Mk_ind, Mk_ind -> true
| Mk_const, Mk_const -> true
| Mk_sw, Mk_sw -> true
| Mk_fix (rp1, i1), Mk_fix (rp2, i2) -> Int.equal i1 i2 && eq_rec_pos rp1 rp2
| Mk_cofix i1, Mk_cofix i2 -> Int.equal i1 i2
| Mk_rel i1, Mk_rel i2 -> Int.equal i1 i2
| Mk_var id1, Mk_var id2 -> Id.equal id1 id2
| Is_accu, Is_accu -> true
| Cast_accu, Cast_accu -> true
| Upd_cofix, Upd_cofix -> true
| Force_cofix, Force_cofix -> true
| Mk_meta, Mk_meta -> true
| Mk_evar, Mk_evar -> true
| Mk_proj, Mk_proj -> true
| MLarrayget, MLarrayget -> true
| _ -> false
let primitive_hash = function
| Mk_prod -> 1
| Mk_sort -> 2
| Mk_ind -> 3
| Mk_const -> 4
| Mk_sw -> 5
| Mk_fix (r, i) ->
let h = Array.fold_left (fun h i -> combine h (Int.hash i)) 0 r in
combinesmall 6 (combine h (Int.hash i))
| Mk_cofix i ->
combinesmall 7 (Int.hash i)
| Mk_rel i ->
combinesmall 8 (Int.hash i)
| Mk_var id ->
combinesmall 9 (Id.hash id)
| Is_accu -> 10
| Is_int -> 11
| Cast_accu -> 12
| Upd_cofix -> 13
| Force_cofix -> 14
| Mk_uint -> 15
| Mk_int -> 16
| Mk_bool -> 17
| Val_to_int -> 18
| Mk_I31_accu -> 19
| Decomp_uint -> 20
| Mk_meta -> 21
| Mk_evar -> 22
| MLand -> 23
| MLle -> 24
| MLlt -> 25
| MLinteq -> 26
| MLlsl -> 27
| MLlsr -> 28
| MLland -> 29
| MLlor -> 30
| MLlxor -> 31
| MLadd -> 32
| MLsub -> 33
| MLmul -> 34
| MLmagic -> 35
| Coq_primitive (prim, None) -> combinesmall 36 (Primitives.hash prim)
| Coq_primitive (prim, Some (prefix,kn)) ->
combinesmall 37 (combine3 (String.hash prefix) (Constant.hash kn) (Primitives.hash prim))
| Mk_proj -> 38
| MLarrayget -> 39
| Mk_empty_instance -> 40
type mllambda =
| MLlocal of lname
| MLglobal of gname
| MLprimitive of primitive
| MLlam of lname array * mllambda
| MLletrec of (lname * lname array * mllambda) array * mllambda
| MLlet of lname * mllambda * mllambda
| MLapp of mllambda * mllambda array
| MLif of mllambda * mllambda * mllambda
| MLmatch of annot_sw * mllambda * mllambda * mllam_branches
(* argument, prefix, accu branch, branches *)
| MLconstruct of string * constructor * mllambda array
(* prefix, constructor name, arguments *)
| MLint of int
| MLuint of Uint31.t
| MLsetref of string * mllambda
| MLsequence of mllambda * mllambda
| MLarray of mllambda array
and mllam_branches = ((constructor * lname option array) list * mllambda) array
let push_lnames n env lns =
snd (Array.fold_left (fun (i,r) x -> (i+1, LNmap.add x i r)) (n,env) lns)
let opush_lnames n env lns =
let oadd x i r = match x with Some ln -> LNmap.add ln i r | None -> r in
snd (Array.fold_left (fun (i,r) x -> (i+1, oadd x i r)) (n,env) lns)
(* Alpha-equivalence on mllambda *)
(* eq_mllambda gn1 gn2 n env1 env2 t1 t2 tests if t1 = t2 modulo gn1 = gn2 *)
let rec eq_mllambda gn1 gn2 n env1 env2 t1 t2 =
match t1, t2 with
| MLlocal ln1, MLlocal ln2 ->
Int.equal (LNmap.find ln1 env1) (LNmap.find ln2 env2)
| MLglobal gn1', MLglobal gn2' ->
eq_gname gn1' gn2' || (eq_gname gn1 gn1' && eq_gname gn2 gn2')
| MLprimitive prim1, MLprimitive prim2 -> eq_primitive prim1 prim2
| MLlam (lns1, ml1), MLlam (lns2, ml2) ->
Int.equal (Array.length lns1) (Array.length lns2) &&
let env1 = push_lnames n env1 lns1 in
let env2 = push_lnames n env2 lns2 in
eq_mllambda gn1 gn2 (n+Array.length lns1) env1 env2 ml1 ml2
| MLletrec (defs1, body1), MLletrec (defs2, body2) ->
Int.equal (Array.length defs1) (Array.length defs2) &&
let lns1 = Array.map (fun (x,_,_) -> x) defs1 in
let lns2 = Array.map (fun (x,_,_) -> x) defs2 in
let env1 = push_lnames n env1 lns1 in
let env2 = push_lnames n env2 lns2 in
let n = n + Array.length defs1 in
eq_letrec gn1 gn2 n env1 env2 defs1 defs2 &&
eq_mllambda gn1 gn2 n env1 env2 body1 body2
| MLlet (ln1, def1, body1), MLlet (ln2, def2, body2) ->
eq_mllambda gn1 gn2 n env1 env2 def1 def2 &&
let env1 = LNmap.add ln1 n env1 in
let env2 = LNmap.add ln2 n env2 in
eq_mllambda gn1 gn2 (n+1) env1 env2 body1 body2
| MLapp (ml1, args1), MLapp (ml2, args2) ->
eq_mllambda gn1 gn2 n env1 env2 ml1 ml2 &&
Array.equal (eq_mllambda gn1 gn2 n env1 env2) args1 args2
| MLif (cond1,br1,br'1), MLif (cond2,br2,br'2) ->
eq_mllambda gn1 gn2 n env1 env2 cond1 cond2 &&
eq_mllambda gn1 gn2 n env1 env2 br1 br2 &&
eq_mllambda gn1 gn2 n env1 env2 br'1 br'2
| MLmatch (annot1, c1, accu1, br1), MLmatch (annot2, c2, accu2, br2) ->
eq_annot_sw annot1 annot2 &&
eq_mllambda gn1 gn2 n env1 env2 c1 c2 &&
eq_mllambda gn1 gn2 n env1 env2 accu1 accu2 &&
eq_mllam_branches gn1 gn2 n env1 env2 br1 br2
| MLconstruct (pf1, cs1, args1), MLconstruct (pf2, cs2, args2) ->
String.equal pf1 pf2 &&
eq_constructor cs1 cs2 &&
Array.equal (eq_mllambda gn1 gn2 n env1 env2) args1 args2
| MLint i1, MLint i2 ->
Int.equal i1 i2
| MLuint i1, MLuint i2 ->
Uint31.equal i1 i2
| MLsetref (id1, ml1), MLsetref (id2, ml2) ->
String.equal id1 id2 &&
eq_mllambda gn1 gn2 n env1 env2 ml1 ml2
| MLsequence (ml1, ml'1), MLsequence (ml2, ml'2) ->
eq_mllambda gn1 gn2 n env1 env2 ml1 ml2 &&
eq_mllambda gn1 gn2 n env1 env2 ml'1 ml'2
| MLarray arr1, MLarray arr2 ->
Array.equal (eq_mllambda gn1 gn2 n env1 env2) arr1 arr2
| _, _ -> false
and eq_letrec gn1 gn2 n env1 env2 defs1 defs2 =
let eq_def (_,args1,ml1) (_,args2,ml2) =
Int.equal (Array.length args1) (Array.length args2) &&
let env1 = push_lnames n env1 args1 in
let env2 = push_lnames n env2 args2 in
eq_mllambda gn1 gn2 (n + Array.length args1) env1 env2 ml1 ml2
in
Array.equal eq_def defs1 defs2
(* we require here that patterns have the same order, which may be too strong *)
and eq_mllam_branches gn1 gn2 n env1 env2 br1 br2 =
let eq_cargs (cs1, args1) (cs2, args2) body1 body2 =
Int.equal (Array.length args1) (Array.length args2) &&
eq_constructor cs1 cs2 &&
let env1 = opush_lnames n env1 args1 in
let env2 = opush_lnames n env2 args2 in
eq_mllambda gn1 gn2 (n + Array.length args1) env1 env2 body1 body2
in
let eq_branch (ptl1,body1) (ptl2,body2) =
List.equal (fun pt1 pt2 -> eq_cargs pt1 pt2 body1 body2) ptl1 ptl2
in
Array.equal eq_branch br1 br2
(* hash_mllambda gn n env t computes the hash for t ignoring occurrences of gn *)
let rec hash_mllambda gn n env t =
match t with
| MLlocal ln -> combinesmall 1 (LNmap.find ln env)
| MLglobal gn' -> combinesmall 2 (if eq_gname gn gn' then 0 else gname_hash gn')
| MLprimitive prim -> combinesmall 3 (primitive_hash prim)
| MLlam (lns, ml) ->
let env = push_lnames n env lns in
combinesmall 4 (combine (Array.length lns) (hash_mllambda gn (n+1) env ml))
| MLletrec (defs, body) ->
let lns = Array.map (fun (x,_,_) -> x) defs in
let env = push_lnames n env lns in
let n = n + Array.length defs in
let h = combine (hash_mllambda gn n env body) (Array.length defs) in
combinesmall 5 (hash_mllambda_letrec gn n env h defs)
| MLlet (ln, def, body) ->
let hdef = hash_mllambda gn n env def in
let env = LNmap.add ln n env in
combinesmall 6 (combine hdef (hash_mllambda gn (n+1) env body))
| MLapp (ml, args) ->
let h = hash_mllambda gn n env ml in
combinesmall 7 (hash_mllambda_array gn n env h args)
| MLif (cond,br,br') ->
let hcond = hash_mllambda gn n env cond in
let hbr = hash_mllambda gn n env br in
let hbr' = hash_mllambda gn n env br' in
combinesmall 8 (combine3 hcond hbr hbr')
| MLmatch (annot, c, accu, br) ->
let hannot = hash_annot_sw annot in
let hc = hash_mllambda gn n env c in
let haccu = hash_mllambda gn n env accu in
combinesmall 9 (hash_mllam_branches gn n env (combine3 hannot hc haccu) br)
| MLconstruct (pf, cs, args) ->
let hpf = String.hash pf in
let hcs = constructor_hash cs in
combinesmall 10 (hash_mllambda_array gn n env (combine hpf hcs) args)
| MLint i ->
combinesmall 11 i
| MLuint i ->
combinesmall 12 (Uint31.to_int i)
| MLsetref (id, ml) ->
let hid = String.hash id in
let hml = hash_mllambda gn n env ml in
combinesmall 13 (combine hid hml)
| MLsequence (ml, ml') ->
let hml = hash_mllambda gn n env ml in
let hml' = hash_mllambda gn n env ml' in
combinesmall 14 (combine hml hml')
| MLarray arr ->
combinesmall 15 (hash_mllambda_array gn n env 1 arr)
and hash_mllambda_letrec gn n env init defs =
let hash_def (_,args,ml) =
let env = push_lnames n env args in
let nargs = Array.length args in
combine nargs (hash_mllambda gn (n + nargs) env ml)
in
Array.fold_left (fun acc t -> combine (hash_def t) acc) init defs
and hash_mllambda_array gn n env init arr =
Array.fold_left (fun acc t -> combine (hash_mllambda gn n env t) acc) init arr
and hash_mllam_branches gn n env init br =
let hash_cargs (cs, args) body =
let nargs = Array.length args in
let hcs = constructor_hash cs in
let env = opush_lnames n env args in
let hbody = hash_mllambda gn (n + nargs) env body in
combine3 nargs hcs hbody
in
let hash_branch acc (ptl,body) =
List.fold_left (fun acc t -> combine (hash_cargs t body) acc) acc ptl
in
Array.fold_left hash_branch init br
let fv_lam l =
let rec aux l bind fv =
match l with
| MLlocal l ->
if LNset.mem l bind then fv else LNset.add l fv
| MLglobal _ | MLprimitive _ | MLint _ | MLuint _ -> fv
| MLlam (ln,body) ->
let bind = Array.fold_right LNset.add ln bind in
aux body bind fv
| MLletrec(bodies,def) ->
let bind =
Array.fold_right (fun (id,_,_) b -> LNset.add id b) bodies bind in
let fv_body (_,ln,body) fv =
let bind = Array.fold_right LNset.add ln bind in
aux body bind fv in
Array.fold_right fv_body bodies (aux def bind fv)
| MLlet(l,def,body) ->
aux body (LNset.add l bind) (aux def bind fv)
| MLapp(f,args) ->
let fv_arg arg fv = aux arg bind fv in
Array.fold_right fv_arg args (aux f bind fv)
| MLif(t,b1,b2) ->
aux t bind (aux b1 bind (aux b2 bind fv))
| MLmatch(_,a,p,bs) ->
let fv = aux a bind (aux p bind fv) in
let fv_bs (cargs, body) fv =
let bind =
List.fold_right (fun (_,args) bind ->
Array.fold_right
(fun o bind -> match o with
| Some l -> LNset.add l bind
| _ -> bind) args bind)
cargs bind in
aux body bind fv in
Array.fold_right fv_bs bs fv
(* argument, accu branch, branches *)
| MLconstruct (_,_,p) ->
Array.fold_right (fun a fv -> aux a bind fv) p fv
| MLsetref(_,l) -> aux l bind fv
| MLsequence(l1,l2) -> aux l1 bind (aux l2 bind fv)
| MLarray arr -> Array.fold_right (fun a fv -> aux a bind fv) arr fv
in
aux l LNset.empty LNset.empty
let mkMLlam params body =
if Array.is_empty params then body
else
match body with
| MLlam (params', body) -> MLlam(Array.append params params', body)
| _ -> MLlam(params,body)
let mkMLapp f args =
if Array.is_empty args then f
else
match f with
| MLapp(f,args') -> MLapp(f,Array.append args' args)
| _ -> MLapp(f,args)
let empty_params = [||]
let decompose_MLlam c =
match c with
| MLlam(ids,c) -> ids,c
| _ -> empty_params,c
(*s Global declaration *)
type global =
(* | Gtblname of gname * identifier array *)
| Gtblnorm of gname * lname array * mllambda array
| Gtblfixtype of gname * lname array * mllambda array
| Glet of gname * mllambda
| Gletcase of
gname * lname array * annot_sw * mllambda * mllambda * mllam_branches
| Gopen of string
| Gtype of inductive * int array
(* ind name, arities of constructors *)
| Gcomment of string
(* Alpha-equivalence on globals *)
let eq_global g1 g2 =
match g1, g2 with
| Gtblnorm (gn1,lns1,mls1), Gtblnorm (gn2,lns2,mls2)
| Gtblfixtype (gn1,lns1,mls1), Gtblfixtype (gn2,lns2,mls2) ->
Int.equal (Array.length lns1) (Array.length lns2) &&
Int.equal (Array.length mls1) (Array.length mls2) &&
let env1 = push_lnames 0 LNmap.empty lns1 in
let env2 = push_lnames 0 LNmap.empty lns2 in
Array.for_all2 (eq_mllambda gn1 gn2 (Array.length lns1) env1 env2) mls1 mls2
| Glet (gn1, def1), Glet (gn2, def2) ->
eq_mllambda gn1 gn2 0 LNmap.empty LNmap.empty def1 def2
| Gletcase (gn1,lns1,annot1,c1,accu1,br1),
Gletcase (gn2,lns2,annot2,c2,accu2,br2) ->
Int.equal (Array.length lns1) (Array.length lns2) &&
let env1 = push_lnames 0 LNmap.empty lns1 in
let env2 = push_lnames 0 LNmap.empty lns2 in
let t1 = MLmatch (annot1,c1,accu1,br1) in
let t2 = MLmatch (annot2,c2,accu2,br2) in
eq_mllambda gn1 gn2 (Array.length lns1) env1 env2 t1 t2
| Gopen s1, Gopen s2 -> String.equal s1 s2
| Gtype (ind1, arr1), Gtype (ind2, arr2) ->
eq_ind ind1 ind2 && Array.equal Int.equal arr1 arr2
| Gcomment s1, Gcomment s2 -> String.equal s1 s2
| _, _ -> false
let hash_global g =
match g with
| Gtblnorm (gn,lns,mls) ->
let nlns = Array.length lns in
let nmls = Array.length mls in
let env = push_lnames 0 LNmap.empty lns in
let hmls = hash_mllambda_array gn nlns env (combine nlns nmls) mls in
combinesmall 1 hmls
| Gtblfixtype (gn,lns,mls) ->
let nlns = Array.length lns in
let nmls = Array.length mls in
let env = push_lnames 0 LNmap.empty lns in
let hmls = hash_mllambda_array gn nlns env (combine nlns nmls) mls in
combinesmall 2 hmls
| Glet (gn, def) ->
combinesmall 3 (hash_mllambda gn 0 LNmap.empty def)
| Gletcase (gn,lns,annot,c,accu,br) ->
let nlns = Array.length lns in
let env = push_lnames 0 LNmap.empty lns in
let t = MLmatch (annot,c,accu,br) in
combinesmall 4 (combine nlns (hash_mllambda gn nlns env t))
| Gopen s -> combinesmall 5 (String.hash s)
| Gtype (ind, arr) ->
combinesmall 6 (combine (ind_hash ind) (Array.fold_left combine 0 arr))
| Gcomment s -> combinesmall 7 (String.hash s)
let global_stack = ref ([] : global list)
module HashedTypeGlobal = struct
type t = global
let equal = eq_global
let hash = hash_global
end
module HashtblGlobal = Hashtbl.Make(HashedTypeGlobal)
let global_tbl = HashtblGlobal.create 19991
let clear_global_tbl () = HashtblGlobal.clear global_tbl
let push_global gn t =
try HashtblGlobal.find global_tbl t
with Not_found ->
(global_stack := t :: !global_stack;
HashtblGlobal.add global_tbl t gn; gn)
let push_global_let gn body =
push_global gn (Glet (gn,body))
let push_global_fixtype gn params body =
push_global gn (Gtblfixtype (gn,params,body))
let push_global_norm gn params body =
push_global gn (Gtblnorm (gn, params, body))
let push_global_case gn params annot a accu bs =
push_global gn (Gletcase (gn, params, annot, a, accu, bs))
(*s Compilation environment *)
type env =
{ env_rel : mllambda list; (* (MLlocal lname) list *)
env_bound : int; (* length of env_rel *)
(* free variables *)
env_urel : (int * mllambda) list ref; (* list of unbound rel *)
env_named : (identifier * mllambda) list ref;
env_univ : lname option}
let empty_env univ () =
{ env_rel = [];
env_bound = 0;
env_urel = ref [];
env_named = ref [];
env_univ = univ
}
let push_rel env id =
let local = fresh_lname id in
local, { env with
env_rel = MLlocal local :: env.env_rel;
env_bound = env.env_bound + 1
}
let push_rels env ids =
let lnames, env_rel =
Array.fold_left (fun (names,env_rel) id ->
let local = fresh_lname id in
(local::names, MLlocal local::env_rel)) ([],env.env_rel) ids in
Array.of_list (List.rev lnames), { env with
env_rel = env_rel;
env_bound = env.env_bound + Array.length ids
}
let get_rel env id i =
if i <= env.env_bound then
List.nth env.env_rel (i-1)
else
let i = i - env.env_bound in
try Int.List.assoc i !(env.env_urel)
with Not_found ->
let local = MLlocal (fresh_lname id) in
env.env_urel := (i,local) :: !(env.env_urel);
local
let get_var env id =
try Id.List.assoc id !(env.env_named)
with Not_found ->
let local = MLlocal (fresh_lname (Name id)) in
env.env_named := (id, local)::!(env.env_named);
local
let fresh_univ () =
fresh_lname (Name (Id.of_string "univ"))
(*s Traduction of lambda to mllambda *)
let get_prod_name codom =
match codom with
| MLlam(ids,_) -> ids.(0).lname
| _ -> assert false
let get_lname (_,l) =
match l with
| MLlocal id -> id
| _ -> invalid_arg "Nativecode.get_lname"
(* Collects free variables from env in an array of local names *)
let fv_params env =
let fvn, fvr = !(env.env_named), !(env.env_urel) in
let size = List.length fvn + List.length fvr in
let start,params = match env.env_univ with
| None -> 0, Array.make size dummy_lname
| Some u -> 1, let t = Array.make (size + 1) dummy_lname in t.(0) <- u; t
in
if Array.is_empty params then empty_params
else begin
let fvn = ref fvn in
let i = ref start in
while not (List.is_empty !fvn) do
params.(!i) <- get_lname (List.hd !fvn);
fvn := List.tl !fvn;
incr i
done;
let fvr = ref fvr in
while not (List.is_empty !fvr) do
params.(!i) <- get_lname (List.hd !fvr);
fvr := List.tl !fvr;
incr i
done;
params
end
let generalize_fv env body =
mkMLlam (fv_params env) body
let empty_args = [||]
let fv_args env fvn fvr =
let size = List.length fvn + List.length fvr in
let start,args = match env.env_univ with
| None -> 0, Array.make size (MLint 0)
| Some u -> 1, let t = Array.make (size + 1) (MLint 0) in t.(0) <- MLlocal u; t
in
if Array.is_empty args then empty_args
else
begin
let fvn = ref fvn in
let i = ref start in
while not (List.is_empty !fvn) do
args.(!i) <- get_var env (fst (List.hd !fvn));
fvn := List.tl !fvn;
incr i
done;
let fvr = ref fvr in
while not (List.is_empty !fvr) do
let (k,_ as kml) = List.hd !fvr in
let n = get_lname kml in
args.(!i) <- get_rel env n.lname k;
fvr := List.tl !fvr;
incr i
done;
args
end
let get_value_code i =
MLapp (MLglobal (Ginternal "get_value"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_sort_code i =
MLapp (MLglobal (Ginternal "get_sort"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_name_code i =
MLapp (MLglobal (Ginternal "get_name"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_const_code i =
MLapp (MLglobal (Ginternal "get_const"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_match_code i =
MLapp (MLglobal (Ginternal "get_match"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_ind_code i =
MLapp (MLglobal (Ginternal "get_ind"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_meta_code i =
MLapp (MLglobal (Ginternal "get_meta"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_evar_code i =
MLapp (MLglobal (Ginternal "get_evar"),
[|MLglobal symbols_tbl_name; MLint i|])
let get_level_code i =
MLapp (MLglobal (Ginternal "get_level"),
[|MLglobal symbols_tbl_name; MLint i|])
type rlist =
| Rnil
| Rcons of (constructor * lname option array) list ref * LNset.t * mllambda * rlist'
and rlist' = rlist ref
let rm_params fv params =
Array.map (fun l -> if LNset.mem l fv then Some l else None) params
let rec insert cargs body rl =
match !rl with
| Rnil ->
let fv = fv_lam body in
let (c,params) = cargs in
let params = rm_params fv params in
rl:= Rcons(ref [(c,params)], fv, body, ref Rnil)
| Rcons(l,fv,body',rl) ->
(** ppedrot: It seems we only want to factorize common branches. It should
not matter to do so with a subapproximation by (==). *)
if body == body' then
let (c,params) = cargs in
let params = rm_params fv params in
l := (c,params)::!l
else insert cargs body rl
let rec to_list rl =
match !rl with
| Rnil -> []
| Rcons(l,_,body,tl) -> (!l,body)::to_list tl
let merge_branches t =
let newt = ref Rnil in
Array.iter (fun (c,args,body) -> insert (c,args) body newt) t;
Array.of_list (to_list newt)
type prim_aux =
| PAprim of string * constant * Primitives.t * prim_aux array
| PAml of mllambda
let add_check cond args =
let aux cond a =
match a with
| PAml(MLint _) -> cond
| PAml ml ->
(* FIXME: use explicit equality function *)
if List.mem ml cond then cond else ml::cond
| _ -> cond
in
Array.fold_left aux cond args
let extract_prim ml_of l =
let decl = ref [] in
let cond = ref [] in
let rec aux l =
match l with
| Lprim(prefix,kn,p,args) ->
let args = Array.map aux args in
cond := add_check !cond args;
PAprim(prefix,kn,p,args)
| Lrel _ | Lvar _ | Luint _ | Lval _ | Lconst _ -> PAml (ml_of l)
| _ ->
let x = fresh_lname Anonymous in
decl := (x,ml_of l)::!decl;
PAml (MLlocal x) in
let res = aux l in
(!decl, !cond, res)
let app_prim p args = MLapp(MLprimitive p, args)
let to_int v =
match v with
| MLapp(MLprimitive Mk_uint, t) ->
begin match t.(0) with
| MLuint i -> MLint (Uint31.to_int i)
| _ -> MLapp(MLprimitive Val_to_int, [|v|])
end
| MLapp(MLprimitive Mk_int, t) -> t.(0)
| _ -> MLapp(MLprimitive Val_to_int, [|v|])
let of_int v =
match v with
| MLapp(MLprimitive Val_to_int, t) -> t.(0)
| _ -> MLapp(MLprimitive Mk_int,[|v|])
let compile_prim decl cond paux =
(*
let args_to_int args =
for i = 0 to Array.length args - 1 do
args.(i) <- to_int args.(i)
done;
args in
*)
let rec opt_prim_aux paux =
match paux with
| PAprim(prefix, kn, op, args) ->
let args = Array.map opt_prim_aux args in
app_prim (Coq_primitive(op,None)) args
(*
TODO: check if this inlining was useful
begin match op with
| Int31lt ->
if Sys.word_size = 64 then
app_prim Mk_bool [|(app_prim MLlt (args_to_int args))|]
else app_prim (Coq_primitive (Primitives.Int31lt,None)) args
| Int31le ->
if Sys.word_size = 64 then
app_prim Mk_bool [|(app_prim MLle (args_to_int args))|]
else app_prim (Coq_primitive (Primitives.Int31le, None)) args
| Int31lsl -> of_int (mk_lsl (args_to_int args))
| Int31lsr -> of_int (mk_lsr (args_to_int args))
| Int31land -> of_int (mk_land (args_to_int args))
| Int31lor -> of_int (mk_lor (args_to_int args))
| Int31lxor -> of_int (mk_lxor (args_to_int args))
| Int31add -> of_int (mk_add (args_to_int args))
| Int31sub -> of_int (mk_sub (args_to_int args))
| Int31mul -> of_int (mk_mul (args_to_int args))
| _ -> app_prim (Coq_primitive(op,None)) args
end *)
| PAml ml -> ml
and naive_prim_aux paux =
match paux with
| PAprim(prefix, kn, op, args) ->
app_prim (Coq_primitive(op, Some (prefix, kn))) (Array.map naive_prim_aux args)
| PAml ml -> ml in
let compile_cond cond paux =
match cond with
| [] -> opt_prim_aux paux
| [c1] ->
MLif(app_prim Is_int [|c1|], opt_prim_aux paux, naive_prim_aux paux)
| c1::cond ->
let cond =
List.fold_left
(fun ml c -> app_prim MLland [| ml; to_int c|])
(app_prim MLland [|to_int c1; MLint 0 |]) cond in
let cond = app_prim MLmagic [|cond|] in
MLif(cond, naive_prim_aux paux, opt_prim_aux paux) in
let add_decl decl body =
List.fold_left (fun body (x,d) -> MLlet(x,d,body)) body decl in
add_decl decl (compile_cond cond paux)
let ml_of_instance instance u =
let ml_of_level l =
match Univ.Level.var_index l with
| Some i ->
let univ = MLapp(MLprimitive MLmagic, [|MLlocal (Option.get instance)|]) in
mkMLapp (MLprimitive MLarrayget) [|univ; MLint i|]
| None -> let i = push_symbol (SymbLevel l) in get_level_code i
in
let u = Univ.Instance.to_array u in
if Array.is_empty u then [||]
else let u = Array.map ml_of_level u in
[|MLapp (MLprimitive MLmagic, [|MLarray u|])|]
let rec ml_of_lam env l t =
match t with
| Lrel(id ,i) -> get_rel env id i
| Lvar id -> get_var env id
| Lmeta(mv,ty) ->
let tyn = fresh_lname Anonymous in
let i = push_symbol (SymbMeta mv) in
MLapp(MLprimitive Mk_meta, [|get_meta_code i; MLlocal tyn|])
| Levar(ev,ty) ->
let tyn = fresh_lname Anonymous in
let i = push_symbol (SymbEvar ev) in
MLlet(tyn, ml_of_lam env l ty,
MLapp(MLprimitive Mk_evar, [|get_evar_code i;MLlocal tyn|]))
| Lprod(dom,codom) ->
let dom = ml_of_lam env l dom in
let codom = ml_of_lam env l codom in
let n = get_prod_name codom in
let i = push_symbol (SymbName n) in
MLapp(MLprimitive Mk_prod, [|get_name_code i;dom;codom|])
| Llam(ids,body) ->
let lnames,env = push_rels env ids in
MLlam(lnames, ml_of_lam env l body)
| Llet(id,def,body) ->
let def = ml_of_lam env l def in
let lname, env = push_rel env id in
let body = ml_of_lam env l body in
MLlet(lname,def,body)
| Lapp(f,args) ->
MLapp(ml_of_lam env l f, Array.map (ml_of_lam env l) args)
| Lconst (prefix,c) ->
let args = ml_of_instance env.env_univ (snd c) in
mkMLapp (MLglobal(Gconstant (prefix,c))) args
| Lproj (prefix,c) -> MLglobal(Gproj (prefix,c))
| Lprim _ ->
let decl,cond,paux = extract_prim (ml_of_lam env l) t in
compile_prim decl cond paux
| Lcase (annot,p,a,bs) ->
(* let predicate_uid fv_pred = compilation of p
let rec case_uid fv a_uid =
match a_uid with
| Accu _ => mk_sw (predicate_uid fv_pred) (case_uid fv) a_uid
| Ci argsi => compilation of branches
compile case = case_uid fv (compilation of a) *)
(* Compilation of the predicate *)
(* Remark: if we do not want to compile the predicate we
should a least compute the fv, then store the lambda representation
of the predicate (not the mllambda) *)
let env_p = empty_env env.env_univ () in
let pn = fresh_gpred l in
let mlp = ml_of_lam env_p l p in
let mlp = generalize_fv env_p mlp in
let (pfvn,pfvr) = !(env_p.env_named), !(env_p.env_urel) in
let pn = push_global_let pn mlp in
(* Compilation of the case *)
let env_c = empty_env env.env_univ () in
let a_uid = fresh_lname Anonymous in
let la_uid = MLlocal a_uid in
(* compilation of branches *)
let ml_br (c,params, body) =
let lnames, env_c = push_rels env_c params in
(c, lnames, ml_of_lam env_c l body)
in
let bs = Array.map ml_br bs in
let cn = fresh_gcase l in
(* Compilation of accu branch *)
let pred = MLapp(MLglobal pn, fv_args env_c pfvn pfvr) in
let (fvn, fvr) = !(env_c.env_named), !(env_c.env_urel) in
let cn_fv = mkMLapp (MLglobal cn) (fv_args env_c fvn fvr) in
(* remark : the call to fv_args does not add free variables in env_c *)
let i = push_symbol (SymbMatch annot) in
let accu =
MLapp(MLprimitive Mk_sw,
[| get_match_code i; MLapp (MLprimitive Cast_accu, [|la_uid|]);
pred;
cn_fv |]) in
(* let body = MLlam([|a_uid|], MLmatch(annot, la_uid, accu, bs)) in
let case = generalize_fv env_c body in *)
let cn = push_global_case cn (Array.append (fv_params env_c) [|a_uid|])
annot la_uid accu (merge_branches bs)
in
(* Final result *)
let arg = ml_of_lam env l a in
let force =
if annot.asw_finite then arg
else MLapp(MLprimitive Force_cofix, [|arg|]) in
mkMLapp (MLapp (MLglobal cn, fv_args env fvn fvr)) [|force|]
| Lif(t,bt,bf) ->
MLif(ml_of_lam env l t, ml_of_lam env l bt, ml_of_lam env l bf)
| Lfix ((rec_pos,start), (ids, tt, tb)) ->
(* let type_f fvt = [| type fix |]
let norm_f1 fv f1 .. fn params1 = body1
..
let norm_fn fv f1 .. fn paramsn = bodyn
let norm fv f1 .. fn =
[|norm_f1 fv f1 .. fn; ..; norm_fn fv f1 .. fn|]
compile fix =
let rec f1 params1 =
if is_accu rec_pos.(1) then mk_fix (type_f fvt) (norm fv) params1
else norm_f1 fv f1 .. fn params1
and .. and fn paramsn =
if is_accu rec_pos.(n) then mk_fix (type_f fvt) (norm fv) paramsn
else norm_fn fv f1 .. fv paramsn in
start
*)
(* Compilation of type *)
let env_t = empty_env env.env_univ () in
let ml_t = Array.map (ml_of_lam env_t l) tt in
let params_t = fv_params env_t in
let args_t = fv_args env !(env_t.env_named) !(env_t.env_urel) in
let gft = fresh_gfixtype l in
let gft = push_global_fixtype gft params_t ml_t in
let mk_type = MLapp(MLglobal gft, args_t) in
(* Compilation of norm_i *)
let ndef = Array.length ids in
let lf,env_n = push_rels (empty_env env.env_univ ()) ids in
let t_params = Array.make ndef [||] in
let t_norm_f = Array.make ndef (Gnorm (l,-1)) in
let mk_let envi (id,def) t = MLlet (id,def,t) in
let mk_lam_or_let (params,lets,env) (id,def) =
let ln,env' = push_rel env id in
match def with
| None -> (ln::params,lets,env')
| Some lam -> (params, (ln,ml_of_lam env l lam)::lets,env')
in
let ml_of_fix i body =
let varsi, bodyi = decompose_Llam_Llet body in
let paramsi,letsi,envi =
Array.fold_left mk_lam_or_let ([],[],env_n) varsi
in
let paramsi,letsi =
Array.of_list (List.rev paramsi), Array.of_list (List.rev letsi)
in
t_norm_f.(i) <- fresh_gnorm l;
let bodyi = ml_of_lam envi l bodyi in
t_params.(i) <- paramsi;
let bodyi = Array.fold_right (mk_let envi) letsi bodyi in
mkMLlam paramsi bodyi
in
let tnorm = Array.mapi ml_of_fix tb in
let fvn,fvr = !(env_n.env_named), !(env_n.env_urel) in
let fv_params = fv_params env_n in
let fv_args' = Array.map (fun id -> MLlocal id) fv_params in
let norm_params = Array.append fv_params lf in
let t_norm_f = Array.mapi (fun i body ->
push_global_let (t_norm_f.(i)) (mkMLlam norm_params body)) tnorm in
let norm = fresh_gnormtbl l in
let norm = push_global_norm norm fv_params
(Array.map (fun g -> mkMLapp (MLglobal g) fv_args') t_norm_f) in
(* Compilation of fix *)
let fv_args = fv_args env fvn fvr in
let lf, env = push_rels env ids in
let lf_args = Array.map (fun id -> MLlocal id) lf in
let mk_norm = MLapp(MLglobal norm, fv_args) in
let mkrec i lname =
let paramsi = t_params.(i) in
let reci = MLlocal (paramsi.(rec_pos.(i))) in
let pargsi = Array.map (fun id -> MLlocal id) paramsi in
let body =
MLif(MLapp(MLprimitive Is_accu,[|reci|]),
mkMLapp
(MLapp(MLprimitive (Mk_fix(rec_pos,i)),
[|mk_type; mk_norm|]))
pargsi,
MLapp(MLglobal t_norm_f.(i),
Array.concat [fv_args;lf_args;pargsi]))
in
(lname, paramsi, body) in
MLletrec(Array.mapi mkrec lf, lf_args.(start))
| Lcofix (start, (ids, tt, tb)) ->
(* Compilation of type *)
let env_t = empty_env env.env_univ () in
let ml_t = Array.map (ml_of_lam env_t l) tt in
let params_t = fv_params env_t in
let args_t = fv_args env !(env_t.env_named) !(env_t.env_urel) in
let gft = fresh_gfixtype l in
let gft = push_global_fixtype gft params_t ml_t in
let mk_type = MLapp(MLglobal gft, args_t) in
(* Compilation of norm_i *)
let ndef = Array.length ids in
let lf,env_n = push_rels (empty_env env.env_univ ()) ids in
let t_params = Array.make ndef [||] in
let t_norm_f = Array.make ndef (Gnorm (l,-1)) in
let ml_of_fix i body =
let idsi,bodyi = decompose_Llam body in
let paramsi, envi = push_rels env_n idsi in
t_norm_f.(i) <- fresh_gnorm l;
let bodyi = ml_of_lam envi l bodyi in
t_params.(i) <- paramsi;
mkMLlam paramsi bodyi in
let tnorm = Array.mapi ml_of_fix tb in
let fvn,fvr = !(env_n.env_named), !(env_n.env_urel) in
let fv_params = fv_params env_n in
let fv_args' = Array.map (fun id -> MLlocal id) fv_params in
let norm_params = Array.append fv_params lf in
let t_norm_f = Array.mapi (fun i body ->
push_global_let (t_norm_f.(i)) (mkMLlam norm_params body)) tnorm in
let norm = fresh_gnormtbl l in
let norm = push_global_norm norm fv_params
(Array.map (fun g -> mkMLapp (MLglobal g) fv_args') t_norm_f) in
(* Compilation of fix *)
let fv_args = fv_args env fvn fvr in
let mk_norm = MLapp(MLglobal norm, fv_args) in
let lnorm = fresh_lname Anonymous in
let ltype = fresh_lname Anonymous in
let lf, env = push_rels env ids in
let lf_args = Array.map (fun id -> MLlocal id) lf in
let upd i lname cont =
let paramsi = t_params.(i) in
let pargsi = Array.map (fun id -> MLlocal id) paramsi in
let uniti = fresh_lname Anonymous in
let body =
MLlam(Array.append paramsi [|uniti|],
MLapp(MLglobal t_norm_f.(i),
Array.concat [fv_args;lf_args;pargsi])) in
MLsequence(MLapp(MLprimitive Upd_cofix, [|lf_args.(i);body|]),
cont) in
let upd = Array.fold_right_i upd lf lf_args.(start) in
let mk_let i lname cont =
MLlet(lname,
MLapp(MLprimitive(Mk_cofix i),[| MLlocal ltype; MLlocal lnorm|]),
cont) in
let init = Array.fold_right_i mk_let lf upd in
MLlet(lnorm, mk_norm, MLlet(ltype, mk_type, init))
(*
let mkrec i lname =
let paramsi = t_params.(i) in
let pargsi = Array.map (fun id -> MLlocal id) paramsi in
let uniti = fresh_lname Anonymous in
let body =
MLapp( MLprimitive(Mk_cofix i),
[|mk_type;mk_norm;
MLlam([|uniti|],
MLapp(MLglobal t_norm_f.(i),
Array.concat [fv_args;lf_args;pargsi]))|]) in
(lname, paramsi, body) in
MLletrec(Array.mapi mkrec lf, lf_args.(start)) *)
| Lmakeblock (prefix,(cn,u),_,args) ->
let args = Array.map (ml_of_lam env l) args in
MLconstruct(prefix,cn,args)
| Lconstruct (prefix, (cn,u)) ->
let uargs = ml_of_instance env.env_univ u in
mkMLapp (MLglobal (Gconstruct (prefix, (cn,u)))) uargs
| Luint v ->
(match v with
| UintVal i -> MLapp(MLprimitive Mk_uint, [|MLuint i|])
| UintDigits (prefix,cn,ds) ->
let c = MLglobal (Gconstruct (prefix, (cn, Univ.Instance.empty))) in
let ds = Array.map (ml_of_lam env l) ds in
let i31 = MLapp (MLprimitive Mk_I31_accu, [|c|]) in
MLapp(i31, ds)
| UintDecomp (prefix,cn,t) ->
let c = MLglobal (Gconstruct (prefix, (cn, Univ.Instance.empty))) in
let t = ml_of_lam env l t in
MLapp (MLprimitive Decomp_uint, [|c;t|]))
| Lval v ->
let i = push_symbol (SymbValue v) in get_value_code i
| Lsort s ->
let i = push_symbol (SymbSort s) in
let uarg = match env.env_univ with
| None -> MLarray [||]
| Some u -> MLlocal u
in
let uarg = MLapp(MLprimitive MLmagic, [|uarg|]) in
MLapp(MLprimitive Mk_sort, [|get_sort_code i; uarg|])
| Lind (prefix, pind) ->
let uargs = ml_of_instance env.env_univ (snd pind) in
mkMLapp (MLglobal (Gind (prefix, pind))) uargs
| Llazy -> MLglobal (Ginternal "lazy")
| Lforce -> MLglobal (Ginternal "Lazy.force")
let mllambda_of_lambda univ auxdefs l t =
let env = empty_env univ () in
global_stack := auxdefs;
let ml = ml_of_lam env l t in
let fv_rel = !(env.env_urel) in
let fv_named = !(env.env_named) in
(* build the free variables *)
let get_lname (_,t) =
match t with
| MLlocal x -> x
| _ -> assert false in
let params =
List.append (List.map get_lname fv_rel) (List.map get_lname fv_named) in
if List.is_empty params then
(!global_stack, ([],[]), ml)
(* final result : global list, fv, ml *)
else
(!global_stack, (fv_named, fv_rel), mkMLlam (Array.of_list params) ml)
(** Code optimization **)
(** Optimization of match and fix *)
let can_subst l =
match l with
| MLlocal _ | MLint _ | MLuint _ | MLglobal _ -> true
| _ -> false
let subst s l =
if LNmap.is_empty s then l
else
let rec aux l =
match l with
| MLlocal id -> (try LNmap.find id s with Not_found -> l)
| MLglobal _ | MLprimitive _ | MLint _ | MLuint _ -> l
| MLlam(params,body) -> MLlam(params, aux body)
| MLletrec(defs,body) ->
let arec (f,params,body) = (f,params,aux body) in
MLletrec(Array.map arec defs, aux body)
| MLlet(id,def,body) -> MLlet(id,aux def, aux body)
| MLapp(f,args) -> MLapp(aux f, Array.map aux args)
| MLif(t,b1,b2) -> MLif(aux t, aux b1, aux b2)
| MLmatch(annot,a,accu,bs) ->
let auxb (cargs,body) = (cargs,aux body) in
MLmatch(annot,a,aux accu, Array.map auxb bs)
| MLconstruct(prefix,c,args) -> MLconstruct(prefix,c,Array.map aux args)
| MLsetref(s,l1) -> MLsetref(s,aux l1)
| MLsequence(l1,l2) -> MLsequence(aux l1, aux l2)
| MLarray arr -> MLarray (Array.map aux arr)
in
aux l
let add_subst id v s =
match v with
| MLlocal id' when Int.equal id.luid id'.luid -> s
| _ -> LNmap.add id v s
let subst_norm params args s =
let len = Array.length params in
assert (Int.equal (Array.length args) len && Array.for_all can_subst args);
let s = ref s in
for i = 0 to len - 1 do
s := add_subst params.(i) args.(i) !s
done;
!s
let subst_case params args s =
let len = Array.length params in
assert (len > 0 &&
Int.equal (Array.length args) len &&
let r = ref true and i = ref 0 in
(* we test all arguments excepted the last *)
while !i < len - 1 && !r do r := can_subst args.(!i); incr i done;
!r);
let s = ref s in
for i = 0 to len - 2 do
s := add_subst params.(i) args.(i) !s
done;
!s, params.(len-1), args.(len-1)
let empty_gdef = Int.Map.empty, Int.Map.empty
let get_norm (gnorm, _) i = Int.Map.find i gnorm
let get_case (_, gcase) i = Int.Map.find i gcase
let all_lam n bs =
let f (_, l) =
match l with
| MLlam(params, _) -> Int.equal (Array.length params) n
| _ -> false in
Array.for_all f bs
let commutative_cut annot a accu bs args =
let mkb (c,b) =
match b with
| MLlam(params, body) ->
(c, Array.fold_left2 (fun body x v -> MLlet(x,v,body)) body params args)
| _ -> assert false in
MLmatch(annot, a, mkMLapp accu args, Array.map mkb bs)
let optimize gdef l =
let rec optimize s l =
match l with
| MLlocal id -> (try LNmap.find id s with Not_found -> l)
| MLglobal _ | MLprimitive _ | MLint _ | MLuint _ -> l
| MLlam(params,body) ->
MLlam(params, optimize s body)
| MLletrec(decls,body) ->
let opt_rec (f,params,body) = (f,params,optimize s body ) in
MLletrec(Array.map opt_rec decls, optimize s body)
| MLlet(id,def,body) ->
let def = optimize s def in
if can_subst def then optimize (add_subst id def s) body
else MLlet(id,def,optimize s body)
| MLapp(f, args) ->
let args = Array.map (optimize s) args in
begin match f with
| MLglobal (Gnorm (_,i)) ->
(try
let params,body = get_norm gdef i in
let s = subst_norm params args s in
optimize s body
with Not_found -> MLapp(optimize s f, args))
| MLglobal (Gcase (_,i)) ->
(try
let params,body = get_case gdef i in
let s, id, arg = subst_case params args s in
if can_subst arg then optimize (add_subst id arg s) body
else MLlet(id, arg, optimize s body)
with Not_found -> MLapp(optimize s f, args))
| _ ->
let f = optimize s f in
match f with
| MLmatch (annot,a,accu,bs) ->
if all_lam (Array.length args) bs then
commutative_cut annot a accu bs args
else MLapp(f, args)
| _ -> MLapp(f, args)
end
| MLif(t,b1,b2) ->
let t = optimize s t in
let b1 = optimize s b1 in
let b2 = optimize s b2 in
begin match t, b2 with
| MLapp(MLprimitive Is_accu,[| l1 |]), MLmatch(annot, l2, _, bs)
when l1 == l2 -> MLmatch(annot, l1, b1, bs) (** approximation *)
| _, _ -> MLif(t, b1, b2)
end
| MLmatch(annot,a,accu,bs) ->
let opt_b (cargs,body) = (cargs,optimize s body) in
MLmatch(annot, optimize s a, subst s accu, Array.map opt_b bs)
| MLconstruct(prefix,c,args) ->
MLconstruct(prefix,c,Array.map (optimize s) args)
| MLsetref(r,l) -> MLsetref(r, optimize s l)
| MLsequence(l1,l2) -> MLsequence(optimize s l1, optimize s l2)
| MLarray arr -> MLarray (Array.map (optimize s) arr)
in
optimize LNmap.empty l
let optimize_stk stk =
let add_global gdef g =
match g with
| Glet (Gnorm (_,i), body) ->
let (gnorm, gcase) = gdef in
(Int.Map.add i (decompose_MLlam body) gnorm, gcase)
| Gletcase(Gcase (_,i), params, annot,a,accu,bs) ->
let (gnorm,gcase) = gdef in
(gnorm, Int.Map.add i (params,MLmatch(annot,a,accu,bs)) gcase)
| Gletcase _ -> assert false
| _ -> gdef in
let gdef = List.fold_left add_global empty_gdef stk in
let optimize_global g =
match g with
| Glet(Gconstant (prefix, c), body) ->
Glet(Gconstant (prefix, c), optimize gdef body)
| _ -> g in
List.map optimize_global stk
(** Printing to ocaml **)
(* Redefine a bunch of functions in module Names to generate names
acceptable to OCaml. *)
let string_of_id s = Unicode.ascii_of_ident (string_of_id s)
let string_of_label l = Unicode.ascii_of_ident (string_of_label l)
let string_of_dirpath = function
| [] -> "_"
| sl -> String.concat "_" (List.rev_map string_of_id sl)
(* The first letter of the file name has to be a capital to be accepted by *)
(* OCaml as a module identifier. *)
let string_of_dirpath s = "N"^string_of_dirpath s
let mod_uid_of_dirpath dir = string_of_dirpath (repr_dirpath dir)
let link_info_of_dirpath dir =
Linked (mod_uid_of_dirpath dir ^ ".")
let string_of_name x =
match x with
| Anonymous -> "anonymous" (* assert false *)
| Name id -> string_of_id id
let string_of_label_def l =
match l with
| None -> ""
| Some l -> string_of_label l
(* Relativization of module paths *)
let rec list_of_mp acc = function
| MPdot (mp,l) -> list_of_mp (string_of_label l::acc) mp
| MPfile dp ->
let dp = repr_dirpath dp in
string_of_dirpath dp :: acc
| MPbound mbid -> ("X"^string_of_id (id_of_mbid mbid))::acc
let list_of_mp mp = list_of_mp [] mp
let string_of_kn kn =
let (mp,dp,l) = repr_kn kn in
let mp = list_of_mp mp in
String.concat "_" mp ^ "_" ^ string_of_label l
let string_of_con c = string_of_kn (user_con c)
let string_of_mind mind = string_of_kn (user_mind mind)
let string_of_gname g =
match g with
| Gind (prefix, ((mind,i), _)) ->
Format.sprintf "%sindaccu_%s_%i" prefix (string_of_mind mind) i
| Gconstruct (prefix, (((mind, i), j), _)) ->
Format.sprintf "%sconstruct_%s_%i_%i" prefix (string_of_mind mind) i (j-1)
| Gconstant (prefix, (c,_)) ->
Format.sprintf "%sconst_%s" prefix (string_of_con c)
| Gproj (prefix, c) ->
Format.sprintf "%sproj_%s" prefix (string_of_con c)
| Gcase (l,i) ->
Format.sprintf "case_%s_%i" (string_of_label_def l) i
| Gpred (l,i) ->
Format.sprintf "pred_%s_%i" (string_of_label_def l) i
| Gfixtype (l,i) ->
Format.sprintf "fixtype_%s_%i" (string_of_label_def l) i
| Gnorm (l,i) ->
Format.sprintf "norm_%s_%i" (string_of_label_def l) i
| Ginternal s -> Format.sprintf "%s" s
| Gnormtbl (l,i) ->
Format.sprintf "normtbl_%s_%i" (string_of_label_def l) i
| Grel i ->
Format.sprintf "rel_%i" i
| Gnamed id ->
Format.sprintf "named_%s" (string_of_id id)
let pp_gname fmt g =
Format.fprintf fmt "%s" (string_of_gname g)
let pp_lname fmt ln =
let s = Unicode.ascii_of_ident (string_of_name ln.lname) in
Format.fprintf fmt "x_%s_%i" s ln.luid
let pp_ldecls fmt ids =
let len = Array.length ids in
for i = 0 to len - 1 do
Format.fprintf fmt " (%a : Nativevalues.t)" pp_lname ids.(i)
done
let string_of_construct prefix ((mind,i),j) =
let id = Format.sprintf "Construct_%s_%i_%i" (string_of_mind mind) i (j-1) in
prefix ^ id
let pp_int fmt i =
if i < 0 then Format.fprintf fmt "(%i)" i else Format.fprintf fmt "%i" i
let pp_mllam fmt l =
let rec pp_mllam fmt l =
match l with
| MLlocal ln -> Format.fprintf fmt "@[%a@]" pp_lname ln
| MLglobal g -> Format.fprintf fmt "@[%a@]" pp_gname g
| MLprimitive p -> Format.fprintf fmt "@[%a@]" pp_primitive p
| MLlam(ids,body) ->
Format.fprintf fmt "@[(fun%a@ ->@\n %a)@]"
pp_ldecls ids pp_mllam body
| MLletrec(defs, body) ->
Format.fprintf fmt "@[%a@ in@\n%a@]" pp_letrec defs
pp_mllam body
| MLlet(id,def,body) ->
Format.fprintf fmt "@[(let@ %a@ =@\n %a@ in@\n%a)@]"
pp_lname id pp_mllam def pp_mllam body
| MLapp(f, args) ->
Format.fprintf fmt "@[%a@ %a@]" pp_mllam f (pp_args true) args
| MLif(t,l1,l2) ->
Format.fprintf fmt "@[(if %a then@\n %a@\nelse@\n %a)@]"
pp_mllam t pp_mllam l1 pp_mllam l2
| MLmatch (annot, c, accu_br, br) ->
let mind,i = annot.asw_ind in
let prefix = annot.asw_prefix in
let accu = Format.sprintf "%sAccu_%s_%i" prefix (string_of_mind mind) i in
Format.fprintf fmt
"@[begin match Obj.magic (%a) with@\n| %s _ ->@\n %a@\n%aend@]"
pp_mllam c accu pp_mllam accu_br (pp_branches prefix) br
| MLconstruct(prefix,c,args) ->
Format.fprintf fmt "@[(Obj.magic (%s%a) : Nativevalues.t)@]"
(string_of_construct prefix c) pp_cargs args
| MLint i -> pp_int fmt i
| MLuint i -> Format.fprintf fmt "(Uint31.of_int %a)" pp_int (Uint31.to_int i)
| MLsetref (s, body) ->
Format.fprintf fmt "@[%s@ :=@\n %a@]" s pp_mllam body
| MLsequence(l1,l2) ->
Format.fprintf fmt "@[%a;@\n%a@]" pp_mllam l1 pp_mllam l2
| MLarray arr ->
let len = Array.length arr in
Format.fprintf fmt "@[[|";
if 0 < len then begin
for i = 0 to len - 2 do
Format.fprintf fmt "%a;" pp_mllam arr.(i)
done;
pp_mllam fmt arr.(len-1)
end;
Format.fprintf fmt "|]@]"
and pp_letrec fmt defs =
let len = Array.length defs in
let pp_one_rec i (fn, argsn, body) =
Format.fprintf fmt "%a%a =@\n %a"
pp_lname fn
pp_ldecls argsn pp_mllam body in
Format.fprintf fmt "@[let rec ";
pp_one_rec 0 defs.(0);
for i = 1 to len - 1 do
Format.fprintf fmt "@\nand ";
pp_one_rec i defs.(i)
done;
and pp_blam fmt l =
match l with
| MLprimitive (Mk_prod | Mk_sort) (* FIXME: why this special case? *)
| MLlam _ | MLletrec _ | MLlet _ | MLapp _ | MLif _ ->
Format.fprintf fmt "(%a)" pp_mllam l
| MLconstruct(_,_,args) when Array.length args > 0 ->
Format.fprintf fmt "(%a)" pp_mllam l
| _ -> pp_mllam fmt l
and pp_args sep fmt args =
let sep = if sep then " " else "," in
let len = Array.length args in
if len > 0 then begin
Format.fprintf fmt "%a" pp_blam args.(0);
for i = 1 to len - 1 do
Format.fprintf fmt "%s%a" sep pp_blam args.(i)
done
end
and pp_cargs fmt args =
let len = Array.length args in
match len with
| 0 -> ()
| 1 -> Format.fprintf fmt " %a" pp_blam args.(0)
| _ -> Format.fprintf fmt "(%a)" (pp_args false) args
and pp_cparam fmt param =
match param with
| Some l -> pp_mllam fmt (MLlocal l)
| None -> Format.fprintf fmt "_"
and pp_cparams fmt params =
let len = Array.length params in
match len with
| 0 -> ()
| 1 -> Format.fprintf fmt " %a" pp_cparam params.(0)
| _ ->
let aux fmt params =
Format.fprintf fmt "%a" pp_cparam params.(0);
for i = 1 to len - 1 do
Format.fprintf fmt ",%a" pp_cparam params.(i)
done in
Format.fprintf fmt "(%a)" aux params
and pp_branches prefix fmt bs =
let pp_branch (cargs,body) =
let pp_c fmt (cn,args) =
Format.fprintf fmt "| %s%a "
(string_of_construct prefix cn) pp_cparams args in
let rec pp_cargs fmt cargs =
match cargs with
| [] -> ()
| cargs::cargs' ->
Format.fprintf fmt "%a%a" pp_c cargs pp_cargs cargs' in
Format.fprintf fmt "%a ->@\n %a@\n"
pp_cargs cargs pp_mllam body
in
Array.iter pp_branch bs
and pp_primitive fmt = function
| Mk_prod -> Format.fprintf fmt "mk_prod_accu"
| Mk_sort -> Format.fprintf fmt "mk_sort_accu"
| Mk_ind -> Format.fprintf fmt "mk_ind_accu"
| Mk_const -> Format.fprintf fmt "mk_constant_accu"
| Mk_sw -> Format.fprintf fmt "mk_sw_accu"
| Mk_fix(rec_pos,start) ->
let pp_rec_pos fmt rec_pos =
Format.fprintf fmt "@[[| %i" rec_pos.(0);
for i = 1 to Array.length rec_pos - 1 do
Format.fprintf fmt "; %i" rec_pos.(i)
done;
Format.fprintf fmt " |]@]" in
Format.fprintf fmt "mk_fix_accu %a %i" pp_rec_pos rec_pos start
| Mk_cofix(start) -> Format.fprintf fmt "mk_cofix_accu %i" start
| Mk_rel i -> Format.fprintf fmt "mk_rel_accu %i" i
| Mk_var id ->
Format.fprintf fmt "mk_var_accu (Names.id_of_string \"%s\")" (string_of_id id)
| Mk_proj -> Format.fprintf fmt "mk_proj_accu"
| Is_accu -> Format.fprintf fmt "is_accu"
| Is_int -> Format.fprintf fmt "is_int"
| Cast_accu -> Format.fprintf fmt "cast_accu"
| Upd_cofix -> Format.fprintf fmt "upd_cofix"
| Force_cofix -> Format.fprintf fmt "force_cofix"
| Mk_uint -> Format.fprintf fmt "mk_uint"
| Mk_int -> Format.fprintf fmt "mk_int"
| Mk_bool -> Format.fprintf fmt "mk_bool"
| Val_to_int -> Format.fprintf fmt "val_to_int"
| Mk_I31_accu -> Format.fprintf fmt "mk_I31_accu"
| Decomp_uint -> Format.fprintf fmt "decomp_uint"
| Mk_meta -> Format.fprintf fmt "mk_meta_accu"
| Mk_evar -> Format.fprintf fmt "mk_evar_accu"
| MLand -> Format.fprintf fmt "(&&)"
| MLle -> Format.fprintf fmt "(<=)"
| MLlt -> Format.fprintf fmt "(<)"
| MLinteq -> Format.fprintf fmt "(==)"
| MLlsl -> Format.fprintf fmt "(lsl)"
| MLlsr -> Format.fprintf fmt "(lsr)"
| MLland -> Format.fprintf fmt "(land)"
| MLlor -> Format.fprintf fmt "(lor)"
| MLlxor -> Format.fprintf fmt "(lxor)"
| MLadd -> Format.fprintf fmt "(+)"
| MLsub -> Format.fprintf fmt "(-)"
| MLmul -> Format.fprintf fmt "( * )"
| MLmagic -> Format.fprintf fmt "Obj.magic"
| MLarrayget -> Format.fprintf fmt "Array.get"
| Mk_empty_instance -> Format.fprintf fmt "Univ.Instance.empty"
| Coq_primitive (op,None) ->
Format.fprintf fmt "no_check_%s" (Primitives.to_string op)
| Coq_primitive (op, Some (prefix,kn)) ->
let u = Univ.Instance.empty in
Format.fprintf fmt "%s %a" (Primitives.to_string op)
pp_mllam (MLglobal (Gconstant (prefix,(kn,u))))
in
Format.fprintf fmt "@[%a@]" pp_mllam l
let pp_array fmt t =
let len = Array.length t in
Format.fprintf fmt "@[[|";
for i = 0 to len - 2 do
Format.fprintf fmt "%a; " pp_mllam t.(i)
done;
if len > 0 then
Format.fprintf fmt "%a" pp_mllam t.(len - 1);
Format.fprintf fmt "|]@]"
let pp_global fmt g =
match g with
| Glet (gn, c) ->
let ids, c = decompose_MLlam c in
Format.fprintf fmt "@[let %a%a =@\n %a@]@\n@." pp_gname gn
pp_ldecls ids
pp_mllam c
| Gopen s ->
Format.fprintf fmt "@[open %s@]@." s
| Gtype ((mind, i), lar) ->
let l = string_of_mind mind in
let rec aux s ar =
if Int.equal ar 0 then s else aux (s^" * Nativevalues.t") (ar-1) in
let pp_const_sig i fmt j ar =
let sig_str = if ar > 0 then aux "of Nativevalues.t" (ar-1) else "" in
Format.fprintf fmt " | Construct_%s_%i_%i %s@\n" l i j sig_str
in
let pp_const_sigs i fmt lar =
Format.fprintf fmt " | Accu_%s_%i of Nativevalues.t@\n" l i;
Array.iteri (pp_const_sig i fmt) lar
in
Format.fprintf fmt "@[type ind_%s_%i =@\n%a@]@\n@." l i (pp_const_sigs i) lar
| Gtblfixtype (g, params, t) ->
Format.fprintf fmt "@[let %a %a =@\n %a@]@\n@." pp_gname g
pp_ldecls params pp_array t
| Gtblnorm (g, params, t) ->
Format.fprintf fmt "@[let %a %a =@\n %a@]@\n@." pp_gname g
pp_ldecls params pp_array t
| Gletcase(gn,params,annot,a,accu,bs) ->
Format.fprintf fmt "@[(* Hash = %i *)@\nlet rec %a %a =@\n %a@]@\n@."
(hash_global g)
pp_gname gn pp_ldecls params
pp_mllam (MLmatch(annot,a,accu,bs))
| Gcomment s ->
Format.fprintf fmt "@[(* %s *)@]@." s
(** Compilation of elements in environment **)
let rec compile_with_fv env sigma univ auxdefs l t =
let (auxdefs,(fv_named,fv_rel),ml) = mllambda_of_lambda univ auxdefs l t in
if List.is_empty fv_named && List.is_empty fv_rel then (auxdefs,ml)
else apply_fv env sigma univ (fv_named,fv_rel) auxdefs ml
and apply_fv env sigma univ (fv_named,fv_rel) auxdefs ml =
let get_rel_val (n,_) auxdefs =
(*
match !(lookup_rel_native_val n env) with
| NVKnone ->
*)
compile_rel env sigma univ auxdefs n
(* | NVKvalue (v,d) -> assert false *)
in
let get_named_val (id,_) auxdefs =
(*
match !(lookup_named_native_val id env) with
| NVKnone ->
*)
compile_named env sigma univ auxdefs id
(* | NVKvalue (v,d) -> assert false *)
in
let auxdefs = List.fold_right get_rel_val fv_rel auxdefs in
let auxdefs = List.fold_right get_named_val fv_named auxdefs in
let lvl = rel_context_length env.env_rel_context in
let fv_rel = List.map (fun (n,_) -> MLglobal (Grel (lvl-n))) fv_rel in
let fv_named = List.map (fun (id,_) -> MLglobal (Gnamed id)) fv_named in
let aux_name = fresh_lname Anonymous in
auxdefs, MLlet(aux_name, ml, mkMLapp (MLlocal aux_name) (Array.of_list (fv_rel@fv_named)))
and compile_rel env sigma univ auxdefs n =
let (_,body,_) = lookup_rel n env.env_rel_context in
let n = rel_context_length env.env_rel_context - n in
match body with
| Some t ->
let code = lambda_of_constr env sigma t in
let auxdefs,code = compile_with_fv env sigma univ auxdefs None code in
Glet(Grel n, code)::auxdefs
| None ->
Glet(Grel n, MLprimitive (Mk_rel n))::auxdefs
and compile_named env sigma univ auxdefs id =
let (_,body,_) = lookup_named id env.env_named_context in
match body with
| Some t ->
let code = lambda_of_constr env sigma t in
let auxdefs,code = compile_with_fv env sigma univ auxdefs None code in
Glet(Gnamed id, code)::auxdefs
| None ->
Glet(Gnamed id, MLprimitive (Mk_var id))::auxdefs
let compile_constant env sigma prefix ~interactive con cb =
match cb.const_proj with
| None ->
let u =
if cb.const_polymorphic then Univ.UContext.instance cb.const_universes
else Univ.Instance.empty
in
begin match cb.const_body with
| Def t ->
let t = Mod_subst.force_constr t in
let code = lambda_of_constr env sigma t in
if !Flags.debug then Pp.msg_debug (Pp.str "Generated lambda code");
let is_lazy = is_lazy prefix t in
let code = if is_lazy then mk_lazy code else code in
let name =
if interactive then LinkedInteractive prefix
else Linked prefix
in
let l = con_label con in
let auxdefs,code =
if Univ.Instance.is_empty u then compile_with_fv env sigma None [] (Some l) code
else
let univ = fresh_univ () in
let (auxdefs,code) = compile_with_fv env sigma (Some univ) [] (Some l) code in
(auxdefs,mkMLlam [|univ|] code)
in
if !Flags.debug then Pp.msg_debug (Pp.str "Generated mllambda code");
let code =
optimize_stk (Glet(Gconstant ("",(con,u)),code)::auxdefs)
in
if !Flags.debug then Pp.msg_debug (Pp.str "Optimized mllambda code");
code, name
| _ ->
let i = push_symbol (SymbConst con) in
let args =
if Univ.Instance.is_empty u then [|get_const_code i; MLarray [||]|]
else [|get_const_code i|]
in
(*
let t = mkMLlam [|univ|] (mkMLapp (MLprimitive Mk_const)
*)
[Glet(Gconstant ("",(con,u)), mkMLapp (MLprimitive Mk_const) args)],
if interactive then LinkedInteractive prefix
else Linked prefix
end
| Some pb ->
let u = Univ.Instance.empty in
let mind = pb.proj_ind in
let ind = (mind,0) in
let mib = lookup_mind mind env in
let oib = mib.mind_packets.(0) in
let tbl = oib.mind_reloc_tbl in
(* Building info *)
let prefix = get_mind_prefix env mind in
let ci = { ci_ind = ind; ci_npar = mib.mind_nparams;
ci_cstr_nargs = [|0|];
ci_cstr_ndecls = [||] (*FIXME*);
ci_pp_info = { ind_tags = []; cstr_tags = [||] (*FIXME*); style = RegularStyle } } in
let asw = { asw_ind = ind; asw_prefix = prefix; asw_ci = ci;
asw_reloc = tbl; asw_finite = true } in
let c_uid = fresh_lname Anonymous in
let _, arity = tbl.(0) in
let ci_uid = fresh_lname Anonymous in
let cargs = Array.init arity
(fun i -> if Int.equal i pb.proj_arg then Some ci_uid else None)
in
let i = push_symbol (SymbConst con) in
let accu = MLapp (MLprimitive Cast_accu, [|MLlocal c_uid|]) in
let accu_br = MLapp (MLprimitive Mk_proj, [|get_const_code i;accu|]) in
let code = MLmatch(asw,MLlocal c_uid,accu_br,[|[((ind,1),cargs)],MLlocal ci_uid|]) in
let gn = Gproj ("",con) in
let fargs = Array.init (pb.proj_npars + 1) (fun _ -> fresh_lname Anonymous) in
let arg = fargs.(pb.proj_npars) in
Glet(Gconstant ("",(con,u)), mkMLlam fargs (MLapp (MLglobal gn, [|MLlocal
arg|])))::
[Glet(gn, mkMLlam [|c_uid|] code)], Linked prefix
let loaded_native_files = ref ([] : string list)
let is_loaded_native_file s = String.List.mem s !loaded_native_files
let register_native_file s =
if not (is_loaded_native_file s) then
loaded_native_files := s :: !loaded_native_files
let is_code_loaded ~interactive name =
match !name with
| NotLinked -> false
| LinkedInteractive s ->
if (interactive && is_loaded_native_file s) then true
else (name := NotLinked; false)
| Linked s ->
if is_loaded_native_file s then true
else (name := NotLinked; false)
let param_name = Name (id_of_string "params")
let arg_name = Name (id_of_string "arg")
let compile_mind prefix ~interactive mb mind stack =
let u = Declareops.inductive_instance mb in
let f i stack ob =
let gtype = Gtype((mind, i), Array.map snd ob.mind_reloc_tbl) in
let j = push_symbol (SymbInd (mind,i)) in
let name = Gind ("", ((mind, i), u)) in
let accu =
let args =
if Univ.Instance.is_empty u then
[|get_ind_code j; MLarray [||]|]
else [|get_ind_code j|]
in
Glet(name, MLapp (MLprimitive Mk_ind, args))
in
let nparams = mb.mind_nparams in
let params =
Array.init nparams (fun i -> {lname = param_name; luid = i}) in
let add_construct j acc (_,arity) =
let args = Array.init arity (fun k -> {lname = arg_name; luid = k}) in
let c = (mind,i), (j+1) in
Glet(Gconstruct ("",(c,u)),
mkMLlam (Array.append params args)
(MLconstruct("", c, Array.map (fun id -> MLlocal id) args)))::acc
in
Array.fold_left_i add_construct (gtype::accu::stack) ob.mind_reloc_tbl
in
Array.fold_left_i f stack mb.mind_packets
type code_location_update =
link_info ref * link_info
type code_location_updates =
code_location_update Mindmap_env.t * code_location_update Cmap_env.t
type linkable_code = global list * code_location_updates
let empty_updates = Mindmap_env.empty, Cmap_env.empty
let compile_mind_deps env prefix ~interactive
(comp_stack, (mind_updates, const_updates) as init) mind =
let mib,nameref = lookup_mind_key mind env in
if is_code_loaded ~interactive nameref
|| Mindmap_env.mem mind mind_updates
then init
else
let comp_stack =
compile_mind prefix ~interactive mib mind comp_stack
in
let name =
if interactive then LinkedInteractive prefix
else Linked prefix
in
let upd = (nameref, name) in
let mind_updates = Mindmap_env.add mind upd mind_updates in
(comp_stack, (mind_updates, const_updates))
(* This function compiles all necessary dependencies of t, and generates code in
reverse order, as well as linking information updates *)
let rec compile_deps env sigma prefix ~interactive init t =
match kind_of_term t with
| Ind ((mind,_),u) -> compile_mind_deps env prefix ~interactive init mind
| Const c ->
let c,u = get_alias env c in
let cb,(nameref,_) = lookup_constant_key c env in
let (_, (_, const_updates)) = init in
if is_code_loaded ~interactive nameref
|| (Cmap_env.mem c const_updates)
then init
else
let comp_stack, (mind_updates, const_updates) =
match cb.const_proj, cb.const_body with
| None, Def t ->
compile_deps env sigma prefix ~interactive init (Mod_subst.force_constr t)
| Some pb, _ ->
let mind = pb.proj_ind in
compile_mind_deps env prefix ~interactive init mind
| _ -> init
in
let code, name =
compile_constant env sigma prefix ~interactive c cb
in
let comp_stack = code@comp_stack in
let const_updates = Cmap_env.add c (nameref, name) const_updates in
comp_stack, (mind_updates, const_updates)
| Construct (((mind,_),_),u) -> compile_mind_deps env prefix ~interactive init mind
| Proj (p,c) ->
let term = mkApp (mkConst (Projection.constant p), [|c|]) in
compile_deps env sigma prefix ~interactive init term
| Case (ci, p, c, ac) ->
let mind = fst ci.ci_ind in
let init = compile_mind_deps env prefix ~interactive init mind in
fold_constr (compile_deps env sigma prefix ~interactive) init t
| _ -> fold_constr (compile_deps env sigma prefix ~interactive) init t
let compile_constant_field env prefix con acc cb =
let (gl, _) =
compile_constant ~interactive:false env empty_evars prefix
con cb
in
gl@acc
let compile_mind_field prefix mp l acc mb =
let mind = MutInd.make2 mp l in
compile_mind prefix ~interactive:false mb mind acc
let mk_open s = Gopen s
let mk_internal_let s code =
Glet(Ginternal s, code)
(* ML Code for conversion function *)
let mk_conv_code env sigma prefix t1 t2 =
clear_symbols ();
clear_global_tbl ();
let gl, (mind_updates, const_updates) =
let init = ([], empty_updates) in
compile_deps env sigma prefix ~interactive:true init t1
in
let gl, (mind_updates, const_updates) =
let init = (gl, (mind_updates, const_updates)) in
compile_deps env sigma prefix ~interactive:true init t2
in
let code1 = lambda_of_constr env sigma t1 in
let code2 = lambda_of_constr env sigma t2 in
let (gl,code1) = compile_with_fv env sigma None gl None code1 in
let (gl,code2) = compile_with_fv env sigma None gl None code2 in
let t1 = mk_internal_let "t1" code1 in
let t2 = mk_internal_let "t2" code2 in
let g1 = MLglobal (Ginternal "t1") in
let g2 = MLglobal (Ginternal "t2") in
let setref1 = Glet(Ginternal "_", MLsetref("rt1",g1)) in
let setref2 = Glet(Ginternal "_", MLsetref("rt2",g2)) in
let gl = List.rev (setref2 :: setref1 :: t2 :: t1 :: gl) in
let header = Glet(Ginternal "symbols_tbl",
MLapp (MLglobal (Ginternal "get_symbols"),
[|MLglobal (Ginternal "()")|])) in
header::gl, (mind_updates, const_updates)
let mk_norm_code env sigma prefix t =
clear_symbols ();
clear_global_tbl ();
let gl, (mind_updates, const_updates) =
let init = ([], empty_updates) in
compile_deps env sigma prefix ~interactive:true init t
in
let code = lambda_of_constr env sigma t in
let (gl,code) = compile_with_fv env sigma None gl None code in
let t1 = mk_internal_let "t1" code in
let g1 = MLglobal (Ginternal "t1") in
let setref = Glet(Ginternal "_", MLsetref("rt1",g1)) in
let gl = List.rev (setref :: t1 :: gl) in
let header = Glet(Ginternal "symbols_tbl",
MLapp (MLglobal (Ginternal "get_symbols"),
[|MLglobal (Ginternal "()")|])) in
header::gl, (mind_updates, const_updates)
let mk_library_header dir =
let libname = Format.sprintf "(str_decode \"%s\")" (str_encode dir) in
[Glet(Ginternal "symbols_tbl",
MLapp (MLglobal (Ginternal "get_library_native_symbols"),
[|MLglobal (Ginternal libname)|]))]
let update_location (r,v) = r := v
let update_locations (ind_updates,const_updates) =
Mindmap_env.iter (fun _ -> update_location) ind_updates;
Cmap_env.iter (fun _ -> update_location) const_updates
let add_header_comment mlcode s =
Gcomment s :: mlcode
(* vim: set filetype=ocaml foldmethod=marker: *)
|