1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* File created around Apr 1994 for CiC V5.10.5 by Chet Murthy collecting
parts of file initial.ml from CoC V4.8, Dec 1988, by Gérard Huet,
Thierry Coquand and Christine Paulin *)
(* Hash-consing by Bruno Barras in Feb 1998 *)
(* Extra functions for splitting/generation of identifiers by Hugo Herbelin *)
(* Restructuration by Jacek Chrzaszcz as part of the implementation of
the module system, Aug 2002 *)
(* Abstraction over the type of constant for module inlining by Claudio
Sacerdoti, Nov 2004 *)
(* Miscellaneous features or improvements by Hugo Herbelin,
Élie Soubiran, ... *)
open Pp
open Util
(** {6 Identifiers } *)
(** Representation and operations on identifiers. *)
module Id =
struct
type t = string
let equal = String.equal
let compare = String.compare
let hash = String.hash
let check_valid ?(strict=true) x =
let iter (fatal, x) = if fatal || strict then CErrors.user_err Pp.(str x) in
Option.iter iter (Unicode.ident_refutation x)
let is_valid s = match Unicode.ident_refutation s with
| None -> true
| Some _ -> false
let of_bytes s =
let s = Bytes.to_string s in
check_valid s;
String.hcons s
let of_string s =
let () = check_valid s in
String.hcons s
let of_string_soft s =
let () = check_valid ~strict:false s in
String.hcons s
let to_string id = id
let print id = str id
module Self =
struct
type t = string
let compare = compare
end
module Set = Set.Make(Self)
module Map = CMap.Make(Self)
module Pred = Predicate.Make(Self)
module List = String.List
let hcons = String.hcons
end
(** Representation and operations on identifiers that are allowed to be anonymous
(i.e. "_" in concrete syntax). *)
module Name =
struct
type t = Anonymous (** anonymous identifier *)
| Name of Id.t (** non-anonymous identifier *)
let mk_name id =
Name id
let is_anonymous = function
| Anonymous -> true
| Name _ -> false
let is_name = is_anonymous %> not
let compare n1 n2 = match n1, n2 with
| Anonymous, Anonymous -> 0
| Name id1, Name id2 -> Id.compare id1 id2
| Anonymous, Name _ -> -1
| Name _, Anonymous -> 1
let equal n1 n2 = match n1, n2 with
| Anonymous, Anonymous -> true
| Name id1, Name id2 -> String.equal id1 id2
| _ -> false
let hash = function
| Anonymous -> 0
| Name id -> Id.hash id
let print = function
| Anonymous -> str "_"
| Name id -> Id.print id
module Self_Hashcons =
struct
type nonrec t = t
type u = Id.t -> Id.t
let hashcons hident = function
| Name id -> Name (hident id)
| n -> n
let eq n1 n2 =
n1 == n2 ||
match (n1,n2) with
| (Name id1, Name id2) -> id1 == id2
| (Anonymous,Anonymous) -> true
| _ -> false
let hash = hash
end
module Hname = Hashcons.Make(Self_Hashcons)
let hcons = Hashcons.simple_hcons Hname.generate Hname.hcons Id.hcons
end
(** Alias, to import constructors. *)
type name = Name.t = Anonymous | Name of Id.t
(** {6 Various types based on identifiers } *)
type variable = Id.t
type module_ident = Id.t
module ModIdset = Id.Set
module ModIdmap = Id.Map
(** {6 Directory paths = section names paths } *)
(** Dirpaths are lists of module identifiers.
The actual representation is reversed to optimise sharing:
Coq.A.B is ["B";"A";"Coq"] *)
let default_module_name = "If you see this, it's a bug"
module DirPath =
struct
type t = module_ident list
let compare = List.compare Id.compare
let equal = List.equal Id.equal
let rec hash accu = function
| [] -> accu
| id :: dp ->
let accu = Hashset.Combine.combine (Id.hash id) accu in
hash accu dp
let hash dp = hash 0 dp
let make x = x
let repr x = x
let empty = []
let is_empty = List.is_empty
let to_string = function
| [] -> "<>"
| sl -> String.concat "." (List.rev_map Id.to_string sl)
let initial = [default_module_name]
module Hdir = Hashcons.Hlist(Id)
let hcons = Hashcons.recursive_hcons Hdir.generate Hdir.hcons Id.hcons
end
(** {6 Unique names for bound modules } *)
module MBId =
struct
type t = int * Id.t * DirPath.t
let gen =
let seed = ref 0 in fun () ->
let ans = !seed in
let () = incr seed in
ans
let make dir s = (gen(), s, dir)
let repr mbid = mbid
let to_string (i, s, p) =
DirPath.to_string p ^ "." ^ s
let debug_to_string (i, s, p) =
"<"^DirPath.to_string p ^"#" ^ s ^"#"^ string_of_int i^">"
let compare (x : t) (y : t) =
if x == y then 0
else match (x, y) with
| (nl, idl, dpl), (nr, idr, dpr) ->
let ans = Int.compare nl nr in
if not (Int.equal ans 0) then ans
else
let ans = Id.compare idl idr in
if not (Int.equal ans 0) then ans
else
DirPath.compare dpl dpr
let equal x y = x == y ||
let (i1, id1, p1) = x in
let (i2, id2, p2) = y in
Int.equal i1 i2 && Id.equal id1 id2 && DirPath.equal p1 p2
let to_id (_, s, _) = s
open Hashset.Combine
let hash (i, id, dp) =
combine3 (Int.hash i) (Id.hash id) (DirPath.hash dp)
module Self_Hashcons =
struct
type nonrec t = t
type u = (Id.t -> Id.t) * (DirPath.t -> DirPath.t)
let hashcons (hid,hdir) (n,s,dir) = (n,hid s,hdir dir)
let eq ((n1,s1,dir1) as x) ((n2,s2,dir2) as y) =
(x == y) ||
(Int.equal n1 n2 && s1 == s2 && dir1 == dir2)
let hash = hash
end
module HashMBId = Hashcons.Make(Self_Hashcons)
let hcons = Hashcons.simple_hcons HashMBId.generate HashMBId.hcons (Id.hcons, DirPath.hcons)
end
module MBImap = CMap.Make(MBId)
module MBIset = Set.Make(MBId)
(** {6 Names of structure elements } *)
module Label =
struct
include Id
let make = Id.of_string
let of_id id = id
let to_id id = id
end
(** {6 The module part of the kernel name } *)
module ModPath = struct
type t =
| MPfile of DirPath.t
| MPbound of MBId.t
| MPdot of t * Label.t
type module_path = t
let rec is_bound = function
| MPbound _ -> true
| MPdot(mp,_) -> is_bound mp
| _ -> false
let rec to_string = function
| MPfile sl -> DirPath.to_string sl
| MPbound uid -> MBId.to_string uid
| MPdot (mp,l) -> to_string mp ^ "." ^ Label.to_string l
let rec debug_to_string = function
| MPfile sl -> DirPath.to_string sl
| MPbound uid -> MBId.debug_to_string uid
| MPdot (mp,l) -> debug_to_string mp ^ "." ^ Label.to_string l
(** we compare labels first if both are MPdots *)
let rec compare mp1 mp2 =
if mp1 == mp2 then 0
else match mp1, mp2 with
| MPfile p1, MPfile p2 -> DirPath.compare p1 p2
| MPbound id1, MPbound id2 -> MBId.compare id1 id2
| MPdot (mp1, l1), MPdot (mp2, l2) ->
let c = String.compare l1 l2 in
if not (Int.equal c 0) then c
else compare mp1 mp2
| MPfile _, _ -> -1
| MPbound _, MPfile _ -> 1
| MPbound _, MPdot _ -> -1
| MPdot _, _ -> 1
let rec equal mp1 mp2 = mp1 == mp2 ||
match mp1, mp2 with
| MPfile p1, MPfile p2 -> DirPath.equal p1 p2
| MPbound id1, MPbound id2 -> MBId.equal id1 id2
| MPdot (mp1, l1), MPdot (mp2, l2) -> String.equal l1 l2 && equal mp1 mp2
| (MPfile _ | MPbound _ | MPdot _), _ -> false
open Hashset.Combine
let rec hash = function
| MPfile dp -> combinesmall 1 (DirPath.hash dp)
| MPbound id -> combinesmall 2 (MBId.hash id)
| MPdot (mp, lbl) ->
combinesmall 3 (combine (hash mp) (Label.hash lbl))
let initial = MPfile DirPath.initial
let rec dp = function
| MPfile sl -> sl
| MPbound (_,_,dp) -> dp
| MPdot (mp,l) -> dp mp
module Self_Hashcons = struct
type t = module_path
type u = (DirPath.t -> DirPath.t) * (MBId.t -> MBId.t) *
(string -> string)
let rec hashcons (hdir,huniqid,hstr as hfuns) = function
| MPfile dir -> MPfile (hdir dir)
| MPbound m -> MPbound (huniqid m)
| MPdot (md,l) -> MPdot (hashcons hfuns md, hstr l)
let eq d1 d2 =
d1 == d2 ||
match d1,d2 with
| MPfile dir1, MPfile dir2 -> dir1 == dir2
| MPbound m1, MPbound m2 -> m1 == m2
| MPdot (mod1,l1), MPdot (mod2,l2) -> l1 == l2 && equal mod1 mod2
| _ -> false
let hash = hash
end
module HashMP = Hashcons.Make(Self_Hashcons)
let hcons =
Hashcons.simple_hcons HashMP.generate HashMP.hcons
(DirPath.hcons,MBId.hcons,String.hcons)
end
module MPset = Set.Make(ModPath)
module MPmap = CMap.Make(ModPath)
(** {6 Kernel names } *)
module KerName = struct
type t = {
canary : Canary.t;
modpath : ModPath.t;
dirpath : DirPath.t;
knlabel : Label.t;
mutable refhash : int;
(** Lazily computed hash. If unset, it is set to negative values. *)
}
let canary = Canary.obj
type kernel_name = t
let make modpath dirpath knlabel =
{ modpath; dirpath; knlabel; refhash = -1; canary; }
let repr kn = (kn.modpath, kn.dirpath, kn.knlabel)
let make2 modpath knlabel =
{ modpath; dirpath = DirPath.empty; knlabel; refhash = -1; canary; }
let modpath kn = kn.modpath
let label kn = kn.knlabel
let to_string_gen mp_to_string kn =
let dp =
if DirPath.is_empty kn.dirpath then "."
else "#" ^ DirPath.to_string kn.dirpath ^ "#"
in
mp_to_string kn.modpath ^ dp ^ Label.to_string kn.knlabel
let to_string kn = to_string_gen ModPath.to_string kn
let debug_to_string kn = to_string_gen ModPath.debug_to_string kn
let print kn = str (to_string kn)
let compare (kn1 : kernel_name) (kn2 : kernel_name) =
if kn1 == kn2 then 0
else
let c = String.compare kn1.knlabel kn2.knlabel in
if not (Int.equal c 0) then c
else
let c = DirPath.compare kn1.dirpath kn2.dirpath in
if not (Int.equal c 0) then c
else ModPath.compare kn1.modpath kn2.modpath
let equal kn1 kn2 =
let h1 = kn1.refhash in
let h2 = kn2.refhash in
if 0 <= h1 && 0 <= h2 && not (Int.equal h1 h2) then false
else
Label.equal kn1.knlabel kn2.knlabel &&
DirPath.equal kn1.dirpath kn2.dirpath &&
ModPath.equal kn1.modpath kn2.modpath
open Hashset.Combine
let hash kn =
let h = kn.refhash in
if h < 0 then
let { modpath = mp; dirpath = dp; knlabel = lbl; } = kn in
let h = combine3 (ModPath.hash mp) (DirPath.hash dp) (Label.hash lbl) in
(* Ensure positivity on all platforms. *)
let h = h land 0x3FFFFFFF in
let () = kn.refhash <- h in
h
else h
module Self_Hashcons = struct
type t = kernel_name
type u = (ModPath.t -> ModPath.t) * (DirPath.t -> DirPath.t)
* (string -> string)
let hashcons (hmod,hdir,hstr) kn =
let { modpath = mp; dirpath = dp; knlabel = l; refhash; } = kn in
{ modpath = hmod mp; dirpath = hdir dp; knlabel = hstr l; refhash; canary; }
let eq kn1 kn2 =
kn1.modpath == kn2.modpath && kn1.dirpath == kn2.dirpath &&
kn1.knlabel == kn2.knlabel
let hash = hash
end
module HashKN = Hashcons.Make(Self_Hashcons)
let hcons =
Hashcons.simple_hcons HashKN.generate HashKN.hcons
(ModPath.hcons,DirPath.hcons,String.hcons)
end
module KNmap = HMap.Make(KerName)
module KNpred = Predicate.Make(KerName)
module KNset = KNmap.Set
(** {6 Kernel pairs } *)
(** For constant and inductive names, we use a kernel name couple (kn1,kn2)
where kn1 corresponds to the name used at toplevel (i.e. what the user see)
and kn2 corresponds to the canonical kernel name i.e. in the environment
we have {% kn1 \rhd_{\delta}^* kn2 \rhd_{\delta} t %}
Invariants :
- the user and canonical kn may differ only on their [module_path],
the dirpaths and labels should be the same
- when user and canonical parts differ, we cannot be in a section
anymore, hence the dirpath must be empty
- two pairs with the same user part should have the same canonical part
in a given environment (though with backtracking, the hash-table can
contains pairs with same user part but different canonical part from
a previous state of the session)
Note: since most of the time the canonical and user parts are equal,
we handle this case with a particular constructor to spare some memory *)
module KerPair = struct
type t =
| Same of KerName.t (** user = canonical *)
| Dual of KerName.t * KerName.t (** user then canonical *)
type kernel_pair = t
let canonical = function
| Same kn -> kn
| Dual (_,kn) -> kn
let user = function
| Same kn -> kn
| Dual (kn,_) -> kn
let same kn = Same kn
let make knu knc = if KerName.equal knu knc then Same knc else Dual (knu,knc)
let make1 = same
let make2 mp l = same (KerName.make2 mp l)
let make3 mp dir l = same (KerName.make mp dir l)
let repr3 kp = KerName.repr (user kp)
let label kp = KerName.label (user kp)
let modpath kp = KerName.modpath (user kp)
let change_label kp lbl =
let (mp1,dp1,l1) = KerName.repr (user kp)
and (mp2,dp2,l2) = KerName.repr (canonical kp) in
assert (String.equal l1 l2 && DirPath.equal dp1 dp2);
if String.equal lbl l1 then kp
else
let kn = KerName.make mp1 dp1 lbl in
if mp1 == mp2 then same kn
else make kn (KerName.make mp2 dp2 lbl)
let to_string kp = KerName.to_string (user kp)
let print kp = str (to_string kp)
let debug_to_string = function
| Same kn -> "(" ^ KerName.debug_to_string kn ^ ")"
| Dual (knu,knc) ->
"(" ^ KerName.debug_to_string knu ^ "," ^ KerName.debug_to_string knc ^ ")"
let debug_print kp = str (debug_to_string kp)
(** For ordering kernel pairs, both user or canonical parts may make
sense, according to your needs: user for the environments, canonical
for other uses (ex: non-logical things). *)
module UserOrd = struct
type t = kernel_pair
let compare x y = KerName.compare (user x) (user y)
let equal x y = x == y || KerName.equal (user x) (user y)
let hash x = KerName.hash (user x)
end
module CanOrd = struct
type t = kernel_pair
let compare x y = KerName.compare (canonical x) (canonical y)
let equal x y = x == y || KerName.equal (canonical x) (canonical y)
let hash x = KerName.hash (canonical x)
end
module SyntacticOrd = struct
let compare x y = match x, y with
| Same knx, Same kny -> KerName.compare knx kny
| Dual (knux,kncx), Dual (knuy,kncy) ->
let c = KerName.compare knux knuy in
if not (Int.equal c 0) then c
else KerName.compare kncx kncy
| Same _, _ -> -1
| Dual _, _ -> 1
let equal x y = x == y || compare x y = 0
let hash = function
| Same kn -> KerName.hash kn
| Dual (knu, knc) ->
Hashset.Combine.combine (KerName.hash knu) (KerName.hash knc)
end
(** Default (logical) comparison and hash is on the canonical part *)
let equal = CanOrd.equal
let hash = CanOrd.hash
module Self_Hashcons =
struct
type t = kernel_pair
type u = KerName.t -> KerName.t
let hashcons hkn = function
| Same kn -> Same (hkn kn)
| Dual (knu,knc) -> make (hkn knu) (hkn knc)
let eq x y = (* physical comparison on subterms *)
x == y ||
match x,y with
| Same x, Same y -> x == y
| Dual (ux,cx), Dual (uy,cy) -> ux == uy && cx == cy
| (Same _ | Dual _), _ -> false
(** Hash-consing (despite having the same user part implies having
the same canonical part is a logical invariant of the system, it
is not necessarily an invariant in memory, so we treat kernel
names as they are syntactically for hash-consing) *)
let hash = function
| Same kn -> KerName.hash kn
| Dual (knu, knc) ->
Hashset.Combine.combine (KerName.hash knu) (KerName.hash knc)
end
module HashKP = Hashcons.Make(Self_Hashcons)
end
(** {6 Constant Names} *)
module Constant = KerPair
module Cmap = HMap.Make(Constant.CanOrd)
(** A map whose keys are constants (values of the {!Constant.t} type).
Keys are ordered wrt. "canonical form" of the constant. *)
module Cmap_env = HMap.Make(Constant.UserOrd)
(** A map whose keys are constants (values of the {!Constant.t} type).
Keys are ordered wrt. "user form" of the constant. *)
module Cpred = Predicate.Make(Constant.CanOrd)
module Cset = Cmap.Set
module Cset_env = Cmap_env.Set
(** {6 Names of mutual inductive types } *)
module MutInd = KerPair
module Mindmap = HMap.Make(MutInd.CanOrd)
module Mindset = Mindmap.Set
module Mindmap_env = HMap.Make(MutInd.UserOrd)
(** Designation of a (particular) inductive type. *)
type inductive = MutInd.t (* the name of the inductive type *)
* int (* the position of this inductive type
within the block of mutually-recursive inductive types.
BEWARE: indexing starts from 0. *)
(** Designation of a (particular) constructor of a (particular) inductive type. *)
type constructor = inductive (* designates the inductive type *)
* int (* the index of the constructor
BEWARE: indexing starts from 1. *)
let ind_modpath (mind,_) = MutInd.modpath mind
let constr_modpath (ind,_) = ind_modpath ind
let ith_mutual_inductive (mind, _) i = (mind, i)
let ith_constructor_of_inductive ind i = (ind, i)
let inductive_of_constructor (ind, i) = ind
let index_of_constructor (ind, i) = i
let eq_ind (m1, i1) (m2, i2) = Int.equal i1 i2 && MutInd.equal m1 m2
let eq_user_ind (m1, i1) (m2, i2) =
Int.equal i1 i2 && MutInd.UserOrd.equal m1 m2
let eq_syntactic_ind (m1, i1) (m2, i2) =
Int.equal i1 i2 && MutInd.SyntacticOrd.equal m1 m2
let ind_ord (m1, i1) (m2, i2) =
let c = Int.compare i1 i2 in
if Int.equal c 0 then MutInd.CanOrd.compare m1 m2 else c
let ind_user_ord (m1, i1) (m2, i2) =
let c = Int.compare i1 i2 in
if Int.equal c 0 then MutInd.UserOrd.compare m1 m2 else c
let ind_syntactic_ord (m1, i1) (m2, i2) =
let c = Int.compare i1 i2 in
if Int.equal c 0 then MutInd.SyntacticOrd.compare m1 m2 else c
let ind_hash (m, i) =
Hashset.Combine.combine (MutInd.hash m) (Int.hash i)
let ind_user_hash (m, i) =
Hashset.Combine.combine (MutInd.UserOrd.hash m) (Int.hash i)
let ind_syntactic_hash (m, i) =
Hashset.Combine.combine (MutInd.SyntacticOrd.hash m) (Int.hash i)
let eq_constructor (ind1, j1) (ind2, j2) = Int.equal j1 j2 && eq_ind ind1 ind2
let eq_user_constructor (ind1, j1) (ind2, j2) =
Int.equal j1 j2 && eq_user_ind ind1 ind2
let eq_syntactic_constructor (ind1, j1) (ind2, j2) =
Int.equal j1 j2 && eq_syntactic_ind ind1 ind2
let constructor_ord (ind1, j1) (ind2, j2) =
let c = Int.compare j1 j2 in
if Int.equal c 0 then ind_ord ind1 ind2 else c
let constructor_user_ord (ind1, j1) (ind2, j2) =
let c = Int.compare j1 j2 in
if Int.equal c 0 then ind_user_ord ind1 ind2 else c
let constructor_syntactic_ord (ind1, j1) (ind2, j2) =
let c = Int.compare j1 j2 in
if Int.equal c 0 then ind_syntactic_ord ind1 ind2 else c
let constructor_hash (ind, i) =
Hashset.Combine.combine (ind_hash ind) (Int.hash i)
let constructor_user_hash (ind, i) =
Hashset.Combine.combine (ind_user_hash ind) (Int.hash i)
let constructor_syntactic_hash (ind, i) =
Hashset.Combine.combine (ind_syntactic_hash ind) (Int.hash i)
module InductiveOrdered = struct
type t = inductive
let compare = ind_ord
end
module InductiveOrdered_env = struct
type t = inductive
let compare = ind_user_ord
end
module Indmap = Map.Make(InductiveOrdered)
module Indmap_env = Map.Make(InductiveOrdered_env)
module ConstructorOrdered = struct
type t = constructor
let compare = constructor_ord
end
module ConstructorOrdered_env = struct
type t = constructor
let compare = constructor_user_ord
end
module Constrmap = Map.Make(ConstructorOrdered)
module Constrmap_env = Map.Make(ConstructorOrdered_env)
(* Better to have it here that in closure, since used in grammar.cma *)
type evaluable_global_reference =
| EvalVarRef of Id.t
| EvalConstRef of Constant.t
let eq_egr e1 e2 = match e1, e2 with
EvalConstRef con1, EvalConstRef con2 -> Constant.equal con1 con2
| EvalVarRef id1, EvalVarRef id2 -> Id.equal id1 id2
| _, _ -> false
(** {6 Hash-consing of name objects } *)
module Hind = Hashcons.Make(
struct
type t = inductive
type u = MutInd.t -> MutInd.t
let hashcons hmind (mind, i) = (hmind mind, i)
let eq (mind1,i1) (mind2,i2) = mind1 == mind2 && Int.equal i1 i2
let hash = ind_hash
end)
module Hconstruct = Hashcons.Make(
struct
type t = constructor
type u = inductive -> inductive
let hashcons hind (ind, j) = (hind ind, j)
let eq (ind1, j1) (ind2, j2) = ind1 == ind2 && Int.equal j1 j2
let hash = constructor_hash
end)
let hcons_con = Hashcons.simple_hcons Constant.HashKP.generate Constant.HashKP.hcons KerName.hcons
let hcons_mind = Hashcons.simple_hcons MutInd.HashKP.generate MutInd.HashKP.hcons KerName.hcons
let hcons_ind = Hashcons.simple_hcons Hind.generate Hind.hcons hcons_mind
let hcons_construct = Hashcons.simple_hcons Hconstruct.generate Hconstruct.hcons hcons_ind
(*****************)
type transparent_state = Id.Pred.t * Cpred.t
let empty_transparent_state = (Id.Pred.empty, Cpred.empty)
let full_transparent_state = (Id.Pred.full, Cpred.full)
let var_full_transparent_state = (Id.Pred.full, Cpred.empty)
let cst_full_transparent_state = (Id.Pred.empty, Cpred.full)
type 'a tableKey =
| ConstKey of 'a
| VarKey of Id.t
| RelKey of Int.t
type inv_rel_key = int (* index in the [rel_context] part of environment
starting by the end, {\em inverse}
of de Bruijn indice *)
let eq_table_key f ik1 ik2 =
if ik1 == ik2 then true
else match ik1,ik2 with
| ConstKey c1, ConstKey c2 -> f c1 c2
| VarKey id1, VarKey id2 -> Id.equal id1 id2
| RelKey k1, RelKey k2 -> Int.equal k1 k2
| _ -> false
let eq_con_chk = Constant.UserOrd.equal
let eq_mind_chk = MutInd.UserOrd.equal
let eq_ind_chk (kn1,i1) (kn2,i2) = Int.equal i1 i2 && eq_mind_chk kn1 kn2
(*******************************************************************)
(** Compatibility layers *)
(** Backward compatibility for [Id] *)
type identifier = Id.t
let id_eq = Id.equal
let id_ord = Id.compare
let string_of_id = Id.to_string
let id_of_string = Id.of_string
module Idset = Id.Set
module Idmap = Id.Map
module Idpred = Id.Pred
(** Compatibility layer for [Name] *)
let name_eq = Name.equal
(** Compatibility layer for [DirPath] *)
type dir_path = DirPath.t
let dir_path_ord = DirPath.compare
let dir_path_eq = DirPath.equal
let make_dirpath = DirPath.make
let repr_dirpath = DirPath.repr
let empty_dirpath = DirPath.empty
let is_empty_dirpath = DirPath.is_empty
let string_of_dirpath = DirPath.to_string
let initial_dir = DirPath.initial
(** Compatibility layer for [MBId] *)
type mod_bound_id = MBId.t
let mod_bound_id_ord = MBId.compare
let mod_bound_id_eq = MBId.equal
let make_mbid = MBId.make
let repr_mbid = MBId.repr
let debug_string_of_mbid = MBId.debug_to_string
let string_of_mbid = MBId.to_string
let id_of_mbid = MBId.to_id
(** Compatibility layer for [Label] *)
type label = Id.t
let mk_label = Label.make
let string_of_label = Label.to_string
let pr_label = Label.print
let id_of_label = Label.to_id
let label_of_id = Label.of_id
let eq_label = Label.equal
(** Compatibility layer for [ModPath] *)
type module_path = ModPath.t =
| MPfile of DirPath.t
| MPbound of MBId.t
| MPdot of module_path * Label.t
let check_bound_mp = ModPath.is_bound
let string_of_mp = ModPath.to_string
let mp_ord = ModPath.compare
let mp_eq = ModPath.equal
let initial_path = ModPath.initial
(** Compatibility layer for [KerName] *)
type kernel_name = KerName.t
let make_kn = KerName.make
let repr_kn = KerName.repr
let modpath = KerName.modpath
let label = KerName.label
let string_of_kn = KerName.to_string
let pr_kn = KerName.print
let kn_ord = KerName.compare
(** Compatibility layer for [Constant] *)
type constant = Constant.t
module Projection =
struct
type t = constant * bool
let make c b = (c, b)
let constant = fst
let unfolded = snd
let unfold (c, b as p) = if b then p else (c, true)
let equal (c, b) (c', b') = Constant.equal c c' && b == b'
let hash (c, b) = (if b then 0 else 1) + Constant.hash c
module SyntacticOrd = struct
let compare (c, b) (c', b') =
if b = b' then Constant.SyntacticOrd.compare c c' else -1
let equal (c, b as x) (c', b' as x') =
x == x' || b = b' && Constant.SyntacticOrd.equal c c'
let hash (c, b) = (if b then 0 else 1) + Constant.SyntacticOrd.hash c
end
module Self_Hashcons =
struct
type nonrec t = t
type u = Constant.t -> Constant.t
let hashcons hc (c,b) = (hc c,b)
let eq ((c,b) as x) ((c',b') as y) =
x == y || (c == c' && b == b')
let hash = hash
end
module HashProjection = Hashcons.Make(Self_Hashcons)
let hcons = Hashcons.simple_hcons HashProjection.generate HashProjection.hcons hcons_con
let compare (c, b) (c', b') =
if b == b' then Constant.CanOrd.compare c c'
else if b then 1 else -1
let map f (c, b as x) =
let c' = f c in
if c' == c then x else (c', b)
let to_string p = Constant.to_string (constant p)
let print p = Constant.print (constant p)
end
type projection = Projection.t
let constant_of_kn = Constant.make1
let constant_of_kn_equiv = Constant.make
let make_con = Constant.make3
let repr_con = Constant.repr3
let canonical_con = Constant.canonical
let user_con = Constant.user
let con_label = Constant.label
let con_modpath = Constant.modpath
let eq_constant = Constant.equal
let eq_constant_key = Constant.UserOrd.equal
let con_ord = Constant.CanOrd.compare
let con_user_ord = Constant.UserOrd.compare
let string_of_con = Constant.to_string
let pr_con = Constant.print
let debug_string_of_con = Constant.debug_to_string
let debug_pr_con = Constant.debug_print
let con_with_label = Constant.change_label
(** Compatibility layer for [MutInd] *)
type mutual_inductive = MutInd.t
let mind_of_kn = MutInd.make1
let mind_of_kn_equiv = MutInd.make
let make_mind = MutInd.make3
let canonical_mind = MutInd.canonical
let user_mind = MutInd.user
let repr_mind = MutInd.repr3
let mind_label = MutInd.label
let mind_modpath = MutInd.modpath
let eq_mind = MutInd.equal
let mind_ord = MutInd.CanOrd.compare
let mind_user_ord = MutInd.UserOrd.compare
let string_of_mind = MutInd.to_string
let pr_mind = MutInd.print
let debug_string_of_mind = MutInd.debug_to_string
let debug_pr_mind = MutInd.debug_print
|