1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of
the Coq module system *)
(* Inlining and more liberal use of modules and module types by Claudio
Sacerdoti, Nov 2004 *)
(* New structure-based model of modules and miscellaneous bug fixes by
Élie Soubiran, from Feb 2008 *)
(* This file provides with various operations on modules and module types *)
open Util
open Names
open Term
open Declarations
open Declareops
open Environ
open Entries
open Mod_subst
(** {6 Errors } *)
type signature_mismatch_error =
| InductiveFieldExpected of mutual_inductive_body
| DefinitionFieldExpected
| ModuleFieldExpected
| ModuleTypeFieldExpected
| NotConvertibleInductiveField of Id.t
| NotConvertibleConstructorField of Id.t
| NotConvertibleBodyField
| NotConvertibleTypeField of env * types * types
| CumulativeStatusExpected of bool
| PolymorphicStatusExpected of bool
| NotSameConstructorNamesField
| NotSameInductiveNameInBlockField
| FiniteInductiveFieldExpected of bool
| InductiveNumbersFieldExpected of int
| InductiveParamsNumberField of int
| RecordFieldExpected of bool
| RecordProjectionsExpected of Name.t list
| NotEqualInductiveAliases
| NoTypeConstraintExpected
| IncompatibleInstances
| IncompatibleUniverses of Univ.univ_inconsistency
| IncompatiblePolymorphism of env * types * types
| IncompatibleConstraints of Univ.constraints
type module_typing_error =
| SignatureMismatch of
Label.t * structure_field_body * signature_mismatch_error
| LabelAlreadyDeclared of Label.t
| ApplicationToNotPath of module_struct_entry
| NotAFunctor
| IsAFunctor
| IncompatibleModuleTypes of module_type_body * module_type_body
| NotEqualModulePaths of module_path * module_path
| NoSuchLabel of Label.t
| IncompatibleLabels of Label.t * Label.t
| NotAModule of string
| NotAModuleType of string
| NotAConstant of Label.t
| IncorrectWithConstraint of Label.t
| GenerativeModuleExpected of Label.t
| LabelMissing of Label.t * string
| IncludeRestrictedFunctor of module_path
exception ModuleTypingError of module_typing_error
let error_existing_label l =
raise (ModuleTypingError (LabelAlreadyDeclared l))
let error_not_a_functor () =
raise (ModuleTypingError NotAFunctor)
let error_is_a_functor () =
raise (ModuleTypingError IsAFunctor)
let error_incompatible_modtypes mexpr1 mexpr2 =
raise (ModuleTypingError (IncompatibleModuleTypes (mexpr1,mexpr2)))
let error_not_equal_modpaths mp1 mp2 =
raise (ModuleTypingError (NotEqualModulePaths (mp1,mp2)))
let error_signature_mismatch l spec why =
raise (ModuleTypingError (SignatureMismatch (l,spec,why)))
let error_no_such_label l =
raise (ModuleTypingError (NoSuchLabel l))
let error_incompatible_labels l l' =
raise (ModuleTypingError (IncompatibleLabels (l,l')))
let error_not_a_module s =
raise (ModuleTypingError (NotAModule s))
let error_not_a_constant l =
raise (ModuleTypingError (NotAConstant l))
let error_incorrect_with_constraint l =
raise (ModuleTypingError (IncorrectWithConstraint l))
let error_generative_module_expected l =
raise (ModuleTypingError (GenerativeModuleExpected l))
let error_no_such_label_sub l l1 =
raise (ModuleTypingError (LabelMissing (l,l1)))
let error_include_restricted_functor mp =
raise (ModuleTypingError (IncludeRestrictedFunctor mp))
(** {6 Operations on functors } *)
let is_functor = function
|NoFunctor _ -> false
|MoreFunctor _ -> true
let destr_functor = function
|NoFunctor _ -> error_not_a_functor ()
|MoreFunctor (mbid,ty,x) -> (mbid,ty,x)
let destr_nofunctor = function
|NoFunctor a -> a
|MoreFunctor _ -> error_is_a_functor ()
let rec functor_smartmap fty f0 funct = match funct with
|MoreFunctor (mbid,ty,e) ->
let ty' = fty ty in
let e' = functor_smartmap fty f0 e in
if ty==ty' && e==e' then funct else MoreFunctor (mbid,ty',e')
|NoFunctor a ->
let a' = f0 a in if a==a' then funct else NoFunctor a'
let rec functor_iter fty f0 = function
|MoreFunctor (mbid,ty,e) -> fty ty; functor_iter fty f0 e
|NoFunctor a -> f0 a
(** {6 Misc operations } *)
let module_type_of_module mb =
{ mb with mod_expr = Abstract; mod_type_alg = None }
let module_body_of_type mp mtb =
assert (mtb.mod_expr == Abstract);
{ mtb with mod_mp = mp }
let check_modpath_equiv env mp1 mp2 =
if ModPath.equal mp1 mp2 then ()
else
let mp1' = mp_of_delta (lookup_module mp1 env).mod_delta mp1 in
let mp2' = mp_of_delta (lookup_module mp2 env).mod_delta mp2 in
if ModPath.equal mp1' mp2' then ()
else error_not_equal_modpaths mp1 mp2
let implem_smartmap fs fa impl = match impl with
|Struct e -> let e' = fs e in if e==e' then impl else Struct e'
|Algebraic a -> let a' = fa a in if a==a' then impl else Algebraic a'
|Abstract|FullStruct -> impl
let implem_iter fs fa impl = match impl with
|Struct e -> fs e
|Algebraic a -> fa a
|Abstract|FullStruct -> ()
(** {6 Substitutions of modular structures } *)
let id_delta x y = x
let subst_with_body sub = function
|WithMod(id,mp) as orig ->
let mp' = subst_mp sub mp in
if mp==mp' then orig else WithMod(id,mp')
|WithDef(id,(c,ctx)) as orig ->
let c' = subst_mps sub c in
if c==c' then orig else WithDef(id,(c',ctx))
let rec subst_structure sub do_delta sign =
let subst_body ((l,body) as orig) = match body with
|SFBconst cb ->
let cb' = subst_const_body sub cb in
if cb==cb' then orig else (l,SFBconst cb')
|SFBmind mib ->
let mib' = subst_mind_body sub mib in
if mib==mib' then orig else (l,SFBmind mib')
|SFBmodule mb ->
let mb' = subst_module sub do_delta mb in
if mb==mb' then orig else (l,SFBmodule mb')
|SFBmodtype mtb ->
let mtb' = subst_modtype sub do_delta mtb in
if mtb==mtb' then orig else (l,SFBmodtype mtb')
in
List.smartmap subst_body sign
and subst_body is_mod sub do_delta mb =
let { mod_mp=mp; mod_expr=me; mod_type=ty; mod_type_alg=aty } = mb in
let mp' = subst_mp sub mp in
let sub =
if ModPath.equal mp mp' then sub
else if is_mod && not (is_functor ty) then sub
else add_mp mp mp' empty_delta_resolver sub
in
let ty' = subst_signature sub do_delta ty in
let me' =
implem_smartmap
(subst_signature sub id_delta) (subst_expression sub id_delta) me
in
let aty' = Option.smartmap (subst_expression sub id_delta) aty in
let delta' = do_delta mb.mod_delta sub in
if mp==mp' && me==me' && ty==ty' && aty==aty' && delta'==mb.mod_delta
then mb
else
{ mb with
mod_mp = mp';
mod_expr = me';
mod_type = ty';
mod_type_alg = aty';
mod_delta = delta' }
and subst_module sub do_delta mb = subst_body true sub do_delta mb
and subst_modtype sub do_delta mtb = subst_body false sub do_delta mtb
and subst_expr sub do_delta seb = match seb with
|MEident mp ->
let mp' = subst_mp sub mp in
if mp==mp' then seb else MEident mp'
|MEapply (meb1,mp2) ->
let meb1' = subst_expr sub do_delta meb1 in
let mp2' = subst_mp sub mp2 in
if meb1==meb1' && mp2==mp2' then seb else MEapply(meb1',mp2')
|MEwith (meb,wdb) ->
let meb' = subst_expr sub do_delta meb in
let wdb' = subst_with_body sub wdb in
if meb==meb' && wdb==wdb' then seb else MEwith(meb',wdb')
and subst_expression sub do_delta =
functor_smartmap
(subst_modtype sub do_delta)
(subst_expr sub do_delta)
and subst_signature sub do_delta =
functor_smartmap
(subst_modtype sub do_delta)
(subst_structure sub do_delta)
let do_delta_dom reso sub = subst_dom_delta_resolver sub reso
let do_delta_codom reso sub = subst_codom_delta_resolver sub reso
let do_delta_dom_codom reso sub = subst_dom_codom_delta_resolver sub reso
let subst_signature subst = subst_signature subst do_delta_codom
let subst_structure subst = subst_structure subst do_delta_codom
(** {6 Retroknowledge } *)
(* spiwack: here comes the function which takes care of importing
the retroknowledge declared in the library *)
(* lclrk : retroknowledge_action list, rkaction : retroknowledge action *)
let add_retroknowledge mp =
let perform rkaction env = match rkaction with
|Retroknowledge.RKRegister (f, e) when (isConst e || isInd e) ->
Environ.register env f e
|_ ->
CErrors.anomaly ~label:"Modops.add_retroknowledge"
(Pp.str "had to import an unsupported kind of term.")
in
fun lclrk env ->
(* The order of the declaration matters, for instance (and it's at the
time this comment is being written, the only relevent instance) the
int31 type registration absolutely needs int31 bits to be registered.
Since the local_retroknowledge is stored in reverse order (each new
registration is added at the top of the list) we need a fold_right
for things to go right (the pun is not intented). So we lose
tail recursivity, but the world will have exploded before any module
imports 10 000 retroknowledge registration.*)
List.fold_right perform lclrk env
(** {6 Adding a module in the environment } *)
let rec add_structure mp sign resolver linkinfo env =
let add_one env (l,elem) = match elem with
|SFBconst cb ->
let c = constant_of_delta_kn resolver (KerName.make2 mp l) in
Environ.add_constant_key c cb linkinfo env
|SFBmind mib ->
let mind = mind_of_delta_kn resolver (KerName.make2 mp l) in
let mib =
if mib.mind_private != None then
{ mib with mind_private = Some true }
else mib
in
Environ.add_mind_key mind (mib,ref linkinfo) env
|SFBmodule mb -> add_module mb linkinfo env (* adds components as well *)
|SFBmodtype mtb -> Environ.add_modtype mtb env
in
List.fold_left add_one env sign
and add_module mb linkinfo env =
let mp = mb.mod_mp in
let env = Environ.shallow_add_module mb env in
match mb.mod_type with
|NoFunctor struc ->
add_retroknowledge mp mb.mod_retroknowledge
(add_structure mp struc mb.mod_delta linkinfo env)
|MoreFunctor _ -> env
let add_linked_module mb linkinfo env =
add_module mb linkinfo env
let add_structure mp sign resolver env =
add_structure mp sign resolver no_link_info env
let add_module mb env =
add_module mb no_link_info env
let add_module_type mp mtb env =
add_module (module_body_of_type mp mtb) env
(** {6 Strengtening } *)
let strengthen_const mp_from l cb resolver =
match cb.const_body with
|Def _ -> cb
|_ ->
let kn = KerName.make2 mp_from l in
let con = constant_of_delta_kn resolver kn in
let u =
match cb.const_universes with
| Monomorphic_const _ -> Univ.Instance.empty
| Polymorphic_const ctx -> Univ.make_abstract_instance ctx
in
{ cb with
const_body = Def (Mod_subst.from_val (mkConstU (con,u)));
const_body_code = Some (Cemitcodes.from_val (Cbytegen.compile_alias con)) }
let rec strengthen_mod mp_from mp_to mb =
if mp_in_delta mb.mod_mp mb.mod_delta then mb
else match mb.mod_type with
|NoFunctor struc ->
let reso,struc' = strengthen_sig mp_from struc mp_to mb.mod_delta in
{ mb with
mod_expr = Algebraic (NoFunctor (MEident mp_to));
mod_type = NoFunctor struc';
mod_delta =
add_mp_delta_resolver mp_from mp_to
(add_delta_resolver mb.mod_delta reso) }
|MoreFunctor _ -> mb
and strengthen_sig mp_from struc mp_to reso = match struc with
|[] -> empty_delta_resolver,[]
|(l,SFBconst cb) :: rest ->
let item' = l,SFBconst (strengthen_const mp_from l cb reso) in
let reso',rest' = strengthen_sig mp_from rest mp_to reso in
reso',item'::rest'
|(_,SFBmind _ as item):: rest ->
let reso',rest' = strengthen_sig mp_from rest mp_to reso in
reso',item::rest'
|(l,SFBmodule mb) :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot(mp_to,l) in
let mb' = strengthen_mod mp_from' mp_to' mb in
let item' = l,SFBmodule mb' in
let reso',rest' = strengthen_sig mp_from rest mp_to reso in
add_delta_resolver reso' mb.mod_delta, item':: rest'
|(l,SFBmodtype mty as item) :: rest ->
let reso',rest' = strengthen_sig mp_from rest mp_to reso in
reso',item::rest'
let strengthen mtb mp =
(* Has mtb already been strengthened ? *)
if mp_in_delta mtb.mod_mp mtb.mod_delta then mtb
else match mtb.mod_type with
|NoFunctor struc ->
let reso',struc' = strengthen_sig mtb.mod_mp struc mp mtb.mod_delta in
{ mtb with
mod_type = NoFunctor struc';
mod_delta =
add_delta_resolver mtb.mod_delta
(add_mp_delta_resolver mtb.mod_mp mp reso') }
|MoreFunctor _ -> mtb
let inline_delta_resolver env inl mp mbid mtb delta =
let constants = inline_of_delta inl mtb.mod_delta in
let rec make_inline delta = function
| [] -> delta
| (lev,kn)::r ->
let kn = replace_mp_in_kn (MPbound mbid) mp kn in
let con = constant_of_delta_kn delta kn in
try
let constant = lookup_constant con env in
let l = make_inline delta r in
match constant.const_body with
| Undef _ | OpaqueDef _ -> l
| Def body ->
let constr = Mod_subst.force_constr body in
add_inline_delta_resolver kn (lev, Some constr) l
with Not_found ->
error_no_such_label_sub (con_label con)
(string_of_mp (con_modpath con))
in
make_inline delta constants
let rec strengthen_and_subst_mod mb subst mp_from mp_to =
match mb.mod_type with
|NoFunctor struc ->
let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in
if mb_is_an_alias then subst_module subst do_delta_dom mb
else
let reso',struc' =
strengthen_and_subst_struct struc subst
mp_from mp_to false false mb.mod_delta
in
{ mb with
mod_mp = mp_to;
mod_expr = Algebraic (NoFunctor (MEident mp_from));
mod_type = NoFunctor struc';
mod_delta = add_mp_delta_resolver mp_to mp_from reso' }
|MoreFunctor _ ->
let subst = add_mp mb.mod_mp mp_to empty_delta_resolver subst in
subst_module subst do_delta_dom mb
and strengthen_and_subst_struct str subst mp_from mp_to alias incl reso =
match str with
| [] -> empty_delta_resolver,[]
| (l,SFBconst cb) as item :: rest ->
let cb' = subst_const_body subst cb in
let cb' =
if alias then cb'
else strengthen_const mp_from l cb' reso
in
let item' = if cb' == cb then item else (l, SFBconst cb') in
let reso',rest' =
strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso
in
let str' =
if rest' == rest && item' == item then str
else item' :: rest'
in
if incl then
(* If we are performing an inclusion we need to add
the fact that the constant mp_to.l is \Delta-equivalent
to reso(mp_from.l) *)
let kn_from = KerName.make2 mp_from l in
let kn_to = KerName.make2 mp_to l in
let old_name = kn_of_delta reso kn_from in
add_kn_delta_resolver kn_to old_name reso', str'
else
(* In this case the fact that the constant mp_to.l is
\Delta-equivalent to resolver(mp_from.l) is already known
because reso' contains mp_to maps to reso(mp_from) *)
reso', str'
| (l,SFBmind mib) as item :: rest ->
let mib' = subst_mind_body subst mib in
let item' = if mib' == mib then item else (l, SFBmind mib') in
let reso',rest' =
strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso
in
let str' =
if rest' == rest && item' == item then str
else item' :: rest'
in
(* Same as constant *)
if incl then
let kn_from = KerName.make2 mp_from l in
let kn_to = KerName.make2 mp_to l in
let old_name = kn_of_delta reso kn_from in
add_kn_delta_resolver kn_to old_name reso', str'
else
reso', str'
| (l,SFBmodule mb) as item :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot (mp_to,l) in
let mb' = if alias then
subst_module subst do_delta_dom mb
else
strengthen_and_subst_mod mb subst mp_from' mp_to'
in
let item' = if mb' == mb then item else (l, SFBmodule mb') in
let reso',rest' =
strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso
in
let str' =
if rest' == rest && item' == item then str
else item' :: rest'
in
(* if mb is a functor we should not derive new equivalences
on names, hence we add the fact that the functor can only
be equivalent to itself. If we adopt an applicative
semantic for functor this should be changed.*)
if is_functor mb'.mod_type then
add_mp_delta_resolver mp_to' mp_to' reso', str'
else
add_delta_resolver reso' mb'.mod_delta, str'
| (l,SFBmodtype mty) as item :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot(mp_to,l) in
let subst' = add_mp mp_from' mp_to' empty_delta_resolver subst in
let mty' = subst_modtype subst'
(fun resolver _ -> subst_dom_codom_delta_resolver subst' resolver)
mty
in
let item' = if mty' == mty then item else (l, SFBmodtype mty') in
let reso',rest' =
strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso
in
let str' =
if rest' == rest && item' == item then str
else item' :: rest'
in
add_mp_delta_resolver mp_to' mp_to' reso', str'
(** Let P be a module path when we write:
"Module M:=P." or "Module M. Include P. End M."
We need to perform two operations to compute the body of M.
- The first one is applying the substitution {P <- M} on the type of P
- The second one is strenghtening. *)
let strengthen_and_subst_mb mb mp include_b = match mb.mod_type with
|NoFunctor struc ->
let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in
(* if mb.mod_mp is an alias then the strengthening is useless
(i.e. it is already done)*)
let mp_alias = mp_of_delta mb.mod_delta mb.mod_mp in
let subst_resolver = map_mp mb.mod_mp mp empty_delta_resolver in
let new_resolver =
add_mp_delta_resolver mp mp_alias
(subst_dom_delta_resolver subst_resolver mb.mod_delta)
in
let subst = map_mp mb.mod_mp mp new_resolver in
let reso',struc' =
strengthen_and_subst_struct struc subst
mb.mod_mp mp mb_is_an_alias include_b mb.mod_delta
in
{ mb with
mod_mp = mp;
mod_type = NoFunctor struc';
mod_expr = Algebraic (NoFunctor (MEident mb.mod_mp));
mod_delta =
if include_b then reso'
else add_delta_resolver new_resolver reso' }
|MoreFunctor _ ->
let subst = map_mp mb.mod_mp mp empty_delta_resolver in
subst_module subst do_delta_dom_codom mb
let subst_modtype_and_resolver mtb mp =
let subst = map_mp mtb.mod_mp mp empty_delta_resolver in
let new_delta = subst_dom_codom_delta_resolver subst mtb.mod_delta in
let full_subst = map_mp mtb.mod_mp mp new_delta in
subst_modtype full_subst do_delta_dom_codom mtb
(** {6 Cleaning a module expression from bounded parts }
For instance:
functor(X:T)->struct module M:=X end)
becomes:
functor(X:T)->struct module M:=<content of T> end)
*)
let rec is_bounded_expr l = function
| MEident (MPbound mbid) -> MBIset.mem mbid l
| MEapply (fexpr,mp) ->
is_bounded_expr l (MEident mp) || is_bounded_expr l fexpr
| _ -> false
let rec clean_module l mb =
let impl, typ = mb.mod_expr, mb.mod_type in
let typ' = clean_signature l typ in
let impl' = match impl with
| Algebraic (NoFunctor m) when is_bounded_expr l m -> FullStruct
| _ -> implem_smartmap (clean_signature l) (clean_expression l) impl
in
if typ==typ' && impl==impl' then mb
else { mb with mod_type=typ'; mod_expr=impl' }
and clean_field l field = match field with
|(lab,SFBmodule mb) ->
let mb' = clean_module l mb in
if mb==mb' then field else (lab,SFBmodule mb')
|_ -> field
and clean_structure l = List.smartmap (clean_field l)
and clean_signature l =
functor_smartmap (clean_module l) (clean_structure l)
and clean_expression l =
functor_smartmap (clean_module l) (fun me -> me)
let rec collect_mbid l sign = match sign with
|MoreFunctor (mbid,ty,m) ->
let m' = collect_mbid (MBIset.add mbid l) m in
if m==m' then sign else MoreFunctor (mbid,ty,m')
|NoFunctor struc ->
let struc' = clean_structure l struc in
if struc==struc' then sign else NoFunctor struc'
let clean_bounded_mod_expr sign =
if is_functor sign then collect_mbid MBIset.empty sign else sign
(** {6 Stm machinery } *)
let join_constant_body except otab cb =
match cb.const_body with
| OpaqueDef o ->
(match Opaqueproof.uuid_opaque otab o with
| Some uuid when not(Future.UUIDSet.mem uuid except) ->
Opaqueproof.join_opaque otab o
| _ -> ())
| _ -> ()
let join_structure except otab s =
let rec join_module mb =
implem_iter join_signature join_expression mb.mod_expr;
Option.iter join_expression mb.mod_type_alg;
join_signature mb.mod_type
and join_field (l,body) = match body with
|SFBconst sb -> join_constant_body except otab sb
|SFBmind _ -> ()
|SFBmodule m |SFBmodtype m -> join_module m
and join_structure struc = List.iter join_field struc
and join_signature sign =
functor_iter join_module join_structure sign
and join_expression me = functor_iter join_module (fun _ -> ()) me in
join_structure s
|