1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of
the Coq module system *)
(* Inlining and more liberal use of modules and module types by Claudio
Sacerdoti, Nov 2004 *)
(* New structure-based model of modules and miscellaneous bug fixes by
Élie Soubiran, from Feb 2008 *)
(* This file provides with various operations on modules and module types *)
open Errors
open Util
open Names
open Term
open Declarations
open Declareops
open Environ
open Entries
open Mod_subst
type signature_mismatch_error =
| InductiveFieldExpected of mutual_inductive_body
| DefinitionFieldExpected
| ModuleFieldExpected
| ModuleTypeFieldExpected
| NotConvertibleInductiveField of Id.t
| NotConvertibleConstructorField of Id.t
| NotConvertibleBodyField
| NotConvertibleTypeField of env * types * types
| NotSameConstructorNamesField
| NotSameInductiveNameInBlockField
| FiniteInductiveFieldExpected of bool
| InductiveNumbersFieldExpected of int
| InductiveParamsNumberField of int
| RecordFieldExpected of bool
| RecordProjectionsExpected of Name.t list
| NotEqualInductiveAliases
| NoTypeConstraintExpected
type module_typing_error =
| SignatureMismatch of Label.t * structure_field_body * signature_mismatch_error
| LabelAlreadyDeclared of Label.t
| ApplicationToNotPath of module_struct_entry
| NotAFunctor of struct_expr_body
| IncompatibleModuleTypes of module_type_body * module_type_body
| NotEqualModulePaths of module_path * module_path
| NoSuchLabel of Label.t
| IncompatibleLabels of Label.t * Label.t
| SignatureExpected of struct_expr_body
| NoModuleToEnd
| NoModuleTypeToEnd
| NotAModule of string
| NotAModuleType of string
| NotAConstant of Label.t
| IncorrectWithConstraint of Label.t
| GenerativeModuleExpected of Label.t
| NonEmptyLocalContect of Label.t option
| LabelMissing of Label.t * string
exception ModuleTypingError of module_typing_error
let error_existing_label l =
raise (ModuleTypingError (LabelAlreadyDeclared l))
let error_application_to_not_path mexpr =
raise (ModuleTypingError (ApplicationToNotPath mexpr))
let error_not_a_functor mtb =
raise (ModuleTypingError (NotAFunctor mtb))
let error_incompatible_modtypes mexpr1 mexpr2 =
raise (ModuleTypingError (IncompatibleModuleTypes (mexpr1,mexpr2)))
let error_not_equal_modpaths mp1 mp2 =
raise (ModuleTypingError (NotEqualModulePaths (mp1,mp2)))
let error_signature_mismatch l spec why =
raise (ModuleTypingError (SignatureMismatch (l,spec,why)))
let error_no_such_label l =
raise (ModuleTypingError (NoSuchLabel l))
let error_incompatible_labels l l' =
raise (ModuleTypingError (IncompatibleLabels (l,l')))
let error_signature_expected mtb =
raise (ModuleTypingError (SignatureExpected mtb))
let error_no_module_to_end _ =
raise (ModuleTypingError NoModuleToEnd)
let error_no_modtype_to_end _ =
raise (ModuleTypingError NoModuleTypeToEnd)
let error_not_a_module s =
raise (ModuleTypingError (NotAModule s))
let error_not_a_constant l =
raise (ModuleTypingError (NotAConstant l))
let error_incorrect_with_constraint l =
raise (ModuleTypingError (IncorrectWithConstraint l))
let error_generative_module_expected l =
raise (ModuleTypingError (GenerativeModuleExpected l))
let error_non_empty_local_context lo =
raise (ModuleTypingError (NonEmptyLocalContect lo))
let error_no_such_label_sub l l1 =
raise (ModuleTypingError (LabelMissing (l,l1)))
(************************)
let destr_functor env mtb =
match mtb with
| SEBfunctor (arg_id,arg_t,body_t) ->
(arg_id,arg_t,body_t)
| _ -> error_not_a_functor mtb
let is_functor = function
| SEBfunctor (arg_id,arg_t,body_t) -> true
| _ -> false
let module_body_of_type mp mtb =
{ mod_mp = mp;
mod_type = mtb.typ_expr;
mod_type_alg = mtb.typ_expr_alg;
mod_expr = None;
mod_constraints = mtb.typ_constraints;
mod_delta = mtb.typ_delta;
mod_retroknowledge = []}
let check_modpath_equiv env mp1 mp2 =
if mp_eq mp1 mp2 then () else
let mb1=lookup_module mp1 env in
let mb2=lookup_module mp2 env in
if mp_eq (mp_of_delta mb1.mod_delta mp1) (mp_of_delta mb2.mod_delta mp2)
then ()
else error_not_equal_modpaths mp1 mp2
let rec subst_with_body sub = function
| With_module_body(id,mp) ->
With_module_body(id,subst_mp sub mp)
| With_definition_body(id,cb) ->
With_definition_body( id,subst_const_body sub cb)
and subst_modtype sub do_delta mtb=
let mp = subst_mp sub mtb.typ_mp in
let sub = add_mp mtb.typ_mp mp empty_delta_resolver sub in
let typ_expr' = subst_struct_expr sub do_delta mtb.typ_expr in
let typ_alg' =
Option.smartmap
(subst_struct_expr sub (fun x y-> x)) mtb.typ_expr_alg in
let mtb_delta = do_delta mtb.typ_delta sub in
if typ_expr'==mtb.typ_expr &&
typ_alg'==mtb.typ_expr_alg && mp==mtb.typ_mp then
mtb
else
{mtb with
typ_mp = mp;
typ_expr = typ_expr';
typ_expr_alg = typ_alg';
typ_delta = mtb_delta}
and subst_structure sub do_delta sign =
let subst_body = function
SFBconst cb ->
SFBconst (subst_const_body sub cb)
| SFBmind mib ->
SFBmind (subst_mind sub mib)
| SFBmodule mb ->
SFBmodule (subst_module sub do_delta mb)
| SFBmodtype mtb ->
SFBmodtype (subst_modtype sub do_delta mtb)
in
List.map (fun (l,b) -> (l,subst_body b)) sign
and subst_module sub do_delta mb =
let mp = subst_mp sub mb.mod_mp in
let sub = if is_functor mb.mod_type && not (mp_eq mp mb.mod_mp) then
add_mp mb.mod_mp mp
empty_delta_resolver sub else sub in
let id_delta = (fun x y-> x) in
let mtb',me' =
let mtb = subst_struct_expr sub do_delta mb.mod_type in
match mb.mod_expr with
None -> mtb,None
| Some me -> if me==mb.mod_type then
mtb,Some mtb
else mtb,Option.smartmap
(subst_struct_expr sub id_delta) mb.mod_expr
in
let typ_alg' = Option.smartmap
(subst_struct_expr sub id_delta) mb.mod_type_alg in
let mb_delta = do_delta mb.mod_delta sub in
if mtb'==mb.mod_type && mb.mod_expr == me'
&& mb_delta == mb.mod_delta && mp == mb.mod_mp
then mb else
{ mb with
mod_mp = mp;
mod_expr = me';
mod_type_alg = typ_alg';
mod_type=mtb';
mod_delta = mb_delta}
and subst_struct_expr sub do_delta = function
| SEBident mp -> SEBident (subst_mp sub mp)
| SEBfunctor (mbid, mtb, meb') ->
SEBfunctor(mbid,subst_modtype sub do_delta mtb
,subst_struct_expr sub do_delta meb')
| SEBstruct (str)->
SEBstruct( subst_structure sub do_delta str)
| SEBapply (meb1,meb2,cst)->
SEBapply(subst_struct_expr sub do_delta meb1,
subst_struct_expr sub do_delta meb2,
cst)
| SEBwith (meb,wdb)->
SEBwith(subst_struct_expr sub do_delta meb,
subst_with_body sub wdb)
let subst_signature subst =
subst_structure subst
(fun resolver subst-> subst_codom_delta_resolver subst resolver)
let subst_struct_expr subst =
subst_struct_expr subst
(fun resolver subst-> subst_codom_delta_resolver subst resolver)
(* spiwack: here comes the function which takes care of importing
the retroknowledge declared in the library *)
(* lclrk : retroknowledge_action list, rkaction : retroknowledge action *)
let add_retroknowledge mp =
let perform rkaction env =
match rkaction with
| Retroknowledge.RKRegister (f, e) ->
Environ.register env f
(match e with
| Const kn -> kind_of_term (mkConst kn)
| Ind ind -> kind_of_term (mkInd ind)
| _ -> anomaly ~label:"Modops.add_retroknowledge" (Pp.str "had to import an unsupported kind of term"))
in
fun lclrk env ->
(* The order of the declaration matters, for instance (and it's at the
time this comment is being written, the only relevent instance) the
int31 type registration absolutely needs int31 bits to be registered.
Since the local_retroknowledge is stored in reverse order (each new
registration is added at the top of the list) we need a fold_right
for things to go right (the pun is not intented). So we lose
tail recursivity, but the world will have exploded before any module
imports 10 000 retroknowledge registration.*)
List.fold_right perform lclrk env
let rec add_signature mp sign resolver env =
let add_one env (l,elem) =
let kn = KerName.make2 mp l in
match elem with
| SFBconst cb ->
Environ.add_constant (constant_of_delta_kn resolver kn) cb env
| SFBmind mib ->
Environ.add_mind (mind_of_delta_kn resolver kn) mib env
| SFBmodule mb -> add_module mb env (* adds components as well *)
| SFBmodtype mtb -> Environ.add_modtype mtb.typ_mp mtb env
in
List.fold_left add_one env sign
and add_module mb env =
let mp = mb.mod_mp in
let env = Environ.shallow_add_module mp mb env in
match mb.mod_type with
| SEBstruct (sign) ->
add_retroknowledge mp mb.mod_retroknowledge
(add_signature mp sign mb.mod_delta env)
| SEBfunctor _ -> env
| _ -> anomaly ~label:"Modops" (Pp.str "the evaluation of the structure failed ")
let strengthen_const mp_from l cb resolver =
match cb.const_body with
| Def _ -> cb
| _ ->
let kn = KerName.make2 mp_from l in
let con = constant_of_delta_kn resolver kn in
{ cb with
const_body = Def (Lazyconstr.from_val (mkConst con));
const_body_code = Cemitcodes.from_val (Cbytegen.compile_alias con)
}
let rec strengthen_mod mp_from mp_to mb =
if mp_in_delta mb.mod_mp mb.mod_delta then
mb
else
match mb.mod_type with
| SEBstruct (sign) ->
let resolve_out,sign_out =
strengthen_sig mp_from sign mp_to mb.mod_delta in
{ mb with
mod_expr = Some (SEBident mp_to);
mod_type = SEBstruct(sign_out);
mod_type_alg = mb.mod_type_alg;
mod_constraints = mb.mod_constraints;
mod_delta = add_mp_delta_resolver mp_from mp_to
(add_delta_resolver mb.mod_delta resolve_out);
mod_retroknowledge = mb.mod_retroknowledge}
| SEBfunctor _ -> mb
| _ -> anomaly ~label:"Modops" (Pp.str "the evaluation of the structure failed ")
and strengthen_sig mp_from sign mp_to resolver =
match sign with
| [] -> empty_delta_resolver,[]
| (l,SFBconst cb) :: rest ->
let item' = l,SFBconst (strengthen_const mp_from l cb resolver) in
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out,item'::rest'
| (_,SFBmind _ as item):: rest ->
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out,item::rest'
| (l,SFBmodule mb) :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot(mp_to,l) in
let mb_out = strengthen_mod mp_from' mp_to' mb in
let item' = l,SFBmodule (mb_out) in
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
add_delta_resolver resolve_out mb.mod_delta, item':: rest'
| (l,SFBmodtype mty as item) :: rest ->
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out,item::rest'
let strengthen mtb mp =
if mp_in_delta mtb.typ_mp mtb.typ_delta then
(* in this case mtb has already been strengthened*)
mtb
else
match mtb.typ_expr with
| SEBstruct (sign) ->
let resolve_out,sign_out =
strengthen_sig mtb.typ_mp sign mp mtb.typ_delta in
{mtb with
typ_expr = SEBstruct(sign_out);
typ_delta = add_delta_resolver mtb.typ_delta
(add_mp_delta_resolver mtb.typ_mp mp resolve_out)}
| SEBfunctor _ -> mtb
| _ -> anomaly ~label:"Modops" (Pp.str "the evaluation of the structure failed ")
let module_type_of_module mp mb =
match mp with
Some mp ->
strengthen {
typ_mp = mp;
typ_expr = mb.mod_type;
typ_expr_alg = None;
typ_constraints = mb.mod_constraints;
typ_delta = mb.mod_delta} mp
| None ->
{typ_mp = mb.mod_mp;
typ_expr = mb.mod_type;
typ_expr_alg = None;
typ_constraints = mb.mod_constraints;
typ_delta = mb.mod_delta}
let inline_delta_resolver env inl mp mbid mtb delta =
let constants = inline_of_delta inl mtb.typ_delta in
let rec make_inline delta = function
| [] -> delta
| (lev,kn)::r ->
let kn = replace_mp_in_kn (MPbound mbid) mp kn in
let con = constant_of_delta_kn delta kn in
try
let constant = lookup_constant con env in
let l = make_inline delta r in
match constant.const_body with
| Undef _ | OpaqueDef _ -> l
| Def body ->
let constr = Lazyconstr.force body in
add_inline_delta_resolver kn (lev, Some constr) l
with Not_found ->
error_no_such_label_sub (con_label con)
(string_of_mp (con_modpath con))
in
make_inline delta constants
let rec strengthen_and_subst_mod
mb subst mp_from mp_to resolver =
match mb.mod_type with
SEBstruct(str) ->
let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in
if mb_is_an_alias then
subst_module subst
(fun resolver subst-> subst_dom_delta_resolver subst resolver) mb
else
let resolver,new_sig =
strengthen_and_subst_struct str subst
mp_from mp_from mp_to false false mb.mod_delta
in
{mb with
mod_mp = mp_to;
mod_expr = Some (SEBident mp_from);
mod_type = SEBstruct(new_sig);
mod_delta = add_mp_delta_resolver mp_to mp_from resolver}
| SEBfunctor(arg_id,arg_b,body) ->
let subst = add_mp mb.mod_mp mp_to empty_delta_resolver subst in
subst_module subst
(fun resolver subst-> subst_dom_codom_delta_resolver subst resolver) mb
| _ -> anomaly ~label:"Modops" (Pp.str "the evaluation of the structure failed ")
and strengthen_and_subst_struct
str subst mp_alias mp_from mp_to alias incl resolver =
match str with
| [] -> empty_delta_resolver,[]
| (l,SFBconst cb) :: rest ->
let item' = if alias then
(* case alias no strengthening needed*)
l,SFBconst (subst_const_body subst cb)
else
l,SFBconst (strengthen_const mp_from l
(subst_const_body subst cb) resolver)
in
let resolve_out,rest' =
strengthen_and_subst_struct rest subst
mp_alias mp_from mp_to alias incl resolver in
if incl then
(* If we are performing an inclusion we need to add
the fact that the constant mp_to.l is \Delta-equivalent
to resolver(mp_from.l) *)
let kn_from = KerName.make2 mp_from l in
let kn_to = KerName.make2 mp_to l in
let old_name = kn_of_delta resolver kn_from in
(add_kn_delta_resolver kn_to old_name resolve_out),
item'::rest'
else
(*In this case the fact that the constant mp_to.l is
\Delta-equivalent to resolver(mp_from.l) is already known
because resolve_out contains mp_to maps to resolver(mp_from)*)
resolve_out,item'::rest'
| (l,SFBmind mib) :: rest ->
(*Same as constant*)
let item' = l,SFBmind (subst_mind subst mib) in
let resolve_out,rest' =
strengthen_and_subst_struct rest subst
mp_alias mp_from mp_to alias incl resolver in
if incl then
let kn_from = KerName.make2 mp_from l in
let kn_to = KerName.make2 mp_to l in
let old_name = kn_of_delta resolver kn_from in
(add_kn_delta_resolver kn_to old_name resolve_out),
item'::rest'
else
resolve_out,item'::rest'
| (l,SFBmodule mb) :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot(mp_to,l) in
let mb_out = if alias then
subst_module subst
(fun resolver subst -> subst_dom_delta_resolver subst resolver) mb
else
strengthen_and_subst_mod
mb subst mp_from' mp_to' resolver
in
let item' = l,SFBmodule (mb_out) in
let resolve_out,rest' =
strengthen_and_subst_struct rest subst
mp_alias mp_from mp_to alias incl resolver in
(* if mb is a functor we should not derive new equivalences
on names, hence we add the fact that the functor can only
be equivalent to itself. If we adopt an applicative
semantic for functor this should be changed.*)
if is_functor mb_out.mod_type then
(add_mp_delta_resolver
mp_to' mp_to' resolve_out),item':: rest'
else
add_delta_resolver resolve_out mb_out.mod_delta,
item':: rest'
| (l,SFBmodtype mty) :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot(mp_to,l) in
let subst' = add_mp mp_from' mp_to' empty_delta_resolver subst in
let mty = subst_modtype subst'
(fun resolver subst -> subst_dom_codom_delta_resolver subst' resolver) mty in
let resolve_out,rest' = strengthen_and_subst_struct rest subst
mp_alias mp_from mp_to alias incl resolver in
(add_mp_delta_resolver
mp_to' mp_to' resolve_out),(l,SFBmodtype mty)::rest'
(* Let P be a module path when we write "Module M:=P." or "Module M. Include P. End M."
we need to perform two operations to compute the body of M. The first one is applying
the substitution {P <- M} on the type of P and the second one is strenghtening. *)
let strengthen_and_subst_mb mb mp include_b =
match mb.mod_type with
SEBstruct str ->
let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in
(*if mb.mod_mp is an alias then the strengthening is useless
(i.e. it is already done)*)
let mp_alias = mp_of_delta mb.mod_delta mb.mod_mp in
let subst_resolver = map_mp mb.mod_mp mp empty_delta_resolver in
let new_resolver =
add_mp_delta_resolver mp mp_alias
(subst_dom_delta_resolver subst_resolver mb.mod_delta) in
let subst = map_mp mb.mod_mp mp new_resolver in
let resolver_out,new_sig =
strengthen_and_subst_struct str subst
mp_alias mb.mod_mp mp mb_is_an_alias include_b mb.mod_delta
in
{mb with
mod_mp = mp;
mod_type = SEBstruct(new_sig);
mod_expr = Some (SEBident mb.mod_mp);
mod_delta = if include_b then resolver_out
else add_delta_resolver new_resolver resolver_out}
| SEBfunctor(arg_id,argb,body) ->
let subst = map_mp mb.mod_mp mp empty_delta_resolver in
subst_module subst
(fun resolver subst -> subst_dom_codom_delta_resolver subst resolver) mb
| _ -> anomaly ~label:"Modops" (Pp.str "the evaluation of the structure failed ")
let subst_modtype_and_resolver mtb mp =
let subst = (map_mp mtb.typ_mp mp empty_delta_resolver) in
let new_delta = subst_dom_codom_delta_resolver subst mtb.typ_delta in
let full_subst = (map_mp mtb.typ_mp mp new_delta) in
subst_modtype full_subst
(fun resolver subst -> subst_dom_codom_delta_resolver subst resolver) mtb
let rec is_bounded_expr l = function
| SEBident mp -> List.mem mp l
| SEBapply (fexpr,mexpr,_) ->
is_bounded_expr l mexpr || is_bounded_expr l fexpr
| _ -> false
let rec clean_struct l = function
| (lab,SFBmodule mb) as field ->
let clean_typ = clean_expr l mb.mod_type in
let clean_impl =
begin try
if (is_bounded_expr l (Option.get mb.mod_expr)) then
Some clean_typ
else Some (clean_expr l (Option.get mb.mod_expr))
with
Option.IsNone -> None
end in
if clean_typ==mb.mod_type && clean_impl==mb.mod_expr then
field
else
(lab,SFBmodule {mb with
mod_type=clean_typ;
mod_expr=clean_impl})
| field -> field
and clean_expr l = function
| SEBfunctor (mbid,sigt,str) as s->
let str_clean = clean_expr l str in
let sig_clean = clean_expr l sigt.typ_expr in
if str_clean == str && Int.equal (Pervasives.compare sig_clean sigt.typ_expr) 0 then (** FIXME **)
s else SEBfunctor (mbid,{sigt with typ_expr=sig_clean},str_clean)
| SEBstruct str as s->
let str_clean = Util.List.smartmap (clean_struct l) str in
if str_clean == str then s else SEBstruct(str_clean)
| str -> str
let rec collect_mbid l = function
| SEBfunctor (mbid,sigt,str) as s->
let str_clean = collect_mbid ((MPbound mbid)::l) str in
if str_clean == str then s else
SEBfunctor (mbid,sigt,str_clean)
| SEBstruct str as s->
let str_clean = Util.List.smartmap (clean_struct l) str in
if str_clean == str then s else SEBstruct(str_clean)
| _ -> anomaly ~label:"Modops" (Pp.str "the evaluation of the structure failed ")
let clean_bounded_mod_expr = function
| SEBfunctor _ as str ->
let str_clean = collect_mbid [] str in
if str_clean == str then str else str_clean
| str -> str
|