1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
(* $Id$ *)
(*i*)
open Names
open Univ
open Term
open Sign
open Declarations
open Environ
open Evd
(*i*)
(*s Inductives are accessible at several stages:
A [mutual_inductive_body] contains all information about a
declaration of mutual (co-)inductive types. These informations are
closed (they depend on no free variables) and an instance of them
corresponds to a [mutual_inductive_instance =
mutual_inductive_body * constr list]. One inductive type in an
instanciated packet corresponds to an [inductive_instance =
mutual_inductive_instance * int]. Applying global parameters to an
[inductive_instance] gives an [inductive_family = inductive_instance *
constr list]. Finally, applying real parameters gives an
[inductive_type = inductive_family * constr list]. At each level
corresponds various appropriated functions *)
type inductive_instance (* ex-[mind_specif] *)
val mis_index : inductive_instance -> int
val mis_ntypes : inductive_instance -> int
val mis_nconstr : inductive_instance -> int
val mis_nparams : inductive_instance -> int
val mis_nrealargs : inductive_instance -> int
val mis_kelim : inductive_instance -> sorts list
val mis_recargs : inductive_instance -> (recarg list) array array
val mis_recarg : inductive_instance -> (recarg list) array
val mis_typename : inductive_instance -> identifier
val mis_typepath : inductive_instance -> section_path
val mis_is_recursive_subset : int list -> inductive_instance -> bool
val mis_is_recursive : inductive_instance -> bool
val mis_consnames : inductive_instance -> identifier array
val mis_typed_arity : inductive_instance -> typed_type
val mis_inductive : inductive_instance -> inductive
val mis_arity : inductive_instance -> constr
val mis_params_ctxt : inductive_instance -> (name * constr) list
val mis_sort : inductive_instance -> sorts
val mis_type_mconstruct : int -> inductive_instance -> typed_type
(* The ccl of constructor is pre-normalised in the following functions *)
val mis_lc : inductive_instance -> constr array
val mis_type_mconstructs : inductive_instance -> constr array * constr array
(*s [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = IndFamily of inductive_instance * constr list
val make_ind_family : inductive_instance * constr list -> inductive_family
val dest_ind_family : inductive_family -> inductive_instance * constr list
val liftn_inductive_family : int -> int -> inductive_family -> inductive_family
val lift_inductive_family : int -> inductive_family -> inductive_family
val substnl_ind_family : constr list -> int -> inductive_family
-> inductive_family
(*s [inductive_type] = [inductive_family] applied to ``real'' parameters *)
type inductive_type = IndType of inductive_family * constr list
val make_ind_type : inductive_family * constr list -> inductive_type
val dest_ind_type : inductive_type -> inductive_family * constr list
val mkAppliedInd : inductive_type -> constr
val liftn_inductive_type : int -> int -> inductive_type -> inductive_type
val lift_inductive_type : int -> inductive_type -> inductive_type
val substnl_ind_type : constr list -> int -> inductive_type -> inductive_type
(*s A [constructor] is an [inductive] + an index; the following functions
destructs and builds [constructor] *)
val inductive_of_constructor : constructor -> inductive
val index_of_constructor : constructor -> int
val ith_constructor_of_inductive : inductive -> int -> constructor
val inductive_path_of_constructor_path : constructor_path -> inductive_path
val ith_constructor_path_of_inductive_path :
inductive_path -> int -> constructor_path
(*s This type gathers useful informations about some instance of a constructor
relatively to some implicit context (the current one)
If [cs_cstr] is a constructor in [(I p1...pm a1...an)] then
[cs_params] is [p1...pm] and the type of [MutConstruct(cs_cstr)
p1...pn] is [(cs_args)(I p1...pm cs_concl_realargs)] where [cs_args]
and [cs_params] are relative to the current env and [cs_concl_realargs]
is relative to the current env enriched by [cs_args]
*)
type constructor_summary = {
cs_cstr : constructor;
cs_params : constr list;
cs_nargs : int;
cs_args : (name * constr) list;
cs_concl_realargs : constr array
}
val lift_constructor : int -> constructor_summary -> constructor_summary
(*s Functions to build standard types related to inductive *)
(* This builds [(ci params (Rel 1)...(Rel ci_nargs))] which is the argument
of a dependent predicate in a Cases branch *)
val build_dependent_constructor : constructor_summary -> constr
(* This builds [(I params (Rel 1)...(Rel nrealargs))] which is the type of
the constructor argument of a dependent predicate in a cases branch *)
val build_dependent_inductive : inductive_family -> constr
(* if the arity for some inductive family [indf] associated to [(I
params)] is [(x1:A1)...(xn:An)sort'] then [make_arity env sigma dep
indf k] builds [(x1:A1)...(xn:An)sort] which is the arity of an
elimination predicate on sort [k]; if [dep=true] then it rather
builds [(x1:A1)...(xn:An)(I params x1...xn)->sort] *)
val make_arity : env -> bool -> inductive_family -> sorts -> constr
(* [build_branch_type env dep p cs] builds the type of the branch
associated to constructor [cs] in a Case with elimination predicate
[p]; if [dep=true], the predicate is assumed dependent *)
val build_branch_type : env -> bool -> constr -> constructor_summary -> constr
(*s Extracting an inductive type from a constructions *)
exception Induc
(* [extract_mrectype c] assumes [c] is syntactically an inductive type
applied to arguments then it returns its components; if not an
inductive type, it raises [Induc] *)
val extract_mrectype : constr -> inductive * constr list
(* [find_m*type env sigma c] coerce [c] to an recursive type (I args).
[find_mrectype], [find_minductype] and [find_mcoinductype]
respectively accepts any recursive type, only an inductive type and
only a coinductive type.
They raise [Induc] if not convertible to a recursive type. *)
val find_mrectype : env -> 'a evar_map -> constr -> inductive * constr list
val find_minductype : env -> 'a evar_map -> constr -> inductive * constr list
val find_mcoinductype : env -> 'a evar_map -> constr -> inductive * constr list
val lookup_mind_specif : inductive -> env -> inductive_instance
(* [find_rectype env sigma t] builds an [inductive_type] or raises
[Induc] if [t] is not a (co-)inductive type; The result is relative to
[env] and [sigma] *)
val find_rectype : env -> 'a evar_map -> constr -> inductive_type
(* [get_constructors indf] build an array of [constructor_summary]
from some inductive type already analysed as an [inductive_family];
global parameters are already instanciated in the constructor
types; the resulting summaries are valid in the environment where
[indf] is valid the names of the products of the constructors types
are not renamed when [Anonymous] *)
val get_constructors : inductive_family -> constructor_summary array
(* [get_arity inf] returns the product and the sort of the
arity of the inductive family described by [is]; global parameters are
already instanciated; [indf] must be defined w.r.t. [env] and [sigma];
the products signature is relative to [env] and [sigma]; the names
of the products of the constructors types are not renamed when
[Anonymous] *)
val get_arity : inductive_family -> flat_arity
(* Examples: assume
\begin{verbatim}
Inductive listn [A:Set] : nat -> Set :=
niln : (listn A O)
| consn : (n:nat)A->(listn A n)->(listn A (S n)).
\end{verbatim}
has been defined. Then in some env containing ['x:nat'],
[find_inductive env sigma (listn bool (S x))] returns
[is = {mind = 'listn'; params = 'bool'; realargs = '(S x)';
nparams = 1; nrealargs = 1; nconstr = 2 }]
then [get_constructors env sigma is] returns
[[| { cs_cstr = 'niln'; cs_params = 'bool'; cs_nargs = 0;
cs_args = []; cs_concl_realargs = [|O|]};
{ cs_cstr = 'consn'; cs_params = 'bool'; cs_nargs = 3;
cs_args = [(Anonymous,'(listn A n)'),(Anonymous,'A'),(Name n,'nat')];
cs_concl_realargs = [|'(S n)'|]} |]]
and [get_arity env sigma is] returns [[(Anonymous,'nat')],'Set'].
*)
(* Cases info *)
val make_case_info : inductive_instance -> case_style option
-> pattern_source array -> case_info
val make_default_case_info : inductive_instance -> case_info
|