1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
open Names
open Univ
open Term
open Sign
open Declarations
open Environ
open Reduction
open Type_errors
(* raise Not_found if not an inductive type *)
let lookup_mind_specif env (kn,tyi) =
let mib = Environ.lookup_mind kn env in
if tyi >= Array.length mib.mind_packets then
error "Inductive.lookup_mind_specif: invalid inductive index";
(mib, mib.mind_packets.(tyi))
let find_rectype env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_inductive env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind
when (fst (lookup_mind_specif env ind)).mind_finite -> (ind, l)
| _ -> raise Not_found
let find_coinductive env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind
when not (fst (lookup_mind_specif env ind)).mind_finite -> (ind, l)
| _ -> raise Not_found
(***********************************************************************)
(* Build the substitution that replaces Rels by the appropriate *)
(* inductives *)
let ind_subst mind mib =
let ntypes = mib.mind_ntypes in
let make_Ik k = mkInd (mind,ntypes-k-1) in
list_tabulate make_Ik ntypes
(* Instantiate inductives in constructor type *)
let constructor_instantiate mind mib c =
let s = ind_subst mind mib in
type_app (substl s) c
(* Instantiate the parameters of the inductive type *)
(* TODO: verify the arg of LetIn correspond to the value in the
signature ? *)
let instantiate_params t args sign =
let fail () =
anomaly "instantiate_params: type, ctxt and args mismatch" in
let (rem_args, subs, ty) =
Sign.fold_rel_context
(fun (_,copt,_) (largs,subs,ty) ->
match (copt, largs, kind_of_term ty) with
| (None, a::args, Prod(_,_,t)) -> (args, a::subs, t)
| (Some b,_,LetIn(_,_,_,t)) -> (largs, (substl subs b)::subs, t)
| _ -> fail())
sign
~init:(args,[],t)
in
if rem_args <> [] then fail();
type_app (substl subs) ty
let full_inductive_instantiate mip params t =
instantiate_params t params mip.mind_params_ctxt
let full_constructor_instantiate (((mind,_),mib,mip),params) =
let inst_ind = constructor_instantiate mind mib in
(fun t ->
instantiate_params (inst_ind t) params mip.mind_params_ctxt)
(***********************************************************************)
(***********************************************************************)
(* Functions to build standard types related to inductive *)
(* Type of an inductive type *)
let type_of_inductive env i =
let (_,mip) = lookup_mind_specif env i in
mip.mind_user_arity
(***********************************************************************)
(* Type of a constructor *)
let type_of_constructor env cstr =
let ind = inductive_of_constructor cstr in
let (mib,mip) = lookup_mind_specif env ind in
let specif = mip.mind_user_lc in
let i = index_of_constructor cstr in
let nconstr = Array.length mip.mind_consnames in
if i > nconstr then error "Not enough constructors in the type";
constructor_instantiate (fst ind) mib specif.(i-1)
let arities_of_specif kn (mib,mip) =
let specif = mip.mind_nf_lc in
Array.map (constructor_instantiate kn mib) specif
let arities_of_constructors env ind =
arities_of_specif (fst ind) (lookup_mind_specif env ind)
(***********************************************************************)
let is_info_arity env c =
match dest_arity env c with
| (_,Prop Null) -> false
| (_,Prop Pos) -> true
| (_,Type _) -> true
let error_elim_expln env kp ki =
if is_info_arity env kp && not (is_info_arity env ki) then
NonInformativeToInformative
else
match (kind_of_term kp,kind_of_term ki) with
| Sort (Type _), Sort (Prop _) -> StrongEliminationOnNonSmallType
| _ -> WrongArity
(* Type of case predicates *)
let local_rels ctxt =
let (rels,_) =
Sign.fold_rel_context_reverse
(fun (rels,n) (_,copt,_) ->
match copt with
None -> (mkRel n :: rels, n+1)
| Some _ -> (rels, n+1))
~init:([],1)
ctxt
in
rels
(* Get type of inductive, with parameters instantiated *)
let get_arity mip params =
let arity = mip.mind_nf_arity in
destArity (full_inductive_instantiate mip params arity)
let build_dependent_inductive ind mip params =
let arsign,_ = get_arity mip params in
let nrealargs = mip.mind_nrealargs in
applist
(mkInd ind, (List.map (lift nrealargs) params)@(local_rels arsign))
(* This exception is local *)
exception LocalArity of (constr * constr * arity_error) option
let is_correct_arity env c pj ind mip params =
let kelim = mip.mind_kelim in
let arsign,s = get_arity mip params in
let nodep_ar = it_mkProd_or_LetIn (mkSort s) arsign in
let rec srec env pt t u =
let pt' = whd_betadeltaiota env pt in
let t' = whd_betadeltaiota env t in
match kind_of_term pt', kind_of_term t' with
| Prod (na1,a1,a2), Prod (_,a1',a2') ->
let univ =
try conv env a1 a1'
with NotConvertible -> raise (LocalArity None) in
srec (push_rel (na1,None,a1) env) a2 a2' (Constraint.union u univ)
| Prod (_,a1,a2), _ ->
let k = whd_betadeltaiota env a2 in
let ksort = match kind_of_term k with
| Sort s -> family_of_sort s
| _ -> raise (LocalArity None) in
let dep_ind = build_dependent_inductive ind mip params in
let univ =
try conv env a1 dep_ind
with NotConvertible -> raise (LocalArity None) in
if List.exists ((=) ksort) kelim then
(true, Constraint.union u univ)
else
raise (LocalArity (Some(k,t',error_elim_expln env k t')))
| k, Prod (_,_,_) ->
raise (LocalArity None)
| k, ki ->
let ksort = match k with
| Sort s -> family_of_sort s
| _ -> raise (LocalArity None) in
if List.exists ((=) ksort) kelim then
(false, u)
else
raise (LocalArity (Some(pt',t',error_elim_expln env pt' t')))
in
try srec env pj.uj_type nodep_ar Constraint.empty
with LocalArity kinds ->
let create_sort = function
| InProp -> mkProp
| InSet -> mkSet
| InType -> mkSort type_0 in
let listarity = List.map create_sort kelim
(* let listarity =
(List.map (fun s -> make_arity env true indf (create_sort s)) kelim)
@(List.map (fun s -> make_arity env false indf (create_sort s)) kelim)*)
in
error_elim_arity env ind listarity c pj kinds
(***********************************************************************)
(* Type of case branches *)
(* [p] is the predicate, [i] is the constructor number (starting from 0),
and [cty] is the type of the constructor (params not instantiated) *)
let build_branches_type ind mib mip params dep p =
let build_one_branch i cty =
let typi = full_constructor_instantiate ((ind,mib,mip),params) cty in
let (args,ccl) = decompose_prod_assum typi in
let nargs = rel_context_length args in
let (_,allargs) = decompose_app ccl in
let (lparams,vargs) = list_chop mip.mind_nparams allargs in
let cargs =
if dep then
let cstr = ith_constructor_of_inductive ind (i+1) in
let dep_cstr = applist (mkConstruct cstr,lparams@(local_rels args)) in
vargs @ [dep_cstr]
else
vargs in
let base = beta_appvect (lift nargs p) (Array.of_list cargs) in
it_mkProd_or_LetIn base args in
Array.mapi build_one_branch mip.mind_nf_lc
(* [p] is the predicate, [c] is the match object, [realargs] is the
list of real args of the inductive type *)
let build_case_type dep p c realargs =
let args = if dep then realargs@[c] else realargs in
beta_appvect p (Array.of_list args)
let type_case_branches env (ind,largs) pj c =
let (mib,mip) = lookup_mind_specif env ind in
let nparams = mip.mind_nparams in
let (params,realargs) = list_chop nparams largs in
let p = pj.uj_val in
let (dep,univ) = is_correct_arity env c pj ind mip params in
let lc = build_branches_type ind mib mip params dep p in
let ty = build_case_type dep p c realargs in
(lc, ty, univ)
(***********************************************************************)
(* Checking the case annotation is relevent *)
let check_case_info env indsp ci =
let (mib,mip) = lookup_mind_specif env indsp in
if
(indsp <> ci.ci_ind) or
(mip.mind_nparams <> ci.ci_npar)
then raise (TypeError(env,WrongCaseInfo(indsp,ci)))
(***********************************************************************)
(***********************************************************************)
(* Guard conditions for fix and cofix-points *)
(* Check if t is a subterm of Rel n, and gives its specification,
assuming lst already gives index of
subterms with corresponding specifications of recursive arguments *)
(* A powerful notion of subterm *)
(* To each inductive definition corresponds an array describing the
structure of recursive arguments for each constructor, we call it
the recursive spec of the type (it has type recargs vect). For
checking the guard, we start from the decreasing argument (Rel n)
with its recursive spec. During checking the guardness condition,
we collect patterns variables corresponding to subterms of n, each
of them with its recursive spec. They are organised in a list lst
of type (int * recargs) list which is sorted with respect to the
first argument.
*)
(*************************)
(* Environment annotated with marks on recursive arguments:
it is a triple (env,lst,n) where
- env is the typing environment
- lst is a mapping from de Bruijn indices to list of recargs
(tells which subterms of that variable are recursive)
- n is the de Bruijn index of the fixpoint for which we are
checking the guard condition.
Below are functions to handle such environment.
*)
type size = Large | Strict
let size_glb s1 s2 =
match s1,s2 with
Strict, Strict -> Strict
| _ -> Large
type subterm_spec =
Subterm of (size * wf_paths)
| Dead_code
| Not_subterm
let spec_of_tree t =
if t=mk_norec then Not_subterm else Subterm(Strict,t)
let subterm_spec_glb =
let glb2 s1 s2 =
match s1,s2 with
_, Dead_code -> s1
| Dead_code, _ -> s2
| Not_subterm, _ -> Not_subterm
| _, Not_subterm -> Not_subterm
| Subterm (a1,t1), Subterm (a2,t2) ->
if t1=t2 then Subterm (size_glb a1 a2, t1)
(* branches do not return objects with same spec *)
else Not_subterm in
Array.fold_left glb2 Dead_code
type guard_env =
{ env : env;
(* dB of last fixpoint *)
rel_min : int;
(* inductive of recarg of each fixpoint *)
inds : inductive array;
(* the recarg information of inductive family *)
recvec : wf_paths array;
(* dB of variables denoting subterms *)
genv : subterm_spec list;
}
let make_renv env minds recarg (kn,tyi) =
let mib = Environ.lookup_mind kn env in
let mind_recvec =
Array.map (fun mip -> mip.mind_recargs) mib.mind_packets in
{ env = env;
rel_min = recarg+2;
inds = minds;
recvec = mind_recvec;
genv = [Subterm(Large,mind_recvec.(tyi))] }
let push_var renv (x,ty,spec) =
{ renv with
env = push_rel (x,None,ty) renv.env;
rel_min = renv.rel_min+1;
genv = spec:: renv.genv }
let assign_var_spec renv (i,spec) =
{ renv with genv = list_assign renv.genv (i-1) spec }
let push_var_renv renv (x,ty) =
push_var renv (x,ty,Not_subterm)
(* Fetch recursive information about a variable p *)
let subterm_var p renv =
try List.nth renv.genv (p-1)
with Failure _ | Invalid_argument _ -> Not_subterm
(* Add a variable and mark it as strictly smaller with information [spec]. *)
let add_subterm renv (x,a,spec) =
push_var renv (x,a,spec_of_tree spec)
let push_ctxt_renv renv ctxt =
let n = rel_context_length ctxt in
{ renv with
env = push_rel_context ctxt renv.env;
rel_min = renv.rel_min+n;
genv = iterate (fun ge -> Not_subterm::ge) n renv.genv }
let push_fix_renv renv (_,v,_ as recdef) =
let n = Array.length v in
{ renv with
env = push_rec_types recdef renv.env;
rel_min = renv.rel_min+n;
genv = iterate (fun ge -> Not_subterm::ge) n renv.genv }
(******************************)
(* Computing the recursive subterms of a term (propagation of size
information through Cases). *)
(*
c is a branch of an inductive definition corresponding to the spec
lrec. mind_recvec is the recursive spec of the inductive
definition of the decreasing argument n.
case_branches_specif renv lrec lc will pass the lambdas
of c corresponding to pattern variables and collect possibly new
subterms variables and returns the bodies of the branches with the
correct envs and decreasing args.
*)
let lookup_subterms env ind =
let (_,mip) = lookup_mind_specif env ind in
mip.mind_recargs
(*********************************)
(* finds the inductive type of the recursive argument of a fixpoint *)
let inductive_of_fix env recarg body =
let (ctxt,b) = decompose_lam_n_assum recarg body in
let env' = push_rel_context ctxt env in
let (_,ty,_) = destLambda(whd_betadeltaiota env' b) in
let (i,_) = decompose_app (whd_betadeltaiota env' ty) in
destInd i
(*
subterm_specif env c ind
subterm_specif should test if [c] (building objects of inductive
type [ind], not necassarily the same as that of the recursive
argument) is a subterm of the recursive argument of the fixpoint we
are checking and fails with Not_found if not. In case it is, it
should send its recursive specification (i.e. on which arguments we
are allowed to make recursive calls). This recursive spec should be
the same size as the number of constructors of the type of c.
Returns:
- [Some lc] if [c] is a strict subterm of the rec. arg. (or a Meta)
- [None] otherwise
*)
let rec subterm_specif renv t ind =
let f,l = decompose_app (whd_betadeltaiota renv.env t) in
match kind_of_term f with
| Rel k -> subterm_var k renv
| Case (ci,_,c,lbr) ->
if Array.length lbr = 0 then Dead_code
else
let lbr_spec = case_branches_specif renv c ci.ci_ind lbr in
let stl =
Array.map (fun (renv',br') -> subterm_specif renv' br' ind)
lbr_spec in
subterm_spec_glb stl
| Fix ((recindxs,i),(_,typarray,bodies as recdef)) ->
(* when proving that the fixpoint f(x)=e is less than n, it is enough
to prove that e is less than n assuming f is less than n
furthermore when f is applied to a term which is strictly less than
n, one may assume that x itself is strictly less than n
*)
let nbfix = Array.length typarray in
let recargs = lookup_subterms renv.env ind in
(* pushing the fixpoints *)
let renv' = push_fix_renv renv recdef in
let renv' =
assign_var_spec renv' (nbfix-i, Subterm(Strict,recargs)) in
let decrArg = recindxs.(i) in
let theBody = bodies.(i) in
let nbOfAbst = decrArg+1 in
let sign,strippedBody = decompose_lam_n_assum nbOfAbst theBody in
(* pushing the fix parameters *)
let renv'' = push_ctxt_renv renv' sign in
let renv'' =
if List.length l < nbOfAbst then renv''
else
let decrarg_ind = inductive_of_fix renv''.env decrArg theBody in
let theDecrArg = List.nth l decrArg in
let arg_spec = subterm_specif renv theDecrArg decrarg_ind in
assign_var_spec renv'' (1, arg_spec) in
subterm_specif renv'' strippedBody ind
| Lambda (x,a,b) ->
assert (l=[]);
subterm_specif (push_var_renv renv (x,a)) b ind
(* A term with metas is considered OK *)
| Meta _ -> Dead_code
(* Other terms are not subterms *)
| _ -> Not_subterm
(* Propagation of size information through Cases: if the matched
object is a recursive subterm then compute the information
associated to its own subterms.
Rq: if branch is not eta-long, then the recursive information
is not propagated *)
and case_branches_specif renv c ind lbr =
let c_spec = subterm_specif renv c ind in
let rec push_branch_args renv lrec c =
let c' = strip_outer_cast (whd_betadeltaiota renv.env c) in
match lrec, kind_of_term c' with
| (ra::lr,Lambda (x,a,b)) ->
let renv' = push_var renv (x,a,ra) in
push_branch_args renv' lr b
| (_,_) -> (renv,c') in
match c_spec with
Subterm (_,t) ->
let sub_spec = Array.map (List.map spec_of_tree) (dest_subterms t) in
assert (Array.length sub_spec = Array.length lbr);
array_map2 (push_branch_args renv) sub_spec lbr
| Dead_code ->
let t = dest_subterms (lookup_subterms renv.env ind) in
let sub_spec = Array.map (List.map (fun _ -> Dead_code)) t in
assert (Array.length sub_spec = Array.length lbr);
array_map2 (push_branch_args renv) sub_spec lbr
| Not_subterm -> Array.map (fun c -> (renv,c)) lbr
(* Check term c can be applied to one of the mutual fixpoints. *)
let check_is_subterm renv c ind =
match subterm_specif renv c ind with
Subterm (Strict,_) | Dead_code -> true
| _ -> false
(***********************************************************************)
exception FixGuardError of env * guard_error
let error_illegal_rec_call renv fx arg =
let (_,le_vars,lt_vars) =
List.fold_left
(fun (i,le,lt) sbt ->
match sbt with
(Subterm(Strict,_) | Dead_code) -> (i+1, le, i::lt)
| (Subterm(Large,_)) -> (i+1, i::le, lt)
| _ -> (i+1, le ,lt))
(1,[],[]) renv.genv in
raise (FixGuardError (renv.env,
RecursionOnIllegalTerm(fx,arg,le_vars,lt_vars)))
let error_partial_apply renv fx =
raise (FixGuardError (renv.env,NotEnoughArgumentsForFixCall fx))
(* Check if [def] is a guarded fixpoint body with decreasing arg.
given [recpos], the decreasing arguments of each mutually defined
fixpoint. *)
let check_one_fix renv recpos def =
let nfi = Array.length recpos in
let rec check_rec_call renv t =
(* if [t] does not make recursive calls, it is guarded: *)
noccur_with_meta renv.rel_min nfi t or
(* Rq: why not try and expand some definitions ? *)
let f,l = decompose_app (whd_betaiotazeta renv.env t) in
match kind_of_term f with
| Rel p ->
(* Test if it is a recursive call: *)
if renv.rel_min <= p & p < renv.rel_min+nfi then
(* the position of the invoked fixpoint: *)
let glob = renv.rel_min+nfi-1-p in
(* the decreasing arg of the rec call: *)
let np = recpos.(glob) in
if List.length l <= np then error_partial_apply renv glob;
match list_chop np l with
(la,(z::lrest)) ->
(* Check the decreasing arg is smaller *)
if not (check_is_subterm renv z renv.inds.(glob)) then
error_illegal_rec_call renv glob z;
List.for_all (check_rec_call renv) (la@lrest)
| _ -> assert false
(* otherwise check the arguments are guarded: *)
else List.for_all (check_rec_call renv) l
| Case (ci,p,c_0,lrest) ->
List.for_all (check_rec_call renv) (c_0::p::l) &&
(* compute the recarg information for the arguments of
each branch *)
let lbr = case_branches_specif renv c_0 ci.ci_ind lrest in
array_for_all (fun (renv',br') -> check_rec_call renv' br') lbr
(* Enables to traverse Fixpoint definitions in a more intelligent
way, ie, the rule :
if - g = Fix g/1 := [y1:T1]...[yp:Tp]e &
- f is guarded with respect to the set of pattern variables S
in a1 ... am &
- f is guarded with respect to the set of pattern variables S
in T1 ... Tp &
- ap is a sub-term of the formal argument of f &
- f is guarded with respect to the set of pattern variables S+{yp}
in e
then f is guarded with respect to S in (g a1 ... am).
Eduardo 7/9/98 *)
| Fix ((recindxs,i),(_,typarray,bodies as recdef)) ->
List.for_all (check_rec_call renv) l &&
array_for_all (check_rec_call renv) typarray &&
let nbfix = Array.length typarray in
let decrArg = recindxs.(i) in
let renv' = push_fix_renv renv recdef in
if (List.length l < (decrArg+1)) then
array_for_all (check_rec_call renv') bodies
else
let ok_vect =
Array.mapi
(fun j body ->
if i=j then
let decrarg_ind =
inductive_of_fix renv'.env decrArg body in
let theDecrArg = List.nth l decrArg in
let arg_spec =
subterm_specif renv theDecrArg decrarg_ind in
check_nested_fix_body renv' (decrArg+1) arg_spec body
else check_rec_call renv' body)
bodies in
array_for_all (fun b -> b) ok_vect
| Const kn as c ->
(try List.for_all (check_rec_call renv) l
with (FixGuardError _ ) as e ->
if evaluable_constant kn renv.env then
check_rec_call renv
(applist(constant_value renv.env kn, l))
else raise e)
(* The cases below simply check recursively the condition on the
subterms *)
| Cast (a,b) ->
List.for_all (check_rec_call renv) (a::b::l)
| Lambda (x,a,b) ->
check_rec_call (push_var_renv renv (x,a)) b &&
List.for_all (check_rec_call renv) (a::l)
| Prod (x,a,b) ->
check_rec_call (push_var_renv renv (x,a)) b &&
List.for_all (check_rec_call renv) (a::l)
| CoFix (i,(_,typarray,bodies as recdef)) ->
array_for_all (check_rec_call renv) typarray &&
List.for_all (check_rec_call renv) l &&
let renv' = push_fix_renv renv recdef in
array_for_all (check_rec_call renv') bodies
| Evar (_,la) ->
array_for_all (check_rec_call renv) la &&
List.for_all (check_rec_call renv) l
| Meta _ -> true
| (App _ | LetIn _) ->
anomaly "check_rec_call: should have been reduced"
| (Ind _ | Construct _ | Var _ | Sort _) ->
List.for_all (check_rec_call renv) l
and check_nested_fix_body renv decr recArgsDecrArg body =
if decr = 0 then
check_rec_call (assign_var_spec renv (1,recArgsDecrArg)) body
else
match kind_of_term body with
| Lambda (x,a,b) ->
let renv' = push_var_renv renv (x,a) in
check_rec_call renv a &&
check_nested_fix_body renv' (decr-1) recArgsDecrArg b
| _ -> anomaly "Not enough abstractions in fix body"
in
check_rec_call renv def
let inductive_of_mutfix env ((nvect,bodynum),(names,types,bodies as recdef)) =
let nbfix = Array.length bodies in
if nbfix = 0
or Array.length nvect <> nbfix
or Array.length types <> nbfix
or Array.length names <> nbfix
or bodynum < 0
or bodynum >= nbfix
then anomaly "Ill-formed fix term";
let fixenv = push_rec_types recdef env in
let raise_err i err =
error_ill_formed_rec_body fixenv err names i in
(* Check the i-th definition with recarg k *)
let find_ind i k def =
if k < 0 then anomaly "negative recarg position";
(* check fi does not appear in the k+1 first abstractions,
gives the type of the k+1-eme abstraction (must be an inductive) *)
let rec check_occur env n def =
match kind_of_term (whd_betadeltaiota env def) with
| Lambda (x,a,b) ->
if noccur_with_meta n nbfix a then
let env' = push_rel (x, None, a) env in
if n = k+1 then
(* get the inductive type of the fixpoint *)
let (mind, _) =
try find_inductive env a
with Not_found -> raise_err i RecursionNotOnInductiveType in
(mind, (env', b))
else check_occur env' (n+1) b
else anomaly "check_one_fix: Bad occurrence of recursive call"
| _ -> raise_err i NotEnoughAbstractionInFixBody in
check_occur env 1 def in
(* Do it on every fixpoint *)
let rv = array_map2_i find_ind nvect bodies in
(Array.map fst rv, Array.map snd rv)
let check_fix env ((nvect,_),(names,_,bodies as recdef) as fix) =
let (minds, rdef) = inductive_of_mutfix env fix in
for i = 0 to Array.length bodies - 1 do
let (fenv,body) = rdef.(i) in
let renv = make_renv fenv minds nvect.(i) minds.(i) in
try
let _ = check_one_fix renv nvect body in ()
with FixGuardError (fixenv,err) ->
error_ill_formed_rec_body fixenv err names i
done
(*
let cfkey = Profile.declare_profile "check_fix";;
let check_fix env fix = Profile.profile3 cfkey check_fix env fix;;
*)
(***********************************************************************)
(* Scrape *)
let rec scrape_mind env kn =
match (Environ.lookup_mind kn env).mind_equiv with
| None -> kn
| Some kn' -> scrape_mind env kn'
(***********************************************************************)
(* Co-fixpoints. *)
exception CoFixGuardError of env * guard_error
let anomaly_ill_typed () =
anomaly "check_one_cofix: too many arguments applied to constructor"
let rec codomain_is_coind env c =
let b = whd_betadeltaiota env c in
match kind_of_term b with
| Prod (x,a,b) ->
codomain_is_coind (push_rel (x, None, a) env) b
| _ ->
(try find_coinductive env b
with Not_found ->
raise (CoFixGuardError (env, CodomainNotInductiveType b)))
let check_one_cofix env nbfix def deftype =
let rec check_rec_call env alreadygrd n vlra t =
if noccur_with_meta n nbfix t then
true
else
let c,args = decompose_app (whd_betadeltaiota env t) in
match kind_of_term c with
| Meta _ -> true
| Rel p when n <= p && p < n+nbfix ->
(* recursive call *)
if alreadygrd then
if List.for_all (noccur_with_meta n nbfix) args then
true
else
raise (CoFixGuardError (env,NestedRecursiveOccurrences))
else
raise (CoFixGuardError (env,UnguardedRecursiveCall t))
| Construct (_,i as cstr_kn) ->
let lra =vlra.(i-1) in
let mI = inductive_of_constructor cstr_kn in
let (mib,mip) = lookup_mind_specif env mI in
let realargs = list_skipn mip.mind_nparams args in
let rec process_args_of_constr = function
| (t::lr), (rar::lrar) ->
if rar = mk_norec then
if noccur_with_meta n nbfix t
then process_args_of_constr (lr, lrar)
else raise (CoFixGuardError
(env,RecCallInNonRecArgOfConstructor t))
else
let spec = dest_subterms rar in
check_rec_call env true n spec t &&
process_args_of_constr (lr, lrar)
| [],_ -> true
| _ -> anomaly_ill_typed ()
in process_args_of_constr (realargs, lra)
| Lambda (x,a,b) ->
assert (args = []);
if (noccur_with_meta n nbfix a) then
check_rec_call (push_rel (x, None, a) env)
alreadygrd (n+1) vlra b
else
raise (CoFixGuardError (env,RecCallInTypeOfAbstraction a))
| CoFix (j,(_,varit,vdefs as recdef)) ->
if (List.for_all (noccur_with_meta n nbfix) args)
then
let nbfix = Array.length vdefs in
if (array_for_all (noccur_with_meta n nbfix) varit) then
let env' = push_rec_types recdef env in
(array_for_all
(check_rec_call env' alreadygrd (n+1) vlra) vdefs)
&&
(List.for_all (check_rec_call env alreadygrd (n+1) vlra) args)
else
raise (CoFixGuardError (env,RecCallInTypeOfDef c))
else
raise (CoFixGuardError (env,UnguardedRecursiveCall c))
| Case (_,p,tm,vrest) ->
if (noccur_with_meta n nbfix p) then
if (noccur_with_meta n nbfix tm) then
if (List.for_all (noccur_with_meta n nbfix) args) then
(array_for_all (check_rec_call env alreadygrd n vlra) vrest)
else
raise (CoFixGuardError (env,RecCallInCaseFun c))
else
raise (CoFixGuardError (env,RecCallInCaseArg c))
else
raise (CoFixGuardError (env,RecCallInCasePred c))
| _ -> raise (CoFixGuardError (env,NotGuardedForm t)) in
let (mind, _) = codomain_is_coind env deftype in
let vlra = lookup_subterms env mind in
check_rec_call env false 1 (dest_subterms vlra) def
(* The function which checks that the whole block of definitions
satisfies the guarded condition *)
let check_cofix env (bodynum,(names,types,bodies as recdef)) =
let nbfix = Array.length bodies in
for i = 0 to nbfix-1 do
let fixenv = push_rec_types recdef env in
try
let _ = check_one_cofix fixenv nbfix bodies.(i) types.(i)
in ()
with CoFixGuardError (errenv,err) ->
error_ill_formed_rec_body errenv err names i
done
|