1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
(* $Id$ *)
open Util
open Names
open Univ
open Generic
open Term
open Sign
open Declarations
open Environ
open Reduction
type inductive_instance = {
mis_sp : section_path;
mis_mib : mutual_inductive_body;
mis_tyi : int;
mis_args : constr array;
mis_mip : one_inductive_body }
let mis_ntypes mis = mis.mis_mib.mind_ntypes
let mis_nparams mis = mis.mis_mib.mind_nparams
let mis_index mis = mis.mis_tyi
let mis_nconstr mis = Array.length (mis.mis_mip.mind_consnames)
let mis_nrealargs mis = mis.mis_mip.mind_nrealargs
let mis_kelim mis = mis.mis_mip.mind_kelim
let mis_recargs mis =
Array.map (fun mip -> mip.mind_listrec) mis.mis_mib.mind_packets
let mis_recarg mis = mis.mis_mip.mind_listrec
let mis_typename mis = mis.mis_mip.mind_typename
let mis_typepath mis =
make_path (dirpath mis.mis_sp) mis.mis_mip.mind_typename CCI
let mis_consnames mis = mis.mis_mip.mind_consnames
let mis_inductive mis = ((mis.mis_sp,mis.mis_tyi),mis.mis_args)
let mis_lc mis =
let ids = ids_of_sign mis.mis_mib.mind_hyps in
let args = Array.to_list mis.mis_args in
Array.map (fun t -> Instantiate.instantiate_constr ids t args)
mis.mis_mip.mind_lc
(* gives the vector of constructors and of
types of constructors of an inductive definition
correctly instanciated *)
let mis_type_mconstructs mispec =
let specif = mis_lc mispec
and ntypes = mis_ntypes mispec
and nconstr = mis_nconstr mispec in
let make_Ik k = mkMutInd ((mispec.mis_sp,ntypes-k-1),mispec.mis_args)
and make_Ck k = mkMutConstruct
(((mispec.mis_sp,mispec.mis_tyi),k+1),
mispec.mis_args) in
(Array.init nconstr make_Ck,
Array.map (substl (list_tabulate make_Ik ntypes)) specif)
let mis_type_mconstruct i mispec =
let specif = mis_lc mispec
and ntypes = mis_ntypes mispec
and nconstr = mis_nconstr mispec in
let make_Ik k = DOPN(MutInd(mispec.mis_sp,ntypes-k-1),mispec.mis_args) in
if i > nconstr then error "Not enough constructors in the type";
substl (list_tabulate make_Ik ntypes) specif.(i-1)
let mis_typed_arity mis =
let idhyps = ids_of_sign mis.mis_mib.mind_hyps
and largs = Array.to_list mis.mis_args in
Instantiate.instantiate_type idhyps mis.mis_mip.mind_arity largs
let mis_arity mispec = incast_type (mis_typed_arity mispec)
let mis_params_ctxt mispec =
let paramsign,_ =
decompose_prod_n mispec.mis_mib.mind_nparams
(body_of_type (mis_typed_arity mispec))
in paramsign
let mis_sort mispec = mispec.mis_mip.mind_sort
let liftn_inductive_instance n depth mis = {
mis_sp = mis.mis_sp;
mis_mib = mis.mis_mib;
mis_tyi = mis.mis_tyi;
mis_args = Array.map (liftn n depth) mis.mis_args;
mis_mip = mis.mis_mip
}
let lift_inductive_instance n = liftn_inductive_instance n 1
let substnl_ind_instance l n mis = {
mis_sp = mis.mis_sp;
mis_mib = mis.mis_mib;
mis_tyi = mis.mis_tyi;
mis_args = Array.map (substnl l n) mis.mis_args;
mis_mip = mis.mis_mip
}
(* [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = IndFamily of inductive_instance * constr list
type inductive_type = IndType of inductive_family * constr list
let liftn_inductive_family n d (IndFamily (mis, params)) =
IndFamily (liftn_inductive_instance n d mis, List.map (liftn n d) params)
let lift_inductive_family n = liftn_inductive_family n 1
let liftn_inductive_type n d (IndType (indf, realargs)) =
IndType (liftn_inductive_family n d indf, List.map (liftn n d) realargs)
let lift_inductive_type n = liftn_inductive_type n 1
let substnl_ind_family l n (IndFamily (mis,params)) =
IndFamily (substnl_ind_instance l n mis, List.map (substnl l n) params)
let substnl_ind_type l n (IndType (indf,realargs)) =
IndType (substnl_ind_family l n indf, List.map (substnl l n) realargs)
let make_ind_family (mis, params) = IndFamily (mis,params)
let dest_ind_family (IndFamily (mis,params)) = (mis,params)
let make_ind_type (indf, realargs) = IndType (indf,realargs)
let dest_ind_type (IndType (indf,realargs)) = (indf,realargs)
let mkAppliedInd (IndType (IndFamily (mis,params), realargs)) =
applist (mkMutInd (mis_inductive mis),params@realargs)
let mis_is_recursive_subset listind mis =
let rec one_is_rec rvec =
List.exists
(function
| Mrec i -> List.mem i listind
| Imbr(_,lvec) -> one_is_rec lvec
| Norec -> false
| Param _ -> false) rvec
in
array_exists one_is_rec (mis_recarg mis)
let mis_is_recursive mis =
mis_is_recursive_subset (interval 0 ((mis_ntypes mis)-1)) mis
(* Annotation for cases *)
let make_case_info mis style pats_source =
let constr_lengths = Array.map List.length (mis_recarg mis) in
let indsp = (mis.mis_sp,mis.mis_tyi) in
let print_info =
(indsp,mis_consnames mis,mis.mis_mip.mind_nrealargs,style,pats_source) in
(constr_lengths,print_info)
let make_default_case_info mis =
make_case_info mis None (Array.init (mis_nconstr mis) (fun _ -> RegularPat))
(*s Useful functions *)
let inductive_path_of_constructor_path (ind_sp,i) = ind_sp
let ith_constructor_path_of_inductive_path ind_sp i = (ind_sp,i)
let inductive_of_constructor ((ind_sp,i),args) = (ind_sp,args)
let index_of_constructor ((ind_sp,i),args) = i
let ith_constructor_of_inductive (ind_sp,args) i = ((ind_sp,i),args)
exception Induc
let extract_mrectype t =
let (t,l) = whd_stack t [] in
match t with
| DOPN(MutInd ind_sp,args) -> ((ind_sp,args),l)
| _ -> raise Induc
let find_mrectype env sigma c =
let (t,l) = whd_betadeltaiota_stack env sigma c [] in
match t with
| DOPN(MutInd ind_sp,args) -> ((ind_sp,args),l)
| _ -> raise Induc
let find_minductype env sigma c =
let (t,l) = whd_betadeltaiota_stack env sigma c [] in
match t with
| DOPN(MutInd (sp,i),_)
when mind_type_finite (lookup_mind sp env) i -> (destMutInd t,l)
| _ -> raise Induc
let find_mcoinductype env sigma c =
let (t,l) = whd_betadeltaiota_stack env sigma c [] in
match t with
| DOPN(MutInd (sp,i),_)
when not (mind_type_finite (lookup_mind sp env) i) -> (destMutInd t,l)
| _ -> raise Induc
(* raise Induc if not an inductive type *)
let lookup_mind_specif ((sp,tyi),args) env =
let mib = lookup_mind sp env in
{ mis_sp = sp; mis_mib = mib; mis_tyi = tyi; mis_args = args;
mis_mip = mind_nth_type_packet mib tyi }
let find_inductive env sigma ty =
let (mind,largs) = find_minductype env sigma ty in
let mispec = lookup_mind_specif mind env in
let nparams = mis_nparams mispec in
let (params,realargs) = list_chop nparams largs in
make_ind_type (make_ind_family (mispec,params),realargs)
type constructor_summary = {
cs_cstr : constructor;
cs_params : constr list;
cs_nargs : int;
cs_args : (name * constr) list;
cs_concl_realargs : constr array
}
let lift_constructor n cs = {
cs_cstr = (let (csp,ctxt) = cs.cs_cstr in (csp,Array.map (lift n) ctxt));
cs_params = List.map (lift n) cs.cs_params;
cs_nargs = cs.cs_nargs;
cs_args = lift_context n cs.cs_args;
cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs
}
let get_constructors (IndFamily (mispec,params)) =
let _,types = mis_type_mconstructs mispec in
let make_ck j =
let (args,ccl) = decompose_prod (prod_applist types.(j) params) in
let (_,vargs) = array_chop (mis_nparams mispec + 1) (destAppL (ensure_appl ccl)) in
{ cs_cstr = ith_constructor_of_inductive (mis_inductive mispec) (j+1);
cs_params = params;
cs_nargs = List.length args;
cs_args = args;
cs_concl_realargs = vargs } in
Array.init (mis_nconstr mispec) make_ck
let get_arity env sigma (IndFamily (mispec,params)) =
let arity = mis_arity mispec in
splay_arity env sigma (prod_applist arity params)
(* Functions to build standard types related to inductive *)
let build_dependent_constructor cs =
applist
(mkMutConstruct cs.cs_cstr,
(List.map (lift cs.cs_nargs) cs.cs_params)@(rel_list 0 cs.cs_nargs))
let build_dependent_inductive (IndFamily (mis, params)) =
let nrealargs = mis_nrealargs mis in
applist
(mkMutInd (mis_inductive mis),
(List.map (lift nrealargs) params)@(rel_list 0 nrealargs))
(* builds the arity of an elimination predicate in sort [s] *)
let make_arity env sigma dep indf s =
let (arsign,_) = get_arity env sigma indf in
if dep then
(* We need names everywhere *)
it_prod_name env
(mkArrow (build_dependent_inductive indf) (mkSort s)) arsign
else
(* No need to enforce names *)
prod_it (mkSort s) arsign
(* [p] is the predicate and [cs] a constructor summary *)
let build_branch_type env dep p cs =
let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in
if dep then
it_prod_name env
(applist (base,[build_dependent_constructor cs]))
cs.cs_args
else
prod_it base cs.cs_args
|