1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Errors
open Util
open Names
open Univ
open Term
open Vars
open Context
open Declarations
open Declareops
open Environ
open Reduction
open Type_errors
type mind_specif = mutual_inductive_body * one_inductive_body
(* raise Not_found if not an inductive type *)
let lookup_mind_specif env (kn,tyi) =
let mib = Environ.lookup_mind kn env in
if tyi >= Array.length mib.mind_packets then
error "Inductive.lookup_mind_specif: invalid inductive index";
(mib, mib.mind_packets.(tyi))
let find_rectype env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_inductive env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind
when (fst (lookup_mind_specif env (out_punivs ind))).mind_finite <> Decl_kinds.CoFinite -> (ind, l)
| _ -> raise Not_found
let find_coinductive env c =
let (t, l) = decompose_app (whd_betadeltaiota env c) in
match kind_of_term t with
| Ind ind
when (fst (lookup_mind_specif env (out_punivs ind))).mind_finite == Decl_kinds.CoFinite -> (ind, l)
| _ -> raise Not_found
let inductive_params (mib,_) = mib.mind_nparams
let inductive_paramdecls (mib,u) =
Vars.subst_instance_context u mib.mind_params_ctxt
let instantiate_inductive_constraints mib u =
if mib.mind_polymorphic then
Univ.subst_instance_constraints u (Univ.UContext.constraints mib.mind_universes)
else Univ.Constraint.empty
(************************************************************************)
(* Build the substitution that replaces Rels by the appropriate *)
(* inductives *)
let ind_subst mind mib u =
let ntypes = mib.mind_ntypes in
let make_Ik k = mkIndU ((mind,ntypes-k-1),u) in
List.init ntypes make_Ik
(* Instantiate inductives in constructor type *)
let constructor_instantiate mind u mib c =
let s = ind_subst mind mib u in
substl s (subst_instance_constr u c)
let instantiate_params full t args sign =
let fail () =
anomaly ~label:"instantiate_params" (Pp.str "type, ctxt and args mismatch") in
let (rem_args, subs, ty) =
Context.fold_rel_context
(fun (_,copt,_) (largs,subs,ty) ->
match (copt, largs, kind_of_term ty) with
| (None, a::args, Prod(_,_,t)) -> (args, a::subs, t)
| (Some b,_,LetIn(_,_,_,t)) -> (largs, (substl subs b)::subs, t)
| (_,[],_) -> if full then fail() else ([], subs, ty)
| _ -> fail ())
sign
~init:(args,[],t)
in
let () = if not (List.is_empty rem_args) then fail () in
substl subs ty
let full_inductive_instantiate mib u params sign =
let dummy = prop_sort in
let t = mkArity (sign,dummy) in
let ar = fst (destArity (instantiate_params true t params mib.mind_params_ctxt)) in
Vars.subst_instance_context u ar
let full_constructor_instantiate ((mind,_),u,(mib,_),params) =
let inst_ind = constructor_instantiate mind u mib in
(fun t ->
instantiate_params true (inst_ind t) params mib.mind_params_ctxt)
(************************************************************************)
(************************************************************************)
(* Functions to build standard types related to inductive *)
(*
Computing the actual sort of an applied or partially applied inductive type:
I_i: forall uniformparams:utyps, forall otherparams:otyps, Type(a)
uniformargs : utyps
otherargs : otyps
I_1:forall ...,s_1;...I_n:forall ...,s_n |- sort(C_kj(uniformargs)) = s_kj
s'_k = max(..s_kj..)
merge(..s'_k..) = ..s''_k..
--------------------------------------------------------------------
Gamma |- I_i uniformargs otherargs : phi(s''_i)
where
- if p=0, phi() = Prop
- if p=1, phi(s) = s
- if p<>1, phi(s) = sup(Set,s)
Remark: Set (predicative) is encoded as Type(0)
*)
let sort_as_univ = function
| Type u -> u
| Prop Null -> Universe.type0m
| Prop Pos -> Universe.type0
(* Template polymorphism *)
let cons_subst u su subst =
Univ.LMap.add u su subst
(* Bind expected levels of parameters to actual levels *)
(* Propagate the new levels in the signature *)
let rec make_subst env = function
| (_,Some _,_ as t)::sign, exp, args ->
let ctx,subst = make_subst env (sign, exp, args) in
t::ctx, subst
| d::sign, None::exp, args ->
let args = match args with _::args -> args | [] -> [] in
let ctx,subst = make_subst env (sign, exp, args) in
d::ctx, subst
| d::sign, Some u::exp, a::args ->
(* We recover the level of the argument, but we don't change the *)
(* level in the corresponding type in the arity; this level in the *)
(* arity is a global level which, at typing time, will be enforce *)
(* to be greater than the level of the argument; this is probably *)
(* a useless extra constraint *)
let s = sort_as_univ (snd (dest_arity env (Lazy.force a))) in
let ctx,subst = make_subst env (sign, exp, args) in
d::ctx, cons_subst u s subst
| (na,None,t as d)::sign, Some u::exp, [] ->
(* No more argument here: we instantiate the type with a fresh level *)
(* which is first propagated to the corresponding premise in the arity *)
(* (actualize_decl_level), then to the conclusion of the arity (via *)
(* the substitution) *)
let ctx,subst = make_subst env (sign, exp, []) in
d::ctx, subst
| sign, [], _ ->
(* Uniform parameters are exhausted *)
sign, Univ.LMap.empty
| [], _, _ ->
assert false
exception SingletonInductiveBecomesProp of Id.t
let instantiate_universes env ctx ar argsorts =
let args = Array.to_list argsorts in
let ctx,subst = make_subst env (ctx,ar.template_param_levels,args) in
let level = Univ.subst_univs_universe (Univ.make_subst subst) ar.template_level in
let ty =
(* Singleton type not containing types are interpretable in Prop *)
if is_type0m_univ level then prop_sort
(* Non singleton type not containing types are interpretable in Set *)
else if is_type0_univ level then set_sort
(* This is a Type with constraints *)
else Type level
in
(ctx, ty)
(* Type of an inductive type *)
let type_of_inductive_gen ?(polyprop=true) env ((mib,mip),u) paramtyps =
match mip.mind_arity with
| RegularArity a -> subst_instance_constr u a.mind_user_arity
| TemplateArity ar ->
let ctx = List.rev mip.mind_arity_ctxt in
let ctx,s = instantiate_universes env ctx ar paramtyps in
(* The Ocaml extraction cannot handle (yet?) "Prop-polymorphism", i.e.
the situation where a non-Prop singleton inductive becomes Prop
when applied to Prop params *)
if not polyprop && not (is_type0m_univ ar.template_level) && is_prop_sort s
then raise (SingletonInductiveBecomesProp mip.mind_typename);
mkArity (List.rev ctx,s)
let type_of_inductive env pind =
type_of_inductive_gen env pind [||]
let constrained_type_of_inductive env ((mib,mip),u as pind) =
let ty = type_of_inductive env pind in
let cst = instantiate_inductive_constraints mib u in
(ty, cst)
let constrained_type_of_inductive_knowing_parameters env ((mib,mip),u as pind) args =
let ty = type_of_inductive_gen env pind args in
let cst = instantiate_inductive_constraints mib u in
(ty, cst)
let type_of_inductive_knowing_parameters env ?(polyprop=false) mip args =
type_of_inductive_gen env mip args
(* The max of an array of universes *)
let cumulate_constructor_univ u = function
| Prop Null -> u
| Prop Pos -> Universe.sup Universe.type0 u
| Type u' -> Universe.sup u u'
let max_inductive_sort =
Array.fold_left cumulate_constructor_univ Universe.type0m
(************************************************************************)
(* Type of a constructor *)
let type_of_constructor (cstr, u) (mib,mip) =
let ind = inductive_of_constructor cstr in
let specif = mip.mind_user_lc in
let i = index_of_constructor cstr in
let nconstr = Array.length mip.mind_consnames in
if i > nconstr then error "Not enough constructors in the type.";
constructor_instantiate (fst ind) u mib specif.(i-1)
let constrained_type_of_constructor (cstr,u as cstru) (mib,mip as ind) =
let ty = type_of_constructor cstru ind in
let cst = instantiate_inductive_constraints mib u in
(ty, cst)
let arities_of_specif (kn,u) (mib,mip) =
let specif = mip.mind_nf_lc in
Array.map (constructor_instantiate kn u mib) specif
let arities_of_constructors ind specif =
arities_of_specif (fst (fst ind), snd ind) specif
let type_of_constructors (ind,u) (mib,mip) =
let specif = mip.mind_user_lc in
Array.map (constructor_instantiate (fst ind) u mib) specif
(************************************************************************)
(* Type of case predicates *)
let local_rels ctxt =
let (rels,_) =
Context.fold_rel_context_reverse
(fun (rels,n) (_,copt,_) ->
match copt with
None -> (mkRel n :: rels, n+1)
| Some _ -> (rels, n+1))
~init:([],1)
ctxt
in
rels
(* Get type of inductive, with parameters instantiated *)
let inductive_sort_family mip =
match mip.mind_arity with
| RegularArity s -> family_of_sort s.mind_sort
| TemplateArity _ -> InType
let mind_arity mip =
mip.mind_arity_ctxt, inductive_sort_family mip
let get_instantiated_arity (ind,u) (mib,mip) params =
let sign, s = mind_arity mip in
full_inductive_instantiate mib u params sign, s
let elim_sorts (_,mip) = mip.mind_kelim
let is_private (mib,_) = mib.mind_private = Some true
let is_primitive_record (mib,_) =
match mib.mind_record with
| Some (Some _) -> true
| _ -> false
let extended_rel_list n hyps =
let rec reln l p = function
| (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps
| (_,Some _,_) :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 hyps
let build_dependent_inductive ind (_,mip) params =
let realargs,_ = List.chop mip.mind_nrealdecls mip.mind_arity_ctxt in
applist
(mkIndU ind,
List.map (lift mip.mind_nrealdecls) params
@ extended_rel_list 0 realargs)
(* This exception is local *)
exception LocalArity of (sorts_family * sorts_family * arity_error) option
let check_allowed_sort ksort specif =
let eq_ksort s = match ksort, s with
| InProp, InProp | InSet, InSet | InType, InType -> true
| _ -> false in
if not (List.exists eq_ksort (elim_sorts specif)) then
let s = inductive_sort_family (snd specif) in
raise (LocalArity (Some(ksort,s,error_elim_explain ksort s)))
let is_correct_arity env c pj ind specif params =
let arsign,_ = get_instantiated_arity ind specif params in
let rec srec env pt ar =
let pt' = whd_betadeltaiota env pt in
match kind_of_term pt', ar with
| Prod (na1,a1,t), (_,None,a1')::ar' ->
let () =
try conv env a1 a1'
with NotConvertible -> raise (LocalArity None) in
srec (push_rel (na1,None,a1) env) t ar'
(* The last Prod domain is the type of the scrutinee *)
| Prod (na1,a1,a2), [] -> (* whnf of t was not needed here! *)
let env' = push_rel (na1,None,a1) env in
let ksort = match kind_of_term (whd_betadeltaiota env' a2) with
| Sort s -> family_of_sort s
| _ -> raise (LocalArity None) in
let dep_ind = build_dependent_inductive ind specif params in
let _ =
try conv env a1 dep_ind
with NotConvertible -> raise (LocalArity None) in
check_allowed_sort ksort specif
| _, (_,Some _,_ as d)::ar' ->
srec (push_rel d env) (lift 1 pt') ar'
| _ ->
raise (LocalArity None)
in
try srec env pj.uj_type (List.rev arsign)
with LocalArity kinds ->
error_elim_arity env ind (elim_sorts specif) c pj kinds
(************************************************************************)
(* Type of case branches *)
(* [p] is the predicate, [i] is the constructor number (starting from 0),
and [cty] is the type of the constructor (params not instantiated) *)
let build_branches_type (ind,u) (_,mip as specif) params p =
let build_one_branch i cty =
let typi = full_constructor_instantiate (ind,u,specif,params) cty in
let (args,ccl) = decompose_prod_assum typi in
let nargs = rel_context_length args in
let (_,allargs) = decompose_app ccl in
let (lparams,vargs) = List.chop (inductive_params specif) allargs in
let cargs =
let cstr = ith_constructor_of_inductive ind (i+1) in
let dep_cstr = applist (mkConstructU (cstr,u),lparams@(local_rels args)) in
vargs @ [dep_cstr] in
let base = betazeta_appvect mip.mind_nrealdecls (lift nargs p) (Array.of_list cargs) in
it_mkProd_or_LetIn base args in
Array.mapi build_one_branch mip.mind_nf_lc
(* [p] is the predicate, [c] is the match object, [realargs] is the
list of real args of the inductive type *)
let build_case_type env n p c realargs =
whd_betaiota env (betazeta_appvect (n+1) p (Array.of_list (realargs@[c])))
let type_case_branches env (pind,largs) pj c =
let specif = lookup_mind_specif env (fst pind) in
let nparams = inductive_params specif in
let (params,realargs) = List.chop nparams largs in
let p = pj.uj_val in
let () = is_correct_arity env c pj pind specif params in
let lc = build_branches_type pind specif params p in
let ty = build_case_type env (snd specif).mind_nrealdecls p c realargs in
(lc, ty)
(************************************************************************)
(* Checking the case annotation is relevant *)
let check_case_info env (indsp,u) ci =
let (mib,mip as spec) = lookup_mind_specif env indsp in
if
not (eq_ind indsp ci.ci_ind) ||
not (Int.equal mib.mind_nparams ci.ci_npar) ||
not (Array.equal Int.equal mip.mind_consnrealdecls ci.ci_cstr_ndecls) ||
not (Array.equal Int.equal mip.mind_consnrealargs ci.ci_cstr_nargs) ||
is_primitive_record spec
then raise (TypeError(env,WrongCaseInfo((indsp,u),ci)))
(************************************************************************)
(************************************************************************)
(* Guard conditions for fix and cofix-points *)
(* Check if t is a subterm of Rel n, and gives its specification,
assuming lst already gives index of
subterms with corresponding specifications of recursive arguments *)
(* A powerful notion of subterm *)
(* To each inductive definition corresponds an array describing the
structure of recursive arguments for each constructor, we call it
the recursive spec of the type (it has type recargs vect). For
checking the guard, we start from the decreasing argument (Rel n)
with its recursive spec. During checking the guardness condition,
we collect patterns variables corresponding to subterms of n, each
of them with its recursive spec. They are organised in a list lst
of type (int * recargs) list which is sorted with respect to the
first argument.
*)
(*************************************************************)
(* Environment annotated with marks on recursive arguments *)
(* tells whether it is a strict or loose subterm *)
type size = Large | Strict
(* merging information *)
let size_glb s1 s2 =
match s1,s2 with
Strict, Strict -> Strict
| _ -> Large
(* possible specifications for a term:
- Not_subterm: when the size of a term is not related to the
recursive argument of the fixpoint
- Subterm: when the term is a subterm of the recursive argument
the wf_paths argument specifies which subterms are recursive
- Dead_code: when the term has been built by elimination over an
empty type
*)
type subterm_spec =
Subterm of (size * wf_paths)
| Dead_code
| Not_subterm
let eq_wf_paths = Rtree.equal Declareops.eq_recarg
let inter_recarg r1 r2 = match r1, r2 with
| Norec, Norec -> Some r1
| Mrec i1, Mrec i2
| Imbr i1, Imbr i2
| Mrec i1, Imbr i2 -> if Names.eq_ind i1 i2 then Some r1 else None
| Imbr i1, Mrec i2 -> if Names.eq_ind i1 i2 then Some r2 else None
| _ -> None
let inter_wf_paths = Rtree.inter Declareops.eq_recarg inter_recarg Norec
let incl_wf_paths = Rtree.incl Declareops.eq_recarg inter_recarg Norec
let spec_of_tree t =
if eq_wf_paths t mk_norec
then Not_subterm
else Subterm (Strict, t)
let inter_spec s1 s2 =
match s1, s2 with
| _, Dead_code -> s1
| Dead_code, _ -> s2
| Not_subterm, _ -> s1
| _, Not_subterm -> s2
| Subterm (a1,t1), Subterm (a2,t2) ->
Subterm (size_glb a1 a2, inter_wf_paths t1 t2)
let subterm_spec_glb =
Array.fold_left inter_spec Dead_code
type guard_env =
{ env : env;
(* dB of last fixpoint *)
rel_min : int;
(* dB of variables denoting subterms *)
genv : subterm_spec Lazy.t list;
}
let make_renv env recarg tree =
{ env = env;
rel_min = recarg+2; (* recarg = 0 ==> Rel 1 -> recarg; Rel 2 -> fix *)
genv = [Lazy.lazy_from_val(Subterm(Large,tree))] }
let push_var renv (x,ty,spec) =
{ env = push_rel (x,None,ty) renv.env;
rel_min = renv.rel_min+1;
genv = spec:: renv.genv }
let assign_var_spec renv (i,spec) =
{ renv with genv = List.assign renv.genv (i-1) spec }
let push_var_renv renv (x,ty) =
push_var renv (x,ty,lazy Not_subterm)
(* Fetch recursive information about a variable p *)
let subterm_var p renv =
try Lazy.force (List.nth renv.genv (p-1))
with Failure _ | Invalid_argument _ -> Not_subterm
let push_ctxt_renv renv ctxt =
let n = rel_context_length ctxt in
{ env = push_rel_context ctxt renv.env;
rel_min = renv.rel_min+n;
genv = iterate (fun ge -> lazy Not_subterm::ge) n renv.genv }
let push_fix_renv renv (_,v,_ as recdef) =
let n = Array.length v in
{ env = push_rec_types recdef renv.env;
rel_min = renv.rel_min+n;
genv = iterate (fun ge -> lazy Not_subterm::ge) n renv.genv }
(* Definition and manipulation of the stack *)
type stack_element = |SClosure of guard_env*constr |SArg of subterm_spec Lazy.t
let push_stack_closures renv l stack =
List.fold_right (fun h b -> (SClosure (renv,h))::b) l stack
let push_stack_args l stack =
List.fold_right (fun h b -> (SArg h)::b) l stack
(******************************)
(* {6 Computing the recursive subterms of a term (propagation of size
information through Cases).} *)
let lookup_subterms env ind =
let (_,mip) = lookup_mind_specif env ind in
mip.mind_recargs
let match_inductive ind ra =
match ra with
| (Mrec i | Imbr i) -> eq_ind ind i
| Norec -> false
(* In {match c as z in ci y_s return P with |C_i x_s => t end}
[branches_specif renv c_spec ci] returns an array of x_s specs knowing
c_spec. *)
let branches_specif renv c_spec ci =
let car =
(* We fetch the regular tree associated to the inductive of the match.
This is just to get the number of constructors (and constructor
arities) that fit the match branches without forcing c_spec.
Note that c_spec might be more precise than [v] below, because of
nested inductive types. *)
let (_,mip) = lookup_mind_specif renv.env ci.ci_ind in
let v = dest_subterms mip.mind_recargs in
Array.map List.length v in
Array.mapi
(fun i nca -> (* i+1-th cstructor has arity nca *)
let lvra = lazy
(match Lazy.force c_spec with
Subterm (_,t) when match_inductive ci.ci_ind (dest_recarg t) ->
let vra = Array.of_list (dest_subterms t).(i) in
assert (Int.equal nca (Array.length vra));
Array.map spec_of_tree vra
| Dead_code -> Array.make nca Dead_code
| _ -> Array.make nca Not_subterm) in
List.init nca (fun j -> lazy (Lazy.force lvra).(j)))
car
let check_inductive_codomain env p =
let absctx, ar = dest_lam_assum env p in
let env = push_rel_context absctx env in
let arctx, s = dest_prod_assum env ar in
let env = push_rel_context arctx env in
let i,l' = decompose_app (whd_betadeltaiota env s) in
isInd i
(* The following functions are almost duplicated from indtypes.ml, except
that they carry here a poorer environment (containing less information). *)
let ienv_push_var (env, lra) (x,a,ra) =
(push_rel (x,None,a) env, (Norec,ra)::lra)
let ienv_push_inductive (env, ra_env) ((mind,u),lpar) =
let mib = Environ.lookup_mind mind env in
let ntypes = mib.mind_ntypes in
let push_ind specif env =
push_rel (Anonymous,None,
hnf_prod_applist env (type_of_inductive env ((mib,specif),u)) lpar) env
in
let env = Array.fold_right push_ind mib.mind_packets env in
let rc = Array.mapi (fun j t -> (Imbr (mind,j),t)) (Rtree.mk_rec_calls ntypes) in
let lra_ind = Array.rev_to_list rc in
let ra_env = List.map (fun (r,t) -> (r,Rtree.lift ntypes t)) ra_env in
(env, lra_ind @ ra_env)
let rec ienv_decompose_prod (env,_ as ienv) n c =
if Int.equal n 0 then (ienv,c) else
let c' = whd_betadeltaiota env c in
match kind_of_term c' with
Prod(na,a,b) ->
let ienv' = ienv_push_var ienv (na,a,mk_norec) in
ienv_decompose_prod ienv' (n-1) b
| _ -> assert false
let lambda_implicit_lift n a =
let level = Level.make (DirPath.make [Id.of_string "implicit"]) 0 in
let implicit_sort = mkType (Universe.make level) in
let lambda_implicit a = mkLambda (Anonymous, implicit_sort, a) in
iterate lambda_implicit n (lift n a)
(* This removes global parameters of the inductive types in lc (for
nested inductive types only ) *)
let abstract_mind_lc ntyps npars lc =
if Int.equal npars 0 then
lc
else
let make_abs =
List.init ntyps
(function i -> lambda_implicit_lift npars (mkRel (i+1)))
in
Array.map (substl make_abs) lc
(* [get_recargs_approx env tree ind args] builds an approximation of the recargs
tree for ind, knowing args. The argument tree is used to know when candidate
nested types should be traversed, pruning the tree otherwise. This code is very
close to check_positive in indtypes.ml, but does no positivity check and does not
compute the number of recursive arguments. *)
let get_recargs_approx env tree ind args =
let rec build_recargs (env, ra_env as ienv) tree c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
assert (List.is_empty largs);
build_recargs (ienv_push_var ienv (na, b, mk_norec)) tree d
| Rel k ->
(* Free variables are allowed and assigned Norec *)
(try snd (List.nth ra_env (k-1))
with Failure _ | Invalid_argument _ -> mk_norec)
| Ind ind_kn ->
(* When the inferred tree allows it, we consider that we have a potential
nested inductive type *)
begin match dest_recarg tree with
| Imbr kn' | Mrec kn' when eq_ind (fst ind_kn) kn' ->
build_recargs_nested ienv tree (ind_kn, largs)
| _ -> mk_norec
end
| err ->
mk_norec
and build_recargs_nested (env,ra_env as ienv) tree (((mind,i),u), largs) =
(* If the inferred tree already disallows recursion, no need to go further *)
if eq_wf_paths tree mk_norec then tree
else
let mib = Environ.lookup_mind mind env in
let auxnpar = mib.mind_nparams_rec in
let nonrecpar = mib.mind_nparams - auxnpar in
let (lpar,_) = List.chop auxnpar largs in
let auxntyp = mib.mind_ntypes in
(* Extends the environment with a variable corresponding to
the inductive def *)
let (env',_ as ienv') = ienv_push_inductive ienv ((mind,u),lpar) in
(* Parameters expressed in env' *)
let lpar' = List.map (lift auxntyp) lpar in
(* In case of mutual inductive types, we use the recargs tree which was
computed statically. This is fine because nested inductive types with
mutually recursive containers are not supported. *)
let trees =
if Int.equal auxntyp 1 then [|dest_subterms tree|]
else Array.map (fun mip -> dest_subterms mip.mind_recargs) mib.mind_packets
in
let mk_irecargs j specif =
(* The nested inductive type with parameters removed *)
let auxlcvect = abstract_mind_lc auxntyp auxnpar specif.mind_nf_lc in
let paths = Array.mapi
(fun k c ->
let c' = hnf_prod_applist env' c lpar' in
(* skip non-recursive parameters *)
let (ienv',c') = ienv_decompose_prod ienv' nonrecpar c' in
build_recargs_constructors ienv' trees.(j).(k) c')
auxlcvect
in
mk_paths (Imbr (mind,j)) paths
in
let irecargs = Array.mapi mk_irecargs mib.mind_packets in
(Rtree.mk_rec irecargs).(i)
and build_recargs_constructors ienv trees c =
let rec recargs_constr_rec (env,ra_env as ienv) trees lrec c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
let recarg = build_recargs ienv (List.hd trees) b in
let ienv' = ienv_push_var ienv (na,b,mk_norec) in
recargs_constr_rec ienv' (List.tl trees) (recarg::lrec) d
| hd ->
List.rev lrec
in
recargs_constr_rec ienv trees [] c
in
(* starting with ra_env = [] seems safe because any unbounded Rel will be
assigned Norec *)
build_recargs_nested (env,[]) tree (ind, args)
(* [restrict_spec env spec p] restricts the size information in spec to what is
allowed to flow through a match with predicate p in environment env. *)
let restrict_spec env spec p =
if spec = Not_subterm then spec
else let absctx, ar = dest_lam_assum env p in
(* Optimization: if the predicate is not dependent, no restriction is needed
and we avoid building the recargs tree. *)
if noccur_with_meta 1 (rel_context_length absctx) ar then spec
else
let env = push_rel_context absctx env in
let arctx, s = dest_prod_assum env ar in
let env = push_rel_context arctx env in
let i,args = decompose_app (whd_betadeltaiota env s) in
match kind_of_term i with
| Ind i ->
begin match spec with
| Dead_code -> spec
| Subterm(st,tree) ->
let recargs = get_recargs_approx env tree i args in
let recargs = inter_wf_paths tree recargs in
Subterm(st,recargs)
| _ -> assert false
end
| _ -> Not_subterm
(* [subterm_specif renv t] computes the recursive structure of [t] and
compare its size with the size of the initial recursive argument of
the fixpoint we are checking. [renv] collects such information
about variables.
*)
let rec subterm_specif renv stack t =
(* maybe reduction is not always necessary! *)
let f,l = decompose_app (whd_betadeltaiota renv.env t) in
match kind_of_term f with
| Rel k -> subterm_var k renv
| Case (ci,p,c,lbr) ->
let stack' = push_stack_closures renv l stack in
let cases_spec =
branches_specif renv (lazy_subterm_specif renv [] c) ci
in
let stl =
Array.mapi (fun i br' ->
let stack_br = push_stack_args (cases_spec.(i)) stack' in
subterm_specif renv stack_br br')
lbr in
let spec = subterm_spec_glb stl in
restrict_spec renv.env spec p
| Fix ((recindxs,i),(_,typarray,bodies as recdef)) ->
(* when proving that the fixpoint f(x)=e is less than n, it is enough
to prove that e is less than n assuming f is less than n
furthermore when f is applied to a term which is strictly less than
n, one may assume that x itself is strictly less than n
*)
if not (check_inductive_codomain renv.env typarray.(i)) then Not_subterm
else
let (ctxt,clfix) = dest_prod renv.env typarray.(i) in
let oind =
let env' = push_rel_context ctxt renv.env in
try Some(fst(find_inductive env' clfix))
with Not_found -> None in
(match oind with
None -> Not_subterm (* happens if fix is polymorphic *)
| Some (ind, _) ->
let nbfix = Array.length typarray in
let recargs = lookup_subterms renv.env ind in
(* pushing the fixpoints *)
let renv' = push_fix_renv renv recdef in
let renv' =
(* Why Strict here ? To be general, it could also be
Large... *)
assign_var_spec renv'
(nbfix-i, lazy (Subterm(Strict,recargs))) in
let decrArg = recindxs.(i) in
let theBody = bodies.(i) in
let nbOfAbst = decrArg+1 in
let sign,strippedBody = decompose_lam_n_assum nbOfAbst theBody in
(* pushing the fix parameters *)
let stack' = push_stack_closures renv l stack in
let renv'' = push_ctxt_renv renv' sign in
let renv'' =
if List.length stack' < nbOfAbst then renv''
else
let decrArg = List.nth stack' decrArg in
let arg_spec = stack_element_specif decrArg in
assign_var_spec renv'' (1, arg_spec) in
subterm_specif renv'' [] strippedBody)
| Lambda (x,a,b) ->
let () = assert (List.is_empty l) in
let spec,stack' = extract_stack renv a stack in
subterm_specif (push_var renv (x,a,spec)) stack' b
(* Metas and evars are considered OK *)
| (Meta _|Evar _) -> Dead_code
| Proj (p, c) ->
let subt = subterm_specif renv stack c in
(match subt with
| Subterm (s, wf) -> Subterm (Strict, wf)
| Dead_code -> Dead_code
| Not_subterm -> Not_subterm)
(* Other terms are not subterms *)
| _ -> Not_subterm
and lazy_subterm_specif renv stack t =
lazy (subterm_specif renv stack t)
and stack_element_specif = function
|SClosure (h_renv,h) -> lazy_subterm_specif h_renv [] h
|SArg x -> x
and extract_stack renv a = function
| [] -> Lazy.lazy_from_val Not_subterm , []
| h::t -> stack_element_specif h, t
(* Check term c can be applied to one of the mutual fixpoints. *)
let check_is_subterm x tree =
match Lazy.force x with
| Subterm (Strict,tree') -> incl_wf_paths tree tree'
| Dead_code -> true
| _ -> false
(************************************************************************)
exception FixGuardError of env * guard_error
let error_illegal_rec_call renv fx (arg_renv,arg) =
let (_,le_vars,lt_vars) =
List.fold_left
(fun (i,le,lt) sbt ->
match Lazy.force sbt with
(Subterm(Strict,_) | Dead_code) -> (i+1, le, i::lt)
| (Subterm(Large,_)) -> (i+1, i::le, lt)
| _ -> (i+1, le ,lt))
(1,[],[]) renv.genv in
raise (FixGuardError (renv.env,
RecursionOnIllegalTerm(fx,(arg_renv.env, arg),
le_vars,lt_vars)))
let error_partial_apply renv fx =
raise (FixGuardError (renv.env,NotEnoughArgumentsForFixCall fx))
let filter_stack_domain env ci p stack =
let absctx, ar = dest_lam_assum env p in
(* Optimization: if the predicate is not dependent, no restriction is needed
and we avoid building the recargs tree. *)
if noccur_with_meta 1 (rel_context_length absctx) ar then stack
else let env = push_rel_context absctx env in
let rec filter_stack env ar stack =
let t = whd_betadeltaiota env ar in
match stack, kind_of_term t with
| elt :: stack', Prod (n,a,c0) ->
let d = (n,None,a) in
let ty, args = decompose_app (whd_betadeltaiota env a) in
let elt = match kind_of_term ty with
| Ind ind ->
let spec' = stack_element_specif elt in
(match (Lazy.force spec') with
| Not_subterm | Dead_code -> elt
| Subterm(s,path) ->
let recargs = get_recargs_approx env path ind args in
let path = inter_wf_paths path recargs in
SArg (lazy (Subterm(s,path))))
| _ -> (SArg (lazy Not_subterm))
in
elt :: filter_stack (push_rel d env) c0 stack'
| _,_ -> List.fold_right (fun _ l -> SArg (lazy Not_subterm) :: l) stack []
in
filter_stack env ar stack
(* Check if [def] is a guarded fixpoint body with decreasing arg.
given [recpos], the decreasing arguments of each mutually defined
fixpoint. *)
let check_one_fix renv recpos trees def =
let nfi = Array.length recpos in
(* Checks if [t] only make valid recursive calls
[stack] is the list of constructor's argument specification and
arguments that will be applied after reduction.
example u in t where we have (match .. with |.. => t end) u *)
let rec check_rec_call renv stack t =
(* if [t] does not make recursive calls, it is guarded: *)
if noccur_with_meta renv.rel_min nfi t then ()
else
let (f,l) = decompose_app (whd_betaiotazeta renv.env t) in
match kind_of_term f with
| Rel p ->
(* Test if [p] is a fixpoint (recursive call) *)
if renv.rel_min <= p && p < renv.rel_min+nfi then
begin
List.iter (check_rec_call renv []) l;
(* the position of the invoked fixpoint: *)
let glob = renv.rel_min+nfi-1-p in
(* the decreasing arg of the rec call: *)
let np = recpos.(glob) in
let stack' = push_stack_closures renv l stack in
if List.length stack' <= np then error_partial_apply renv glob
else
(* Retrieve the expected tree for the argument *)
(* Check the decreasing arg is smaller *)
let z = List.nth stack' np in
if not (check_is_subterm (stack_element_specif z) trees.(glob)) then
begin match z with
|SClosure (z,z') -> error_illegal_rec_call renv glob (z,z')
|SArg _ -> error_partial_apply renv glob
end
end
else
begin
match pi2 (lookup_rel p renv.env) with
| None ->
List.iter (check_rec_call renv []) l
| Some c ->
try List.iter (check_rec_call renv []) l
with FixGuardError _ ->
check_rec_call renv stack (applist(lift p c,l))
end
| Case (ci,p,c_0,lrest) ->
List.iter (check_rec_call renv []) (c_0::p::l);
(* compute the recarg information for the arguments of
each branch *)
let case_spec = branches_specif renv
(lazy_subterm_specif renv [] c_0) ci in
let stack' = push_stack_closures renv l stack in
let stack' = filter_stack_domain renv.env ci p stack' in
Array.iteri (fun k br' ->
let stack_br = push_stack_args case_spec.(k) stack' in
check_rec_call renv stack_br br') lrest
(* Enables to traverse Fixpoint definitions in a more intelligent
way, ie, the rule :
if - g = fix g (y1:T1)...(yp:Tp) {struct yp} := e &
- f is guarded with respect to the set of pattern variables S
in a1 ... am &
- f is guarded with respect to the set of pattern variables S
in T1 ... Tp &
- ap is a sub-term of the formal argument of f &
- f is guarded with respect to the set of pattern variables
S+{yp} in e
then f is guarded with respect to S in (g a1 ... am).
Eduardo 7/9/98 *)
| Fix ((recindxs,i),(_,typarray,bodies as recdef)) ->
List.iter (check_rec_call renv []) l;
Array.iter (check_rec_call renv []) typarray;
let decrArg = recindxs.(i) in
let renv' = push_fix_renv renv recdef in
let stack' = push_stack_closures renv l stack in
Array.iteri
(fun j body ->
if Int.equal i j && (List.length stack' > decrArg) then
let recArg = List.nth stack' decrArg in
let arg_sp = stack_element_specif recArg in
check_nested_fix_body renv' (decrArg+1) arg_sp body
else check_rec_call renv' [] body)
bodies
| Const (kn,u as cu) ->
if evaluable_constant kn renv.env then
try List.iter (check_rec_call renv []) l
with (FixGuardError _ ) ->
let value = (applist(constant_value_in renv.env cu, l)) in
check_rec_call renv stack value
else List.iter (check_rec_call renv []) l
| Lambda (x,a,b) ->
let () = assert (List.is_empty l) in
check_rec_call renv [] a ;
let spec, stack' = extract_stack renv a stack in
check_rec_call (push_var renv (x,a,spec)) stack' b
| Prod (x,a,b) ->
let () = assert (List.is_empty l && List.is_empty stack) in
check_rec_call renv [] a;
check_rec_call (push_var_renv renv (x,a)) [] b
| CoFix (i,(_,typarray,bodies as recdef)) ->
List.iter (check_rec_call renv []) l;
Array.iter (check_rec_call renv []) typarray;
let renv' = push_fix_renv renv recdef in
Array.iter (check_rec_call renv' []) bodies
| (Ind _ | Construct _) ->
List.iter (check_rec_call renv []) l
| Var id ->
begin
match pi2 (lookup_named id renv.env) with
| None ->
List.iter (check_rec_call renv []) l
| Some c ->
try List.iter (check_rec_call renv []) l
with (FixGuardError _) ->
check_rec_call renv stack (applist(c,l))
end
| Sort _ ->
assert (List.is_empty l)
(* l is not checked because it is considered as the meta's context *)
| (Evar _ | Meta _) -> ()
| (App _ | LetIn _ | Cast _) -> assert false (* beta zeta reduction *)
| Proj (p, c) -> check_rec_call renv [] c
and check_nested_fix_body renv decr recArgsDecrArg body =
if Int.equal decr 0 then
check_rec_call (assign_var_spec renv (1,recArgsDecrArg)) [] body
else
match kind_of_term body with
| Lambda (x,a,b) ->
check_rec_call renv [] a;
let renv' = push_var_renv renv (x,a) in
check_nested_fix_body renv' (decr-1) recArgsDecrArg b
| _ -> anomaly (Pp.str "Not enough abstractions in fix body")
in
check_rec_call renv [] def
let judgment_of_fixpoint (_, types, bodies) =
Array.map2 (fun typ body -> { uj_val = body ; uj_type = typ }) types bodies
let inductive_of_mutfix env ((nvect,bodynum),(names,types,bodies as recdef)) =
let nbfix = Array.length bodies in
if Int.equal nbfix 0
|| not (Int.equal (Array.length nvect) nbfix)
|| not (Int.equal (Array.length types) nbfix)
|| not (Int.equal (Array.length names) nbfix)
|| bodynum < 0
|| bodynum >= nbfix
then anomaly (Pp.str "Ill-formed fix term");
let fixenv = push_rec_types recdef env in
let vdefj = judgment_of_fixpoint recdef in
let raise_err env i err =
error_ill_formed_rec_body env err names i fixenv vdefj in
(* Check the i-th definition with recarg k *)
let find_ind i k def =
(* check fi does not appear in the k+1 first abstractions,
gives the type of the k+1-eme abstraction (must be an inductive) *)
let rec check_occur env n def =
match kind_of_term (whd_betadeltaiota env def) with
| Lambda (x,a,b) ->
if noccur_with_meta n nbfix a then
let env' = push_rel (x, None, a) env in
if Int.equal n (k + 1) then
(* get the inductive type of the fixpoint *)
let (mind, _) =
try find_inductive env a
with Not_found ->
raise_err env i (RecursionNotOnInductiveType a) in
(mind, (env', b))
else check_occur env' (n+1) b
else anomaly ~label:"check_one_fix" (Pp.str "Bad occurrence of recursive call")
| _ -> raise_err env i NotEnoughAbstractionInFixBody in
check_occur fixenv 1 def in
(* Do it on every fixpoint *)
let rv = Array.map2_i find_ind nvect bodies in
(Array.map fst rv, Array.map snd rv)
let check_fix env ((nvect,_),(names,_,bodies as recdef) as fix) =
let (minds, rdef) = inductive_of_mutfix env fix in
let get_tree (kn,i) =
let mib = Environ.lookup_mind kn env in
mib.mind_packets.(i).mind_recargs
in
let trees = Array.map (fun (mind,_) -> get_tree mind) minds in
for i = 0 to Array.length bodies - 1 do
let (fenv,body) = rdef.(i) in
let renv = make_renv fenv nvect.(i) trees.(i) in
try check_one_fix renv nvect trees body
with FixGuardError (fixenv,err) ->
error_ill_formed_rec_body fixenv err names i
(push_rec_types recdef env) (judgment_of_fixpoint recdef)
done
(*
let cfkey = Profile.declare_profile "check_fix";;
let check_fix env fix = Profile.profile3 cfkey check_fix env fix;;
*)
(************************************************************************)
(* Co-fixpoints. *)
exception CoFixGuardError of env * guard_error
let anomaly_ill_typed () =
anomaly ~label:"check_one_cofix" (Pp.str "too many arguments applied to constructor")
let rec codomain_is_coind env c =
let b = whd_betadeltaiota env c in
match kind_of_term b with
| Prod (x,a,b) ->
codomain_is_coind (push_rel (x, None, a) env) b
| _ ->
(try find_coinductive env b
with Not_found ->
raise (CoFixGuardError (env, CodomainNotInductiveType b)))
let check_one_cofix env nbfix def deftype =
let rec check_rec_call env alreadygrd n tree vlra t =
if not (noccur_with_meta n nbfix t) then
let c,args = decompose_app (whd_betadeltaiota env t) in
match kind_of_term c with
| Rel p when n <= p && p < n+nbfix ->
(* recursive call: must be guarded and no nested recursive
call allowed *)
if not alreadygrd then
raise (CoFixGuardError (env,UnguardedRecursiveCall t))
else if not(List.for_all (noccur_with_meta n nbfix) args) then
raise (CoFixGuardError (env,NestedRecursiveOccurrences))
| Construct ((_,i as cstr_kn),u) ->
let lra = vlra.(i-1) in
let mI = inductive_of_constructor cstr_kn in
let (mib,mip) = lookup_mind_specif env mI in
let realargs = List.skipn mib.mind_nparams args in
let rec process_args_of_constr = function
| (t::lr), (rar::lrar) ->
if eq_wf_paths rar mk_norec then
if noccur_with_meta n nbfix t
then process_args_of_constr (lr, lrar)
else raise (CoFixGuardError
(env,RecCallInNonRecArgOfConstructor t))
else begin
check_rec_call env true n rar (dest_subterms rar) t;
process_args_of_constr (lr, lrar)
end
| [],_ -> ()
| _ -> anomaly_ill_typed ()
in process_args_of_constr (realargs, lra)
| Lambda (x,a,b) ->
let () = assert (List.is_empty args) in
if noccur_with_meta n nbfix a then
let env' = push_rel (x, None, a) env in
check_rec_call env' alreadygrd (n+1) tree vlra b
else
raise (CoFixGuardError (env,RecCallInTypeOfAbstraction a))
| CoFix (j,(_,varit,vdefs as recdef)) ->
if List.for_all (noccur_with_meta n nbfix) args
then
if Array.for_all (noccur_with_meta n nbfix) varit then
let nbfix = Array.length vdefs in
let env' = push_rec_types recdef env in
(Array.iter (check_rec_call env' alreadygrd (n+nbfix) tree vlra) vdefs;
List.iter (check_rec_call env alreadygrd n tree vlra) args)
else
raise (CoFixGuardError (env,RecCallInTypeOfDef c))
else
raise (CoFixGuardError (env,UnguardedRecursiveCall c))
| Case (_,p,tm,vrest) ->
begin
let tree = match restrict_spec env (Subterm (Strict, tree)) p with
| Dead_code -> assert false
| Subterm (_, tree') -> tree'
| _ -> raise (CoFixGuardError (env, ReturnPredicateNotCoInductive c))
in
if (noccur_with_meta n nbfix p) then
if (noccur_with_meta n nbfix tm) then
if (List.for_all (noccur_with_meta n nbfix) args) then
let vlra = dest_subterms tree in
Array.iter (check_rec_call env alreadygrd n tree vlra) vrest
else
raise (CoFixGuardError (env,RecCallInCaseFun c))
else
raise (CoFixGuardError (env,RecCallInCaseArg c))
else
raise (CoFixGuardError (env,RecCallInCasePred c))
end
| Meta _ -> ()
| Evar _ ->
List.iter (check_rec_call env alreadygrd n tree vlra) args
| _ -> raise (CoFixGuardError (env,NotGuardedForm t)) in
let ((mind, _),_) = codomain_is_coind env deftype in
let vlra = lookup_subterms env mind in
check_rec_call env false 1 vlra (dest_subterms vlra) def
(* The function which checks that the whole block of definitions
satisfies the guarded condition *)
let check_cofix env (bodynum,(names,types,bodies as recdef)) =
let nbfix = Array.length bodies in
for i = 0 to nbfix-1 do
let fixenv = push_rec_types recdef env in
try check_one_cofix fixenv nbfix bodies.(i) types.(i)
with CoFixGuardError (errenv,err) ->
error_ill_formed_rec_body errenv err names i
fixenv (judgment_of_fixpoint recdef)
done
|