1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Names
open Univ
open Term
open Declarations
open Inductive
open Sign
open Environ
open Reduction
open Typeops
open Entries
(* Same as noccur_between but may perform reductions.
Could be refined more... *)
let weaker_noccur_between env x nvars t =
if noccur_between x nvars t then Some t
else
let t' = whd_betadeltaiota env t in
if noccur_between x nvars t' then Some t'
else None
let is_constructor_head t =
isRel(fst(decompose_app t))
(************************************************************************)
(* Various well-formedness check for inductive declarations *)
(* Errors related to inductive constructions *)
type inductive_error =
| NonPos of env * constr * constr
| NotEnoughArgs of env * constr * constr
| NotConstructor of env * constr * constr
| NonPar of env * constr * int * constr * constr
| SameNamesTypes of identifier
| SameNamesConstructors of identifier
| SameNamesOverlap of identifier list
| NotAnArity of identifier
| BadEntry
exception InductiveError of inductive_error
(* [check_constructors_names id s cl] checks that all the constructors names
appearing in [l] are not present in the set [s], and returns the new set
of names. The name [id] is the name of the current inductive type, used
when reporting the error. *)
let check_constructors_names =
let rec check idset = function
| [] -> idset
| c::cl ->
if Idset.mem c idset then
raise (InductiveError (SameNamesConstructors c))
else
check (Idset.add c idset) cl
in
check
(* [mind_check_names mie] checks the names of an inductive types declaration,
and raises the corresponding exceptions when two types or two constructors
have the same name. *)
let mind_check_names mie =
let rec check indset cstset = function
| [] -> ()
| ind::inds ->
let id = ind.mind_entry_typename in
let cl = ind.mind_entry_consnames in
if Idset.mem id indset then
raise (InductiveError (SameNamesTypes id))
else
let cstset' = check_constructors_names cstset cl in
check (Idset.add id indset) cstset' inds
in
check Idset.empty Idset.empty mie.mind_entry_inds
(* The above verification is not necessary from the kernel point of
vue since inductive and constructors are not referred to by their
name, but only by the name of the inductive packet and an index. *)
let mind_check_arities env mie =
let check_arity id c =
if not (is_arity env c) then
raise (InductiveError (NotAnArity id))
in
List.iter
(fun {mind_entry_typename=id; mind_entry_arity=ar} -> check_arity id ar)
mie.mind_entry_inds
(************************************************************************)
(************************************************************************)
(* Typing the arities and constructor types *)
let is_logic_type t = (t.utj_type = mk_Prop)
(* [infos] is a sequence of pair [islogic,issmall] for each type in
the product of a constructor or arity *)
let is_small infos = List.for_all (fun (logic,small) -> small) infos
let is_logic_constr infos = List.for_all (fun (logic,small) -> logic) infos
(* An inductive definition is a "unit" if it has only one constructor
and that all arguments expected by this constructor are
logical, this is the case for equality, conjunction of logical properties
*)
let is_unit constrsinfos =
match constrsinfos with (* One info = One constructor *)
| [constrinfos] -> is_logic_constr constrinfos
| [] -> (* type without constructors *) true
| _ -> false
let rec infos_and_sort env t =
let t = whd_betadeltaiota env t in
match kind_of_term t with
| Prod (name,c1,c2) ->
let (varj,_) = infer_type env c1 in
let env1 = Environ.push_rel (name,None,varj.utj_val) env in
let logic = is_logic_type varj in
let small = Term.is_small varj.utj_type in
(logic,small) :: (infos_and_sort env1 c2)
| _ when is_constructor_head t -> []
| _ -> anomaly "infos_and_sort: not a positive constructor"
let small_unit constrsinfos =
let issmall = List.for_all is_small constrsinfos
and isunit = is_unit constrsinfos in
issmall, isunit
(* Computing the levels of polymorphic inductive types
For each inductive type of a block that is of level u_i, we have
the constraints that u_i >= v_i where v_i is the type level of the
types of the constructors of this inductive type. Each v_i depends
of some of the u_i and of an extra (maybe non variable) universe,
say w_i that summarize all the other constraints. Typically, for
three inductive types, we could have
u1,u2,u3,w1 <= u1
u1 w2 <= u2
u2,u3,w3 <= u3
From this system of inequations, we shall deduce
w1,w2,w3 <= u1
w1,w2 <= u2
w1,w2,w3 <= u3
*)
let extract_level (_,_,_,lc,lev) =
(* Enforce that the level is not in Prop if more than two constructors *)
if Array.length lc >= 2 then sup base_univ lev else lev
let inductive_levels arities inds =
let levels = Array.map pi3 arities in
let cstrs_levels = Array.map extract_level inds in
(* Take the transitive closure of the system of constructors *)
(* level constraints and remove the recursive dependencies *)
solve_constraints_system levels cstrs_levels
(* This (re)computes informations relevant to extraction and the sort of an
arity or type constructor; we do not to recompute universes constraints *)
let constraint_list_union =
List.fold_left Constraint.union Constraint.empty
let infer_constructor_packet env_ar params lc =
(* builds the typing context "Gamma, I1:A1, ... In:An, params" *)
let env_ar_par = push_rel_context params env_ar in
(* type-check the constructors *)
let jlc,cstl = List.split (List.map (infer_type env_ar_par) lc) in
let cst = constraint_list_union cstl in
let jlc = Array.of_list jlc in
(* generalize the constructor over the parameters *)
let lc'' = Array.map (fun j -> it_mkProd_or_LetIn j.utj_val params) jlc in
(* compute the max of the sorts of the products of the constructor type *)
let level = max_inductive_sort (Array.map (fun j -> j.utj_type) jlc) in
(* compute *)
let info = small_unit (List.map (infos_and_sort env_ar_par) lc) in
(info,lc'',level,cst)
(* Type-check an inductive definition. Does not check positivity
conditions. *)
let typecheck_inductive env mie =
if mie.mind_entry_inds = [] then anomaly "empty inductive types declaration";
(* Check unicity of names *)
mind_check_names mie;
mind_check_arities env mie;
(* Params are typed-checked here *)
let env_params, params, cst1 = infer_local_decls env mie.mind_entry_params in
(* We first type arity of each inductive definition *)
(* This allows to build the environment of arities and to share *)
(* the set of constraints *)
let cst, env_arities, rev_arity_list =
List.fold_left
(fun (cst,env_ar,l) ind ->
(* Arities (without params) are typed-checked here *)
let arity, cst2 = infer_type env_params ind.mind_entry_arity in
(* We do not need to generate the universe of full_arity; if
later, after the validation of the inductive definition,
full_arity is used as argument or subject to cast, an
upper universe will be generated *)
let full_arity = it_mkProd_or_LetIn arity.utj_val params in
let cst = Constraint.union cst cst2 in
let id = ind.mind_entry_typename in
let env_ar' = push_rel (Name id, None, full_arity) env_ar in
let lev =
(* Decide that if the conclusion is not explicitly Type *)
(* then the inductive type is not polymorphic *)
match kind_of_term (snd (decompose_prod_assum arity.utj_val)) with
| Sort (Type u) -> Some u
| _ -> None in
(cst,env_ar',(id,full_arity,lev)::l))
(cst1,env,[])
mie.mind_entry_inds in
let arity_list = List.rev rev_arity_list in
(* Now, we type the constructors (without params) *)
let inds,cst =
List.fold_right2
(fun ind arity_data (inds,cst) ->
let (info,lc',cstrs_univ,cst') =
infer_constructor_packet env_arities params ind.mind_entry_lc in
let consnames = ind.mind_entry_consnames in
let ind' = (arity_data,consnames,info,lc',cstrs_univ) in
(ind'::inds, Constraint.union cst cst'))
mie.mind_entry_inds
arity_list
([],cst) in
let inds = Array.of_list inds in
let arities = Array.of_list arity_list in
let param_ccls = List.fold_left (fun l (_,b,p) ->
if b = None then
let _,c = dest_prod_assum env p in
let u = match kind_of_term c with Sort (Type u) -> Some u | _ -> None in
u::l
else
l) [] params in
(* Compute/check the sorts of the inductive types *)
let ind_min_levels = inductive_levels arities inds in
let inds, cst =
array_fold_map2' (fun ((id,full_arity,ar_level),cn,info,lc,_) lev cst ->
let sign, s = dest_arity env full_arity in
let status,cst = match s with
| Type _ when ar_level <> None (* Explicitly polymorphic *) ->
(* The polymorphic level is a function of the level of the *)
(* conclusions of the parameters *)
Inr (param_ccls, lev), cst
| Type u (* Not an explicit occurrence of Type *) ->
Inl (info,full_arity,s), enforce_geq u lev cst
| Prop Pos when engagement env <> Some ImpredicativeSet ->
(* Predicative set: check that the content is indeed predicative *)
if not (is_empty_univ lev) & not (is_base_univ lev) then
error "Large non-propositional inductive types must be in Type";
Inl (info,full_arity,s), cst
| Prop _ ->
Inl (info,full_arity,s), cst in
(id,cn,lc,(sign,status)),cst)
inds ind_min_levels cst in
(env_arities, params, inds, cst)
(************************************************************************)
(************************************************************************)
(* Positivity *)
type ill_formed_ind =
| LocalNonPos of int
| LocalNotEnoughArgs of int
| LocalNotConstructor
| LocalNonPar of int * int
exception IllFormedInd of ill_formed_ind
(* [mind_extract_params mie] extracts the params from an inductive types
declaration, and checks that they are all present (and all the same)
for all the given types. *)
let mind_extract_params = decompose_prod_n_assum
let explain_ind_err ntyp env0 nbpar c err =
let (lpar,c') = mind_extract_params nbpar c in
let env = push_rel_context lpar env0 in
match err with
| LocalNonPos kt ->
raise (InductiveError (NonPos (env,c',mkRel (kt+nbpar))))
| LocalNotEnoughArgs kt ->
raise (InductiveError
(NotEnoughArgs (env,c',mkRel (kt+nbpar))))
| LocalNotConstructor ->
raise (InductiveError
(NotConstructor (env,c',mkRel (ntyp+nbpar))))
| LocalNonPar (n,l) ->
raise (InductiveError
(NonPar (env,c',n,mkRel (nbpar-n+1), mkRel (l+nbpar))))
let failwith_non_pos n ntypes c =
for k = n to n + ntypes - 1 do
if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1)))
done
let failwith_non_pos_vect n ntypes v =
Array.iter (failwith_non_pos n ntypes) v;
anomaly "failwith_non_pos_vect: some k in [n;n+ntypes-1] should occur"
let failwith_non_pos_list n ntypes l =
List.iter (failwith_non_pos n ntypes) l;
anomaly "failwith_non_pos_list: some k in [n;n+ntypes-1] should occur"
(* Check the inductive type is called with the expected parameters *)
let check_correct_par (env,n,ntypes,_) hyps l largs =
let nparams = rel_context_nhyps hyps in
let largs = Array.of_list largs in
if Array.length largs < nparams then
raise (IllFormedInd (LocalNotEnoughArgs l));
let (lpar,largs') = array_chop nparams largs in
let nhyps = List.length hyps in
let rec check k index = function
| [] -> ()
| (_,Some _,_)::hyps -> check k (index+1) hyps
| _::hyps ->
match kind_of_term (whd_betadeltaiota env lpar.(k)) with
| Rel w when w = index -> check (k-1) (index+1) hyps
| _ -> raise (IllFormedInd (LocalNonPar (k+1,l)))
in check (nparams-1) (n-nhyps) hyps;
if not (array_for_all (noccur_between n ntypes) largs') then
failwith_non_pos_vect n ntypes largs'
(* Computes the maximum number of recursive parameters :
the first parameters which are constant in recursive arguments
n is the current depth, nmr is the maximum number of possible
recursive parameters *)
let compute_rec_par (env,n,_,_) hyps nmr largs =
if nmr = 0 then 0 else
(* start from 0, hyps will be in reverse order *)
let (lpar,_) = list_chop nmr largs in
let rec find k index =
function
([],_) -> nmr
| (_,[]) -> assert false (* |hyps|>=nmr *)
| (lp,(_,Some _,_)::hyps) -> find k (index-1) (lp,hyps)
| (p::lp,_::hyps) ->
( match kind_of_term (whd_betadeltaiota env p) with
| Rel w when w = index -> find (k+1) (index-1) (lp,hyps)
| _ -> k)
in find 0 (n-1) (lpar,List.rev hyps)
(* This removes global parameters of the inductive types in lc (for
nested inductive types only ) *)
let abstract_mind_lc env ntyps npars lc =
if npars = 0 then
lc
else
let make_abs =
list_tabulate
(function i -> lambda_implicit_lift npars (mkRel (i+1))) ntyps
in
Array.map (substl make_abs) lc
(* [env] is the typing environment
[n] is the dB of the last inductive type
[ntypes] is the number of inductive types in the definition
(i.e. range of inductives is [n; n+ntypes-1])
[lra] is the list of recursive tree of each variable
*)
let ienv_push_var (env, n, ntypes, lra) (x,a,ra) =
(push_rel (x,None,a) env, n+1, ntypes, (Norec,ra)::lra)
let ienv_push_inductive (env, n, ntypes, ra_env) (mi,lpar) =
let auxntyp = 1 in
let specif = lookup_mind_specif env mi in
let env' =
push_rel (Anonymous,None,
hnf_prod_applist env (type_of_inductive env specif) lpar) env in
let ra_env' =
(Imbr mi,Rtree.mk_param 0) ::
List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in
(* New index of the inductive types *)
let newidx = n + auxntyp in
(env', newidx, ntypes, ra_env')
let array_min nmr a = if nmr = 0 then 0 else
Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a
(* The recursive function that checks positivity and builds the list
of recursive arguments *)
let check_positivity_one (env, _,ntypes,_ as ienv) hyps i indlc =
let lparams = rel_context_length hyps in
let nmr = rel_context_nhyps hyps in
(* check the inductive types occur positively in [c] *)
let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
assert (largs = []);
(match weaker_noccur_between env n ntypes b with
None -> failwith_non_pos_list n ntypes [b]
| Some b ->
check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d)
| Rel k ->
(try let (ra,rarg) = List.nth ra_env (k-1) in
let nmr1 =
(match ra with
Mrec _ -> compute_rec_par ienv hyps nmr largs
| _ -> nmr)
in
if not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
else (nmr1,rarg)
with Failure _ | Invalid_argument _ -> (nmr,mk_norec))
| Ind ind_kn ->
(* If the inductive type being defined appears in a
parameter, then we have an imbricated type *)
if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec)
else check_positive_imbr ienv nmr (ind_kn, largs)
| err ->
if noccur_between n ntypes x &&
List.for_all (noccur_between n ntypes) largs
then (nmr,mk_norec)
else failwith_non_pos_list n ntypes (x::largs)
(* accesses to the environment are not factorised, but is it worth? *)
and check_positive_imbr (env,n,ntypes,ra_env as ienv) nmr (mi, largs) =
let (mib,mip) = lookup_mind_specif env mi in
let auxnpar = mib.mind_nparams_rec in
let (lpar,auxlargs) =
try list_chop auxnpar largs
with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in
(* If the inductive appears in the args (non params) then the
definition is not positive. *)
if not (List.for_all (noccur_between n ntypes) auxlargs) then
raise (IllFormedInd (LocalNonPos n));
(* We do not deal with imbricated mutual inductive types *)
let auxntyp = mib.mind_ntypes in
if auxntyp <> 1 then raise (IllFormedInd (LocalNonPos n));
(* The nested inductive type with parameters removed *)
let auxlcvect = abstract_mind_lc env auxntyp auxnpar mip.mind_nf_lc in
(* Extends the environment with a variable corresponding to
the inductive def *)
let (env',_,_,_ as ienv') = ienv_push_inductive ienv (mi,lpar) in
(* Parameters expressed in env' *)
let lpar' = List.map (lift auxntyp) lpar in
let irecargs_nmr =
(* fails if the inductive type occurs non positively *)
(* when substituted *)
Array.map
(function c ->
let c' = hnf_prod_applist env' c lpar' in
check_constructors ienv' false nmr c')
auxlcvect
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in
(nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0))
(* check the inductive types occur positively in the products of C, if
check_head=true, also check the head corresponds to a constructor of
the ith type *)
and check_constructors ienv check_head nmr c =
let rec check_constr_rec (env,n,ntypes,ra_env as ienv) nmr lrec c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
assert (largs = []);
let nmr',recarg = check_pos ienv nmr b in
let ienv' = ienv_push_var ienv (na,b,mk_norec) in
check_constr_rec ienv' nmr' (recarg::lrec) d
| hd ->
if check_head then
if hd = Rel (n+ntypes-i-1) then
check_correct_par ienv hyps (ntypes-i) largs
else
raise (IllFormedInd LocalNotConstructor)
else
if not (List.for_all (noccur_between n ntypes) largs)
then raise (IllFormedInd (LocalNonPos n));
(nmr,List.rev lrec)
in check_constr_rec ienv nmr [] c
in
let irecargs_nmr =
Array.map
(fun c ->
let _,rawc = mind_extract_params lparams c in
try
check_constructors ienv true nmr rawc
with IllFormedInd err ->
explain_ind_err (ntypes-i) env lparams c err)
indlc
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr', mk_paths (Mrec i) irecargs)
let check_positivity env_ar params inds =
let ntypes = Array.length inds in
let lra_ind =
List.rev (list_tabulate (fun j -> (Mrec j, Rtree.mk_param j)) ntypes) in
let lparams = rel_context_length params in
let nmr = rel_context_nhyps params in
let check_one i (_,_,lc,_) =
let ra_env =
list_tabulate (fun _ -> (Norec,mk_norec)) lparams @ lra_ind in
let ienv = (env_ar, 1+lparams, ntypes, ra_env) in
check_positivity_one ienv params i lc
in
let irecargs_nmr = Array.mapi check_one inds in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr',Rtree.mk_rec irecargs)
(************************************************************************)
(************************************************************************)
(* Build the inductive packet *)
(* Elimination sorts *)
let is_recursive = Rtree.is_infinite
(* let rec one_is_rec rvec =
List.exists (function Mrec(i) -> List.mem i listind
| Imbr(_,lvec) -> array_exists one_is_rec lvec
| Norec -> false) rvec
in
array_exists one_is_rec
*)
(* Allowed eliminations *)
let all_sorts = [InProp;InSet;InType]
let small_sorts = [InProp;InSet]
let logical_sorts = [InProp]
let allowed_sorts issmall isunit s =
match family_of_sort s with
(* Type: all elimination allowed *)
| InType -> all_sorts
(* Small Set is predicative: all elimination allowed *)
| InSet when issmall -> all_sorts
(* Large Set is necessarily impredicative: forbids large elimination *)
| InSet -> small_sorts
(* Unitary/empty Prop: elimination to all sorts are realizable *)
(* unless the type is large. If it is large, forbids large elimination *)
(* which otherwise allows to simulate the inconsistent system Type:Type *)
| InProp when isunit -> if issmall then all_sorts else small_sorts
(* Other propositions: elimination only to Prop *)
| InProp -> logical_sorts
let fold_inductive_blocks f =
Array.fold_left (fun acc (_,_,lc,(arsign,_)) ->
f (Array.fold_left f acc lc) (it_mkProd_or_LetIn (* dummy *) mkSet arsign))
let used_section_variables env inds =
let ids = fold_inductive_blocks
(fun l c -> Idset.union (Environ.global_vars_set env c) l)
Idset.empty inds in
keep_hyps env ids
let build_inductive env env_ar params isrecord isfinite inds nmr recargs cst =
let ntypes = Array.length inds in
(* Compute the set of used section variables *)
let hyps = used_section_variables env inds in
let nparamargs = rel_context_nhyps params in
(* Check one inductive *)
let build_one_packet (id,cnames,lc,(ar_sign,ar_kind)) recarg =
(* Type of constructors in normal form *)
let splayed_lc = Array.map (dest_prod_assum env_ar) lc in
let nf_lc = Array.map (fun (d,b) -> it_mkProd_or_LetIn b d) splayed_lc in
let nf_lc = if nf_lc = lc then lc else nf_lc in
let consnrealargs =
Array.map (fun (d,_) -> rel_context_length d - rel_context_length params)
splayed_lc in
(* Elimination sorts *)
let arkind,kelim = match ar_kind with
| Inr (param_levels,lev) ->
Polymorphic {
poly_param_levels = param_levels;
poly_level = lev;
}, all_sorts
| Inl ((issmall,isunit),ar,s) ->
let isunit = isunit && ntypes = 1 && not (is_recursive recargs.(0)) in
let kelim = allowed_sorts issmall isunit s in
Monomorphic {
mind_user_arity = ar;
mind_sort = s;
}, kelim in
let nconst, nblock = ref 0, ref 0 in
let transf num =
let arity = List.length (dest_subterms recarg).(num) in
if arity = 0 then
let p = (!nconst, 0) in
incr nconst; p
else
let p = (!nblock + 1, arity) in
incr nblock; p
(* les tag des constructeur constant commence a 0,
les tag des constructeur non constant a 1 (0 => accumulator) *)
in
let rtbl = Array.init (List.length cnames) transf in
(* Build the inductive packet *)
{ mind_typename = id;
mind_arity = arkind;
mind_arity_ctxt = ar_sign;
mind_nrealargs = rel_context_nhyps ar_sign - nparamargs;
mind_kelim = kelim;
mind_consnames = Array.of_list cnames;
mind_consnrealdecls = consnrealargs;
mind_user_lc = lc;
mind_nf_lc = nf_lc;
mind_recargs = recarg;
mind_nb_constant = !nconst;
mind_nb_args = !nblock;
mind_reloc_tbl = rtbl;
} in
let packets = array_map2 build_one_packet inds recargs in
(* Build the mutual inductive *)
{ mind_record = isrecord;
mind_ntypes = ntypes;
mind_finite = isfinite;
mind_hyps = hyps;
mind_nparams = nparamargs;
mind_nparams_rec = nmr;
mind_params_ctxt = params;
mind_packets = packets;
mind_constraints = cst;
mind_equiv = None;
}
(************************************************************************)
(************************************************************************)
let check_inductive env mie =
(* First type-check the inductive definition *)
let (env_ar, params, inds, cst) = typecheck_inductive env mie in
(* Then check positivity conditions *)
let (nmr,recargs) = check_positivity env_ar params inds in
(* Build the inductive packets *)
build_inductive env env_ar params mie.mind_entry_record mie.mind_entry_finite
inds nmr recargs cst
|