1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Names
open Univ
open Term
open Constr
open Vars
open Declarations
open Declareops
open Inductive
open Environ
open Reduction
open Typeops
open Entries
open Pp
open Context.Rel.Declaration
(* Terminology:
paramdecls (ou paramsctxt?)
args = params + realargs (called vargs when an array, largs when a list)
params = recparams + nonrecparams
nonrecargs = nonrecparams + realargs
env_ar = initial env + declaration of inductive types
env_ar_par = env_ar + declaration of parameters
nmr = ongoing computation of recursive parameters
*)
(* Tell if indices (aka real arguments) contribute to size of inductive type *)
(* If yes, this is compatible with the univalent model *)
let indices_matter = ref false
let enforce_indices_matter () = indices_matter := true
let is_indices_matter () = !indices_matter
(* [weaker_noccur_between env n nvars t] (defined above), checks that
no de Bruijn indices between [n] and [n+nvars] occur in [t]. If
some such occurrences are found, then reduction is performed
(lazily for efficiency purposes) in order to determine whether
these occurrences are occurrences in the normal form. If the
occurrences are eliminated a witness reduct [Some t'] of [t] is
returned otherwise [None] is returned. *)
let weaker_noccur_between env x nvars t =
if noccur_between x nvars t then Some t
else
let t' = whd_all env t in
if noccur_between x nvars t' then Some t'
else None
let is_constructor_head t =
isRel(fst(decompose_app t))
(************************************************************************)
(* Various well-formedness check for inductive declarations *)
(* Errors related to inductive constructions *)
type inductive_error =
| NonPos of env * constr * constr
| NotEnoughArgs of env * constr * constr
| NotConstructor of env * Id.t * constr * constr * int * int
| NonPar of env * constr * int * constr * constr
| SameNamesTypes of Id.t
| SameNamesConstructors of Id.t
| SameNamesOverlap of Id.t list
| NotAnArity of env * constr
| BadEntry
| LargeNonPropInductiveNotInType
exception InductiveError of inductive_error
(* [check_constructors_names id s cl] checks that all the constructors names
appearing in [l] are not present in the set [s], and returns the new set
of names. The name [id] is the name of the current inductive type, used
when reporting the error. *)
let check_constructors_names =
let rec check idset = function
| [] -> idset
| c::cl ->
if Id.Set.mem c idset then
raise (InductiveError (SameNamesConstructors c))
else
check (Id.Set.add c idset) cl
in
check
(* [mind_check_names mie] checks the names of an inductive types declaration,
and raises the corresponding exceptions when two types or two constructors
have the same name. *)
let mind_check_names mie =
let rec check indset cstset = function
| [] -> ()
| ind::inds ->
let id = ind.mind_entry_typename in
let cl = ind.mind_entry_consnames in
if Id.Set.mem id indset then
raise (InductiveError (SameNamesTypes id))
else
let cstset' = check_constructors_names cstset cl in
check (Id.Set.add id indset) cstset' inds
in
check Id.Set.empty Id.Set.empty mie.mind_entry_inds
(* The above verification is not necessary from the kernel point of
vue since inductive and constructors are not referred to by their
name, but only by the name of the inductive packet and an index. *)
(************************************************************************)
(************************************************************************)
(* Typing the arities and constructor types *)
(* An inductive definition is a "unit" if it has only one constructor
and that all arguments expected by this constructor are
logical, this is the case for equality, conjunction of logical properties
*)
let is_unit constrsinfos =
match constrsinfos with (* One info = One constructor *)
| [level] -> is_type0m_univ level
| [] -> (* type without constructors *) true
| _ -> false
let infos_and_sort env t =
let rec aux env t max =
let t = whd_all env t in
match kind t with
| Prod (name,c1,c2) ->
let varj = infer_type env c1 in
let env1 = Environ.push_rel (LocalAssum (name,varj.utj_val)) env in
let max = Universe.sup max (Sorts.univ_of_sort varj.utj_type) in
aux env1 c2 max
| _ when is_constructor_head t -> max
| _ -> (* don't fail if not positive, it is tested later *) max
in aux env t Universe.type0m
(* Computing the levels of polymorphic inductive types
For each inductive type of a block that is of level u_i, we have
the constraints that u_i >= v_i where v_i is the type level of the
types of the constructors of this inductive type. Each v_i depends
of some of the u_i and of an extra (maybe non variable) universe,
say w_i that summarize all the other constraints. Typically, for
three inductive types, we could have
u1,u2,u3,w1 <= u1
u1 w2 <= u2
u2,u3,w3 <= u3
From this system of inequations, we shall deduce
w1,w2,w3 <= u1
w1,w2 <= u2
w1,w2,w3 <= u3
*)
(* This (re)computes informations relevant to extraction and the sort of an
arity or type constructor; we do not to recompute universes constraints *)
let infer_constructor_packet env_ar_par params lc =
(* type-check the constructors *)
let jlc = List.map (infer_type env_ar_par) lc in
let jlc = Array.of_list jlc in
(* generalize the constructor over the parameters *)
let lc'' = Array.map (fun j -> Term.it_mkProd_or_LetIn j.utj_val params) jlc in
(* compute the max of the sorts of the products of the constructors types *)
let levels = List.map (infos_and_sort env_ar_par) lc in
let isunit = is_unit levels in
let min = if Array.length jlc > 1 then Universe.type0 else Universe.type0m in
let level = List.fold_left (fun max l -> Universe.sup max l) min levels in
(lc'', (isunit, level))
(* If indices matter *)
let cumulate_arity_large_levels env sign =
fst (List.fold_right
(fun d (lev,env) ->
match d with
| LocalAssum (_,t) ->
let tj = infer_type env t in
let u = Sorts.univ_of_sort tj.utj_type in
(Universe.sup u lev, push_rel d env)
| LocalDef _ ->
lev, push_rel d env)
sign (Universe.type0m,env))
let is_impredicative env u =
is_type0m_univ u || (is_type0_univ u && is_impredicative_set env)
(* Returns the list [x_1, ..., x_n] of levels contributing to template
polymorphism. The elements x_k is None if the k-th parameter (starting
from the most recent and ignoring let-definitions) is not contributing
or is Some u_k if its level is u_k and is contributing. *)
let param_ccls paramsctxt =
let fold acc = function
| (LocalAssum (_, p)) ->
(let c = Term.strip_prod_assum p in
match kind c with
| Sort (Type u) -> Univ.Universe.level u
| _ -> None) :: acc
| LocalDef _ -> acc
in
List.fold_left fold [] paramsctxt
(* Check arities and constructors *)
let check_subtyping_arity_constructor env (subst : constr -> constr) (arcn : types) numparams is_arity =
let numchecked = ref 0 in
let basic_check ev tp =
if !numchecked < numparams then () else conv_leq ev tp (subst tp);
numchecked := !numchecked + 1
in
let check_typ typ typ_env =
match typ with
| LocalAssum (_, typ') ->
begin
try
basic_check typ_env typ'; Environ.push_rel typ typ_env
with NotConvertible ->
anomaly ~label:"bad inductive subtyping relation" (Pp.str "Invalid subtyping relation")
end
| _ -> anomaly (Pp.str "")
in
let typs, codom = dest_prod env arcn in
let last_env = Context.Rel.fold_outside check_typ typs ~init:env in
if not is_arity then basic_check last_env codom else ()
(* Check that the subtyping information inferred for inductive types in the block is correct. *)
(* This check produces a value of the unit type if successful or raises an anomaly if check fails. *)
let check_subtyping cumi paramsctxt env_ar inds =
let numparams = Context.Rel.nhyps paramsctxt in
let sbsubst = CumulativityInfo.subtyping_susbst cumi in
let dosubst = subst_univs_level_constr sbsubst in
let uctx = CumulativityInfo.univ_context cumi in
let instance_other = Univ.subst_univs_level_instance sbsubst (Univ.UContext.instance uctx) in
let constraints_other = Univ.subst_univs_level_constraints sbsubst (Univ.UContext.constraints uctx) in
let uctx_other = Univ.UContext.make (instance_other, constraints_other) in
let env = Environ.push_context uctx env_ar in
let env = Environ.push_context uctx_other env in
let env = push_context (CumulativityInfo.subtyp_context cumi) env in
(* process individual inductive types: *)
Array.iter (fun (id,cn,lc,(sign,arity)) ->
match arity with
| RegularArity (_, full_arity, _) ->
check_subtyping_arity_constructor env dosubst full_arity numparams true;
Array.iter (fun cnt -> check_subtyping_arity_constructor env dosubst cnt numparams false) lc
| TemplateArity _ -> ()
) inds
(* Type-check an inductive definition. Does not check positivity
conditions. *)
(* TODO check that we don't overgeneralize construcors/inductive arities with
universes that are absent from them. Is it possible?
*)
let typecheck_inductive env mie =
let () = match mie.mind_entry_inds with
| [] -> anomaly (Pp.str "empty inductive types declaration.")
| _ -> ()
in
(* Check unicity of names *)
mind_check_names mie;
(* Params are typed-checked here *)
let env' =
match mie.mind_entry_universes with
| Monomorphic_ind_entry ctx -> push_context_set ctx env
| Polymorphic_ind_entry ctx -> push_context ctx env
| Cumulative_ind_entry cumi -> push_context (Univ.CumulativityInfo.univ_context cumi) env
in
let (env_params,paramsctxt) = infer_local_decls env' mie.mind_entry_params in
(* We first type arity of each inductive definition *)
(* This allows building the environment of arities and to share *)
(* the set of constraints *)
let env_arities, rev_arity_list =
List.fold_left
(fun (env_ar,l) ind ->
(* Arities (without params) are typed-checked here *)
let expltype = ind.mind_entry_template in
let arity =
if isArity ind.mind_entry_arity then
let (ctx,s) = dest_arity env_params ind.mind_entry_arity in
match s with
| Type u when Univ.universe_level u = None ->
(** We have an algebraic universe as the conclusion of the arity,
typecheck the dummy Π ctx, Prop and do a special case for the conclusion.
*)
let proparity = infer_type env_params (mkArity (ctx, Sorts.prop)) in
let (cctx, _) = destArity proparity.utj_val in
(* Any universe is well-formed, we don't need to check [s] here *)
mkArity (cctx, s)
| _ ->
let arity = infer_type env_params ind.mind_entry_arity in
arity.utj_val
else let arity = infer_type env_params ind.mind_entry_arity in
arity.utj_val
in
let (sign, deflev) = dest_arity env_params arity in
let inflev =
(* The level of the inductive includes levels of indices if
in indices_matter mode *)
if !indices_matter
then Some (cumulate_arity_large_levels env_params sign)
else None
in
(* We do not need to generate the universe of full_arity; if
later, after the validation of the inductive definition,
full_arity is used as argument or subject to cast, an
upper universe will be generated *)
let full_arity = it_mkProd_or_LetIn arity paramsctxt in
let id = ind.mind_entry_typename in
let env_ar' =
push_rel (LocalAssum (Name id, full_arity)) env_ar in
(* (add_constraints cst2 env_ar) in *)
(env_ar', (id,full_arity,sign @ paramsctxt,expltype,deflev,inflev)::l))
(env',[])
mie.mind_entry_inds in
let arity_list = List.rev rev_arity_list in
(* builds the typing context "Gamma, I1:A1, ... In:An, params" *)
let env_ar_par = push_rel_context paramsctxt env_arities in
(* Now, we type the constructors (without params) *)
let inds =
List.fold_right2
(fun ind arity_data inds ->
let (lc',cstrs_univ) =
infer_constructor_packet env_ar_par paramsctxt ind.mind_entry_lc in
let consnames = ind.mind_entry_consnames in
let ind' = (arity_data,consnames,lc',cstrs_univ) in
ind'::inds)
mie.mind_entry_inds
arity_list
([]) in
let inds = Array.of_list inds in
(* Compute/check the sorts of the inductive types *)
let inds =
Array.map (fun ((id,full_arity,sign,expltype,def_level,inf_level),cn,lc,(is_unit,clev)) ->
let infu =
(** Inferred level, with parameters and constructors. *)
match inf_level with
| Some alev -> Universe.sup clev alev
| None -> clev
in
let full_polymorphic () =
let defu = Sorts.univ_of_sort def_level in
let is_natural =
type_in_type env || (UGraph.check_leq (universes env') infu defu)
in
let _ =
(** Impredicative sort, always allow *)
if is_impredicative env defu then ()
else (** Predicative case: the inferred level must be lower or equal to the
declared level. *)
if not is_natural then
anomaly ~label:"check_inductive"
(Pp.str"Incorrect universe " ++
Universe.pr defu ++ Pp.str " declared for inductive type, inferred level is "
++ Universe.pr infu ++ Pp.str ".")
in
RegularArity (not is_natural,full_arity,defu)
in
let template_polymorphic () =
let sign, s =
try dest_arity env full_arity
with NotArity -> raise (InductiveError (NotAnArity (env, full_arity)))
in
match s with
| Type u when expltype (* Explicitly polymorphic *) ->
(* The polymorphic level is a function of the level of the *)
(* conclusions of the parameters *)
(* We enforce [u >= lev] in case [lev] has a strict upper *)
(* constraints over [u] *)
let b = type_in_type env || UGraph.check_leq (universes env') infu u in
if not b then
anomaly ~label:"check_inductive"
(Pp.str"Incorrect universe " ++
Universe.pr u ++ Pp.str " declared for inductive type, inferred level is "
++ Universe.pr clev ++ Pp.str ".")
else
TemplateArity (param_ccls paramsctxt, infu)
| _ (* Not an explicit occurrence of Type *) ->
full_polymorphic ()
in
let arity =
match mie.mind_entry_universes with
| Monomorphic_ind_entry _ -> template_polymorphic ()
| Polymorphic_ind_entry _ | Cumulative_ind_entry _ -> full_polymorphic ()
in
(id,cn,lc,(sign,arity)))
inds
in
(* Check that the subtyping information inferred for inductive types in the block is correct. *)
(* This check produces a value of the unit type if successful or raises an anomaly if check fails. *)
let () =
match mie.mind_entry_universes with
| Monomorphic_ind_entry _ -> ()
| Polymorphic_ind_entry _ -> ()
| Cumulative_ind_entry cumi -> check_subtyping cumi paramsctxt env_arities inds
in (env_arities, env_ar_par, paramsctxt, inds)
(************************************************************************)
(************************************************************************)
(* Positivity *)
type ill_formed_ind =
| LocalNonPos of int
| LocalNotEnoughArgs of int
| LocalNotConstructor of Context.Rel.t * int
| LocalNonPar of int * int * int
exception IllFormedInd of ill_formed_ind
(* [mind_extract_params mie] extracts the params from an inductive types
declaration, and checks that they are all present (and all the same)
for all the given types. *)
let mind_extract_params = decompose_prod_n_assum
let explain_ind_err id ntyp env nparamsctxt c err =
let (lparams,c') = mind_extract_params nparamsctxt c in
match err with
| LocalNonPos kt ->
raise (InductiveError (NonPos (env,c',mkRel (kt+nparamsctxt))))
| LocalNotEnoughArgs kt ->
raise (InductiveError
(NotEnoughArgs (env,c',mkRel (kt+nparamsctxt))))
| LocalNotConstructor (paramsctxt,nargs)->
let nparams = Context.Rel.nhyps paramsctxt in
raise (InductiveError
(NotConstructor (env,id,c',mkRel (ntyp+nparamsctxt),
nparams,nargs)))
| LocalNonPar (n,i,l) ->
raise (InductiveError
(NonPar (env,c',n,mkRel i,mkRel (l+nparamsctxt))))
let failwith_non_pos n ntypes c =
for k = n to n + ntypes - 1 do
if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1)))
done
let failwith_non_pos_vect n ntypes v =
Array.iter (failwith_non_pos n ntypes) v;
anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur.")
let failwith_non_pos_list n ntypes l =
List.iter (failwith_non_pos n ntypes) l;
anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur.")
(* Check the inductive type is called with the expected parameters *)
(* [n] is the index of the last inductive type in [env] *)
let check_correct_par (env,n,ntypes,_) paramdecls ind_index args =
let nparams = Context.Rel.nhyps paramdecls in
let args = Array.of_list args in
if Array.length args < nparams then
raise (IllFormedInd (LocalNotEnoughArgs ind_index));
let (params,realargs) = Array.chop nparams args in
let nparamdecls = List.length paramdecls in
let rec check param_index paramdecl_index = function
| [] -> ()
| LocalDef _ :: paramdecls ->
check param_index (paramdecl_index+1) paramdecls
| _::paramdecls ->
match kind (whd_all env params.(param_index)) with
| Rel w when Int.equal w paramdecl_index ->
check (param_index-1) (paramdecl_index+1) paramdecls
| _ ->
let paramdecl_index_in_env = paramdecl_index-n+nparamdecls+1 in
let err =
LocalNonPar (param_index+1, paramdecl_index_in_env, ind_index) in
raise (IllFormedInd err)
in check (nparams-1) (n-nparamdecls) paramdecls;
if not (Array.for_all (noccur_between n ntypes) realargs) then
failwith_non_pos_vect n ntypes realargs
(* Computes the maximum number of recursive parameters:
the first parameters which are constant in recursive arguments
[n] is the current depth, [nmr] is the maximum number of possible
recursive parameters *)
let compute_rec_par (env,n,_,_) paramsctxt nmr largs =
if Int.equal nmr 0 then 0 else
(* start from 0, params will be in reverse order *)
let (lpar,_) = List.chop nmr largs in
let rec find k index =
function
([],_) -> nmr
| (_,[]) -> assert false (* |paramsctxt|>=nmr *)
| (lp, LocalDef _ :: paramsctxt) -> find k (index-1) (lp,paramsctxt)
| (p::lp,_::paramsctxt) ->
( match kind (whd_all env p) with
| Rel w when Int.equal w index -> find (k+1) (index-1) (lp,paramsctxt)
| _ -> k)
in find 0 (n-1) (lpar,List.rev paramsctxt)
(* [env] is the typing environment
[n] is the dB of the last inductive type
[ntypes] is the number of inductive types in the definition
(i.e. range of inductives is [n; n+ntypes-1])
[lra] is the list of recursive tree of each variable
*)
let ienv_push_var (env, n, ntypes, lra) (x,a,ra) =
(push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra)
let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lrecparams) =
let auxntyp = 1 in
let specif = (lookup_mind_specif env mi, u) in
let ty = type_of_inductive env specif in
let env' =
let decl = LocalAssum (Anonymous, hnf_prod_applist env ty lrecparams) in
push_rel decl env in
let ra_env' =
(Imbr mi,(Rtree.mk_rec_calls 1).(0)) ::
List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in
(* New index of the inductive types *)
let newidx = n + auxntyp in
(env', newidx, ntypes, ra_env')
let rec ienv_decompose_prod (env,_,_,_ as ienv) n c =
if Int.equal n 0 then (ienv,c) else
let c' = whd_all env c in
match kind c' with
Prod(na,a,b) ->
let ienv' = ienv_push_var ienv (na,a,mk_norec) in
ienv_decompose_prod ienv' (n-1) b
| _ -> assert false
let array_min nmr a = if Int.equal nmr 0 then 0 else
Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a
(** [check_positivity_one ienv paramsctxt (mind,i) nnonrecargs lcnames indlc]
checks the positivity of the [i]-th member of the mutually
inductive definition [mind]. It returns an [Rtree.t] which
represents the position of the recursive calls of inductive in [i]
for use by the guard condition (terms at these positions are
considered sub-terms) as well as the number of of non-uniform
arguments (used to generate induction schemes, so a priori less
relevant to the kernel).
If [chkpos] is [false] then positivity is assumed, and
[check_positivity_one] computes the subterms occurrences in a
best-effort fashion. *)
let check_positivity_one ~chkpos recursive (env,_,ntypes,_ as ienv) paramsctxt (_,i as ind) nnonrecargs lcnames indlc =
let nparamsctxt = Context.Rel.length paramsctxt in
let nmr = Context.Rel.nhyps paramsctxt in
(** Positivity of one argument [c] of a constructor (i.e. the
constructor [cn] has a type of the shape [… -> c … -> P], where,
more generally, the arrows may be dependent). *)
let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c =
let x,largs = decompose_app (whd_all env c) in
match kind x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
(** If one of the inductives of the mutually inductive
block occurs in the left-hand side of a product, then
such an occurrence is a non-strictly-positive
recursive call. Occurrences in the right-hand side of
the product must be strictly positive.*)
(match weaker_noccur_between env n ntypes b with
| None when chkpos ->
failwith_non_pos_list n ntypes [b]
| None ->
check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d
| Some b ->
check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d)
| Rel k ->
(try let (ra,rarg) = List.nth ra_env (k-1) in
let largs = List.map (whd_all env) largs in
let nmr1 =
(match ra with
Mrec _ -> compute_rec_par ienv paramsctxt nmr largs
| _ -> nmr)
in
(** The case where one of the inductives of the mutually
inductive block occurs as an argument of another is not
known to be safe. So Coq rejects it. *)
if chkpos &&
not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
else (nmr1,rarg)
with Failure _ | Invalid_argument _ -> (nmr,mk_norec))
| Ind ind_kn ->
(** If one of the inductives of the mutually inductive
block being defined appears in a parameter, then we
have a nested inductive type. The positivity is then
discharged to the [check_positive_nested] function. *)
if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec)
else check_positive_nested ienv nmr (ind_kn, largs)
| err ->
(** If an inductive of the mutually inductive block
appears in any other way, then the positivy check gives
up. *)
if not chkpos ||
(noccur_between n ntypes x &&
List.for_all (noccur_between n ntypes) largs)
then (nmr,mk_norec)
else failwith_non_pos_list n ntypes (x::largs)
(** [check_positive_nested] handles the case of nested inductive
calls, that is, when an inductive types from the mutually
inductive block is called as an argument of an inductive types
(for the moment, this inductive type must be a previously
defined types, not one of the types of the mutually inductive
block being defined). *)
(* accesses to the environment are not factorised, but is it worth? *)
and check_positive_nested (env,n,ntypes,ra_env as ienv) nmr ((mi,u), largs) =
let (mib,mip) = lookup_mind_specif env mi in
let auxnrecpar = mib.mind_nparams_rec in
let auxnnonrecpar = mib.mind_nparams - auxnrecpar in
let (auxrecparams,auxnonrecargs) =
try List.chop auxnrecpar largs
with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in
(** Inductives of the inductive block being defined are only
allowed to appear nested in the parameters of another inductive
type. Not in the proper indices. *)
if chkpos && not (List.for_all (noccur_between n ntypes) auxnonrecargs) then
failwith_non_pos_list n ntypes auxnonrecargs;
(* Nested mutual inductive types are not supported *)
let auxntyp = mib.mind_ntypes in
if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n));
(* The nested inductive type with parameters removed *)
let auxlcvect = abstract_mind_lc auxntyp auxnrecpar mip.mind_nf_lc in
(* Extends the environment with a variable corresponding to
the inductive def *)
let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),auxrecparams) in
(* Parameters expressed in env' *)
let auxrecparams' = List.map (lift auxntyp) auxrecparams in
let irecargs_nmr =
(** Checks that the "nesting" inductive type is covariant in
the relevant parameters. In other words, that the
(nested) parameters which are instantiated with
inductives of the mutually inductive block occur
positively in the types of the nested constructors. *)
Array.map
(function c ->
let c' = hnf_prod_applist env' c auxrecparams' in
(* skip non-recursive parameters *)
let (ienv',c') = ienv_decompose_prod ienv' auxnnonrecpar c' in
check_constructors ienv' false nmr c')
auxlcvect
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in
(nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0))
(** [check_constructors ienv check_head nmr c] checks the positivity
condition in the type [c] of a constructor (i.e. that recursive
calls to the inductives of the mutually inductive definition
appear strictly positively in each of the arguments of the
constructor, see also [check_pos]). If [check_head] is [true],
then the type of the fully applied constructor (the "head" of
the type [c]) is checked to be the right (properly applied)
inductive type. *)
and check_constructors ienv check_head nmr c =
let rec check_constr_rec (env,n,ntypes,ra_env as ienv) nmr lrec c =
let x,largs = decompose_app (whd_all env c) in
match kind x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
if not recursive && not (noccur_between n ntypes b) then
raise (InductiveError BadEntry);
let nmr',recarg = check_pos ienv nmr b in
let ienv' = ienv_push_var ienv (na,b,mk_norec) in
check_constr_rec ienv' nmr' (recarg::lrec) d
| hd ->
let () =
if check_head then
begin match hd with
| Rel j when Int.equal j (n + ntypes - i - 1) ->
check_correct_par ienv paramsctxt (ntypes - i) largs
| _ -> raise (IllFormedInd (LocalNotConstructor(paramsctxt,nnonrecargs)))
end
else
if chkpos &&
not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
in
(nmr, List.rev lrec)
in check_constr_rec ienv nmr [] c
in
let irecargs_nmr =
Array.map2
(fun id c ->
let _,rawc = mind_extract_params nparamsctxt c in
try
check_constructors ienv true nmr rawc
with IllFormedInd err ->
explain_ind_err id (ntypes-i) env nparamsctxt c err)
(Array.of_list lcnames) indlc
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr', mk_paths (Mrec ind) irecargs)
(** [check_positivity ~chkpos kn env_ar paramsctxt inds] checks that the mutually
inductive block [inds] is strictly positive.
If [chkpos] is [false] then positivity is assumed, and
[check_positivity_one] computes the subterms occurrences in a
best-effort fashion. *)
let check_positivity ~chkpos kn env_ar_par paramsctxt finite inds =
let ntypes = Array.length inds in
let recursive = finite != Decl_kinds.BiFinite in
let rc = Array.mapi (fun j t -> (Mrec (kn,j),t)) (Rtree.mk_rec_calls ntypes) in
let ra_env_ar = Array.rev_to_list rc in
let nparamsctxt = Context.Rel.length paramsctxt in
let nmr = Context.Rel.nhyps paramsctxt in
let check_one i (_,lcnames,lc,(sign,_)) =
let ra_env_ar_par =
List.init nparamsctxt (fun _ -> (Norec,mk_norec)) @ ra_env_ar in
let ienv = (env_ar_par, 1+nparamsctxt, ntypes, ra_env_ar_par) in
let nnonrecargs = Context.Rel.nhyps sign - nmr in
check_positivity_one ~chkpos recursive ienv paramsctxt (kn,i) nnonrecargs lcnames lc
in
let irecargs_nmr = Array.mapi check_one inds in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr',Rtree.mk_rec irecargs)
(************************************************************************)
(************************************************************************)
(* Build the inductive packet *)
(* Allowed eliminations *)
let all_sorts = [InProp;InSet;InType]
let small_sorts = [InProp;InSet]
let logical_sorts = [InProp]
let allowed_sorts is_smashed s =
if not is_smashed
then (** Naturally in the defined sort.
If [s] is Prop, it must be small and unitary.
Unsmashed, predicative Type and Set: all elimination allowed
as well. *)
all_sorts
else
match Sorts.family s with
(* Type: all elimination allowed: above and below *)
| InType -> all_sorts
(* Smashed Set is necessarily impredicative: forbids large elimination *)
| InSet -> small_sorts
(* Smashed to Prop, no informative eliminations allowed *)
| InProp -> logical_sorts
(* Previous comment: *)
(* Unitary/empty Prop: elimination to all sorts are realizable *)
(* unless the type is large. If it is large, forbids large elimination *)
(* which otherwise allows simulating the inconsistent system Type:Type. *)
(* -> this is now handled by is_smashed: *)
(* - all_sorts in case of small, unitary Prop (not smashed) *)
(* - logical_sorts in case of large, unitary Prop (smashed) *)
let arity_conclusion = function
| RegularArity (_, c, _) -> c
| TemplateArity (_, s) -> mkType s
let fold_inductive_blocks f =
Array.fold_left (fun acc (_,_,lc,(arsign,ar)) ->
f (Array.fold_left f acc lc) (it_mkProd_or_LetIn (arity_conclusion ar) arsign))
let used_section_variables env inds =
let ids = fold_inductive_blocks
(fun l c -> Id.Set.union (Environ.global_vars_set env c) l)
Id.Set.empty inds in
keep_hyps env ids
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_list n m = Array.to_list (rel_vect n m)
exception UndefinableExpansion
(** From a rel context describing the constructor arguments,
build an expansion function.
The term built is expecting to be substituted first by
a substitution of the form [params, x : ind params] *)
let compute_projections ((kn, _ as ind), u as indu) n x nparamargs params
mind_consnrealdecls mind_consnrealargs paramslet ctx =
let mp, dp, l = MutInd.repr3 kn in
(** We build a substitution smashing the lets in the record parameters so
that typechecking projections requires just a substitution and not
matching with a parameter context. *)
let indty, paramsletsubst =
(* [ty] = [Ind inst] is typed in context [params] *)
let inst = Context.Rel.to_extended_vect mkRel 0 paramslet in
let ty = mkApp (mkIndU indu, inst) in
(* [Ind inst] is typed in context [params-wo-let] *)
let inst' = rel_list 0 nparamargs in
(* {params-wo-let |- subst:params] *)
let subst = subst_of_rel_context_instance paramslet inst' in
(* {params-wo-let, x:Ind inst' |- subst':(params,x:Ind inst)] *)
let subst = (* For the record parameter: *)
mkRel 1 :: List.map (lift 1) subst in
ty, subst
in
let ci =
let print_info =
{ ind_tags = []; cstr_tags = [|Context.Rel.to_tags ctx|]; style = LetStyle } in
{ ci_ind = ind;
ci_npar = nparamargs;
ci_cstr_ndecls = mind_consnrealdecls;
ci_cstr_nargs = mind_consnrealargs;
ci_pp_info = print_info }
in
let len = List.length ctx in
let x = Name x in
let compat_body ccl i =
(* [ccl] is defined in context [params;x:indty] *)
(* [ccl'] is defined in context [params;x:indty;x:indty] *)
let ccl' = liftn 1 2 ccl in
let p = mkLambda (x, lift 1 indty, ccl') in
let branch = it_mkLambda_or_LetIn (mkRel (len - i)) ctx in
let body = mkCase (ci, p, mkRel 1, [|lift 1 branch|]) in
it_mkLambda_or_LetIn (mkLambda (x,indty,body)) params
in
let projections decl (i, j, kns, pbs, subst, letsubst) =
match decl with
| LocalDef (na,c,t) ->
(* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *)
let c = liftn 1 j c in
(* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params, x:I |- c(params,proj1 x,..,projj x)] *)
let c1 = substl subst c in
(* From [params, x:I |- subst:field1,..,fieldj]
to [params, x:I |- subst:field1,..,fieldj+1] where [subst]
is represented with instance of field1 last *)
let subst = c1 :: subst in
(* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)]
to [params-wo-let, x:I |- c(params,proj1 x,..,projj x)] *)
let c2 = substl letsubst c in
(* From [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj)]
to [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj+1)] *)
let letsubst = c2 :: letsubst in
(i, j+1, kns, pbs, subst, letsubst)
| LocalAssum (na,t) ->
match na with
| Name id ->
let kn = Constant.make1 (KerName.make mp dp (Label.of_id id)) in
(* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)]
to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *)
let t = liftn 1 j t in
(* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)]
to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *)
let projty = substl letsubst t in
(* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)]
to [params, x:I |- t(proj1 x,..,projj x)] *)
let ty = substl subst t in
let term = mkProj (Projection.make kn true, mkRel 1) in
let fterm = mkProj (Projection.make kn false, mkRel 1) in
let compat = compat_body ty (j - 1) in
let etab = it_mkLambda_or_LetIn (mkLambda (x, indty, term)) params in
let etat = it_mkProd_or_LetIn (mkProd (x, indty, ty)) params in
let body = { proj_ind = fst ind; proj_npars = nparamargs;
proj_arg = i; proj_type = projty; proj_eta = etab, etat;
proj_body = compat } in
(i + 1, j + 1, kn :: kns, body :: pbs,
fterm :: subst, fterm :: letsubst)
| Anonymous -> raise UndefinableExpansion
in
let (_, _, kns, pbs, subst, letsubst) =
List.fold_right projections ctx (0, 1, [], [], [], paramsletsubst)
in
Array.of_list (List.rev kns),
Array.of_list (List.rev pbs)
let abstract_inductive_universes iu =
match iu with
| Monomorphic_ind_entry ctx -> (Univ.empty_level_subst, Monomorphic_ind ctx)
| Polymorphic_ind_entry ctx ->
let (inst, auctx) = Univ.abstract_universes ctx in (inst, Polymorphic_ind auctx)
| Cumulative_ind_entry cumi ->
let (inst, acumi) = Univ.abstract_cumulativity_info cumi in (inst, Cumulative_ind acumi)
let build_inductive env prv iu env_ar paramsctxt kn isrecord isfinite inds nmr recargs =
let ntypes = Array.length inds in
(* Compute the set of used section variables *)
let hyps = used_section_variables env inds in
let nparamargs = Context.Rel.nhyps paramsctxt in
let nparamsctxt = Context.Rel.length paramsctxt in
let substunivs, aiu = abstract_inductive_universes iu in
let paramsctxt = Vars.subst_univs_level_context substunivs paramsctxt in
let env_ar =
let ctxunivs = Environ.rel_context env_ar in
let ctxunivs' = Vars.subst_univs_level_context substunivs ctxunivs in
Environ.push_rel_context ctxunivs' env
in
(* Check one inductive *)
let build_one_packet (id,cnames,lc,(ar_sign,ar_kind)) recarg =
(* Type of constructors in normal form *)
let lc = Array.map (Vars.subst_univs_level_constr substunivs) lc in
let splayed_lc = Array.map (dest_prod_assum env_ar) lc in
let nf_lc = Array.map (fun (d,b) -> it_mkProd_or_LetIn b d) splayed_lc in
let consnrealdecls =
Array.map (fun (d,_) -> Context.Rel.length d - nparamsctxt)
splayed_lc in
let consnrealargs =
Array.map (fun (d,_) -> Context.Rel.nhyps d - nparamargs)
splayed_lc in
(* Elimination sorts *)
let arkind,kelim =
match ar_kind with
| TemplateArity (paramlevs, lev) ->
let ar = {template_param_levels = paramlevs; template_level = lev} in
TemplateArity ar, all_sorts
| RegularArity (info,ar,defs) ->
let s = Sorts.sort_of_univ defs in
let kelim = allowed_sorts info s in
let ar = RegularArity
{ mind_user_arity = Vars.subst_univs_level_constr substunivs ar;
mind_sort = Sorts.sort_of_univ (Univ.subst_univs_level_universe substunivs defs); } in
ar, kelim in
(* Assigning VM tags to constructors *)
let nconst, nblock = ref 0, ref 0 in
let transf num =
let arity = List.length (dest_subterms recarg).(num) in
if Int.equal arity 0 then
let p = (!nconst, 0) in
incr nconst; p
else
let p = (!nblock + 1, arity) in
incr nblock; p
(* les tag des constructeur constant commence a 0,
les tag des constructeur non constant a 1 (0 => accumulator) *)
in
let rtbl = Array.init (List.length cnames) transf in
(* Build the inductive packet *)
{ mind_typename = id;
mind_arity = arkind;
mind_arity_ctxt = Vars.subst_univs_level_context substunivs ar_sign;
mind_nrealargs = Context.Rel.nhyps ar_sign - nparamargs;
mind_nrealdecls = Context.Rel.length ar_sign - nparamsctxt;
mind_kelim = kelim;
mind_consnames = Array.of_list cnames;
mind_consnrealdecls = consnrealdecls;
mind_consnrealargs = consnrealargs;
mind_user_lc = lc;
mind_nf_lc = nf_lc;
mind_recargs = recarg;
mind_nb_constant = !nconst;
mind_nb_args = !nblock;
mind_reloc_tbl = rtbl;
} in
let packets = Array.map2 build_one_packet inds recargs in
let pkt = packets.(0) in
let isrecord =
match isrecord with
| Some (Some rid) when pkt.mind_kelim == all_sorts
&& Array.length pkt.mind_consnames == 1
&& pkt.mind_consnrealargs.(0) > 0 ->
(** The elimination criterion ensures that all projections can be defined. *)
let u =
match aiu with
| Monomorphic_ind _ -> Univ.Instance.empty
| Polymorphic_ind auctx -> Univ.make_abstract_instance auctx
| Cumulative_ind acumi -> Univ.make_abstract_instance (Univ.ACumulativityInfo.univ_context acumi)
in
let indsp = ((kn, 0), u) in
let rctx, indty = decompose_prod_assum (subst1 (mkIndU indsp) pkt.mind_nf_lc.(0)) in
(try
let fields, paramslet = List.chop pkt.mind_consnrealdecls.(0) rctx in
let kns, projs =
compute_projections indsp pkt.mind_typename rid nparamargs paramsctxt
pkt.mind_consnrealdecls pkt.mind_consnrealargs paramslet fields
in Some (Some (rid, kns, projs))
with UndefinableExpansion -> Some None)
| Some _ -> Some None
| None -> None
in
(* Build the mutual inductive *)
{ mind_record = isrecord;
mind_ntypes = ntypes;
mind_finite = isfinite;
mind_hyps = hyps;
mind_nparams = nparamargs;
mind_nparams_rec = nmr;
mind_params_ctxt = paramsctxt;
mind_packets = packets;
mind_universes = aiu;
mind_private = prv;
mind_typing_flags = Environ.typing_flags env;
}
(************************************************************************)
(************************************************************************)
let check_inductive env kn mie =
(* First type-check the inductive definition *)
let (env_ar, env_ar_par, paramsctxt, inds) = typecheck_inductive env mie in
(* Then check positivity conditions *)
let chkpos = (Environ.typing_flags env).check_guarded in
let (nmr,recargs) = check_positivity ~chkpos kn env_ar_par paramsctxt mie.mind_entry_finite inds in
(* Build the inductive packets *)
build_inductive env mie.mind_entry_private mie.mind_entry_universes
env_ar paramsctxt kn mie.mind_entry_record mie.mind_entry_finite
inds nmr recargs
|