1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Errors
open Util
open Names
open Univ
open Term
open Vars
open Context
open Declarations
open Declareops
open Inductive
open Environ
open Reduction
open Typeops
open Entries
open Pp
(* Tell if indices (aka real arguments) contribute to size of inductive type *)
(* If yes, this is compatible with the univalent model *)
let indices_matter = ref false
let enforce_indices_matter () = indices_matter := true
let is_indices_matter () = !indices_matter
(* Same as noccur_between but may perform reductions.
Could be refined more... *)
let weaker_noccur_between env x nvars t =
if noccur_between x nvars t then Some t
else
let t' = whd_betadeltaiota env t in
if noccur_between x nvars t' then Some t'
else None
let is_constructor_head t =
isRel(fst(decompose_app t))
(************************************************************************)
(* Various well-formedness check for inductive declarations *)
(* Errors related to inductive constructions *)
type inductive_error =
| NonPos of env * constr * constr
| NotEnoughArgs of env * constr * constr
| NotConstructor of env * Id.t * constr * constr * int * int
| NonPar of env * constr * int * constr * constr
| SameNamesTypes of Id.t
| SameNamesConstructors of Id.t
| SameNamesOverlap of Id.t list
| NotAnArity of env * constr
| BadEntry
| LargeNonPropInductiveNotInType
exception InductiveError of inductive_error
(* [check_constructors_names id s cl] checks that all the constructors names
appearing in [l] are not present in the set [s], and returns the new set
of names. The name [id] is the name of the current inductive type, used
when reporting the error. *)
let check_constructors_names =
let rec check idset = function
| [] -> idset
| c::cl ->
if Id.Set.mem c idset then
raise (InductiveError (SameNamesConstructors c))
else
check (Id.Set.add c idset) cl
in
check
(* [mind_check_names mie] checks the names of an inductive types declaration,
and raises the corresponding exceptions when two types or two constructors
have the same name. *)
let mind_check_names mie =
let rec check indset cstset = function
| [] -> ()
| ind::inds ->
let id = ind.mind_entry_typename in
let cl = ind.mind_entry_consnames in
if Id.Set.mem id indset then
raise (InductiveError (SameNamesTypes id))
else
let cstset' = check_constructors_names cstset cl in
check (Id.Set.add id indset) cstset' inds
in
check Id.Set.empty Id.Set.empty mie.mind_entry_inds
(* The above verification is not necessary from the kernel point of
vue since inductive and constructors are not referred to by their
name, but only by the name of the inductive packet and an index. *)
(************************************************************************)
(************************************************************************)
(* Typing the arities and constructor types *)
(* An inductive definition is a "unit" if it has only one constructor
and that all arguments expected by this constructor are
logical, this is the case for equality, conjunction of logical properties
*)
let is_unit constrsinfos =
match constrsinfos with (* One info = One constructor *)
| [level] -> is_type0m_univ level
| [] -> (* type without constructors *) true
| _ -> false
let infos_and_sort env ctx t =
let rec aux env ctx t max =
let t = whd_betadeltaiota env t in
match kind_of_term t with
| Prod (name,c1,c2) ->
let varj = infer_type env c1 in
let env1 = Environ.push_rel (name,None,varj.utj_val) env in
let max = Universe.sup max (univ_of_sort varj.utj_type) in
aux env1 ctx c2 max
| _ when is_constructor_head t -> max
| _ -> (* don't fail if not positive, it is tested later *) max
in aux env ctx t Universe.type0m
(* Computing the levels of polymorphic inductive types
For each inductive type of a block that is of level u_i, we have
the constraints that u_i >= v_i where v_i is the type level of the
types of the constructors of this inductive type. Each v_i depends
of some of the u_i and of an extra (maybe non variable) universe,
say w_i that summarize all the other constraints. Typically, for
three inductive types, we could have
u1,u2,u3,w1 <= u1
u1 w2 <= u2
u2,u3,w3 <= u3
From this system of inequations, we shall deduce
w1,w2,w3 <= u1
w1,w2 <= u2
w1,w2,w3 <= u3
*)
(* This (re)computes informations relevant to extraction and the sort of an
arity or type constructor; we do not to recompute universes constraints *)
let infer_constructor_packet env_ar_par ctx params lc =
(* type-check the constructors *)
let jlc = List.map (infer_type env_ar_par) lc in
let jlc = Array.of_list jlc in
(* generalize the constructor over the parameters *)
let lc'' = Array.map (fun j -> it_mkProd_or_LetIn j.utj_val params) jlc in
(* compute the max of the sorts of the products of the constructors types *)
let levels = List.map (infos_and_sort env_ar_par ctx) lc in
let isunit = is_unit levels in
let min = if Array.length jlc > 1 then Universe.type0 else Universe.type0m in
let level = List.fold_left (fun max l -> Universe.sup max l) min levels in
(lc'', (isunit, level))
(* If indices matter *)
let cumulate_arity_large_levels env sign =
fst (List.fold_right
(fun (_,_,t as d) (lev,env) ->
let tj = infer_type env t in
let u = univ_of_sort tj.utj_type in
(Universe.sup u lev, push_rel d env))
sign (Universe.type0m,env))
let is_impredicative env u =
is_type0m_univ u || (is_type0_univ u && engagement env = Some ImpredicativeSet)
let param_ccls params =
let has_some_univ u = function
| Some v when Univ.Level.equal u v -> true
| _ -> false
in
let remove_some_univ u = function
| Some v when Univ.Level.equal u v -> None
| x -> x
in
let fold l (_, b, p) = match b with
| None ->
(* Parameter contributes to polymorphism only if explicit Type *)
let c = strip_prod_assum p in
(* Add Type levels to the ordered list of parameters contributing to *)
(* polymorphism unless there is aliasing (i.e. non distinct levels) *)
begin match kind_of_term c with
| Sort (Type u) ->
(match Univ.Universe.level u with
| Some u ->
if List.exists (has_some_univ u) l then
None :: List.map (remove_some_univ u) l
else
Some u :: l
| None -> None :: l)
| _ ->
None :: l
end
| _ -> l
in
List.fold_left fold [] params
(* Type-check an inductive definition. Does not check positivity
conditions. *)
(* TODO check that we don't overgeneralize construcors/inductive arities with
universes that are absent from them. Is it possible?
*)
let typecheck_inductive env ctx mie =
let () = match mie.mind_entry_inds with
| [] -> anomaly (Pp.str "empty inductive types declaration")
| _ -> ()
in
(* Check unicity of names *)
mind_check_names mie;
(* Params are typed-checked here *)
let env' = push_context ctx env in
let (env_params, params) = infer_local_decls env' mie.mind_entry_params in
(* We first type arity of each inductive definition *)
(* This allows building the environment of arities and to share *)
(* the set of constraints *)
let env_arities, rev_arity_list =
List.fold_left
(fun (env_ar,l) ind ->
(* Arities (without params) are typed-checked here *)
let arity, expltype =
if isArity ind.mind_entry_arity then
let (ctx,s) = dest_arity env_params ind.mind_entry_arity in
match s with
| Type u when Univ.universe_level u = None ->
(** We have an algebraic universe as the conclusion of the arity,
typecheck the dummy Π ctx, Prop and do a special case for the conclusion.
*)
let proparity = infer_type env_params (mkArity (ctx, prop_sort)) in
let (cctx, _) = destArity proparity.utj_val in
(* Any universe is well-formed, we don't need to check [s] here *)
mkArity (cctx, s), not (Sorts.is_small s)
| _ ->
let arity = infer_type env_params ind.mind_entry_arity in
arity.utj_val, not (Sorts.is_small s)
else let arity = infer_type env_params ind.mind_entry_arity in
arity.utj_val, false
in
let (sign, deflev) = dest_arity env_params arity in
let inflev =
(* The level of the inductive includes levels of indices if
in indices_matter mode *)
if !indices_matter
then Some (cumulate_arity_large_levels env_params sign)
else None
in
(* We do not need to generate the universe of full_arity; if
later, after the validation of the inductive definition,
full_arity is used as argument or subject to cast, an
upper universe will be generated *)
let full_arity = it_mkProd_or_LetIn arity params in
let id = ind.mind_entry_typename in
let env_ar' =
push_rel (Name id, None, full_arity) env_ar in
(* (add_constraints cst2 env_ar) in *)
(env_ar', (id,full_arity,sign @ params,expltype,deflev,inflev)::l))
(env',[])
mie.mind_entry_inds in
let arity_list = List.rev rev_arity_list in
(* builds the typing context "Gamma, I1:A1, ... In:An, params" *)
let env_ar_par = push_rel_context params env_arities in
(* Now, we type the constructors (without params) *)
let inds =
List.fold_right2
(fun ind arity_data inds ->
let (lc',cstrs_univ) =
infer_constructor_packet env_ar_par ContextSet.empty
params ind.mind_entry_lc in
let consnames = ind.mind_entry_consnames in
let ind' = (arity_data,consnames,lc',cstrs_univ) in
ind'::inds)
mie.mind_entry_inds
arity_list
([]) in
let inds = Array.of_list inds in
(* Compute/check the sorts of the inductive types *)
let inds =
Array.map (fun ((id,full_arity,sign,expltype,def_level,inf_level),cn,lc,(is_unit,clev)) ->
let infu =
(** Inferred level, with parameters and constructors. *)
match inf_level with
| Some alev -> Universe.sup clev alev
| None -> clev
in
let full_polymorphic () =
let defu = Term.univ_of_sort def_level in
let is_natural =
check_leq (universes env') infu defu &&
not (is_type0m_univ defu && not is_unit)
in
let _ =
(** Impredicative sort, always allow *)
if is_impredicative env defu then ()
else (** Predicative case: the inferred level must be lower or equal to the
declared level. *)
if not is_natural then
anomaly ~label:"check_inductive"
(Pp.str"Incorrect universe " ++
Universe.pr defu ++ Pp.str " declared for inductive type, inferred level is "
++ Universe.pr infu)
in
RegularArity (not is_natural,full_arity,defu)
in
let template_polymorphic () =
let sign, s =
try dest_arity env full_arity
with NotArity -> raise (InductiveError (NotAnArity (env, full_arity)))
in
match s with
| Type u when expltype (* Explicitly polymorphic *) ->
(* The polymorphic level is a function of the level of the *)
(* conclusions of the parameters *)
(* We enforce [u >= lev] in case [lev] has a strict upper *)
(* constraints over [u] *)
let b = check_leq (universes env') infu u in
if not b then
anomaly ~label:"check_inductive"
(Pp.str"Incorrect universe " ++
Universe.pr u ++ Pp.str " declared for inductive type, inferred level is "
++ Universe.pr clev)
else
TemplateArity (param_ccls params, infu)
| _ (* Not an explicit occurrence of Type *) ->
full_polymorphic ()
in
let arity =
if mie.mind_entry_polymorphic then full_polymorphic ()
else template_polymorphic ()
in
(id,cn,lc,(sign,arity)))
inds
in (env_arities, params, inds)
(************************************************************************)
(************************************************************************)
(* Positivity *)
type ill_formed_ind =
| LocalNonPos of int
| LocalNotEnoughArgs of int
| LocalNotConstructor
| LocalNonPar of int * int
exception IllFormedInd of ill_formed_ind
(* [mind_extract_params mie] extracts the params from an inductive types
declaration, and checks that they are all present (and all the same)
for all the given types. *)
let mind_extract_params = decompose_prod_n_assum
let explain_ind_err id ntyp env0 nbpar c nargs err =
let (lpar,c') = mind_extract_params nbpar c in
let env = push_rel_context lpar env0 in
match err with
| LocalNonPos kt ->
raise (InductiveError (NonPos (env,c',mkRel (kt+nbpar))))
| LocalNotEnoughArgs kt ->
raise (InductiveError
(NotEnoughArgs (env,c',mkRel (kt+nbpar))))
| LocalNotConstructor ->
raise (InductiveError
(NotConstructor (env,id,c',mkRel (ntyp+nbpar),nbpar,nargs)))
| LocalNonPar (n,l) ->
raise (InductiveError
(NonPar (env,c',n,mkRel (nbpar-n+1), mkRel (l+nbpar))))
let failwith_non_pos n ntypes c =
for k = n to n + ntypes - 1 do
if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1)))
done
let failwith_non_pos_vect n ntypes v =
Array.iter (failwith_non_pos n ntypes) v;
anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur")
let failwith_non_pos_list n ntypes l =
List.iter (failwith_non_pos n ntypes) l;
anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur")
(* Check the inductive type is called with the expected parameters *)
let check_correct_par (env,n,ntypes,_) hyps l largs =
let nparams = rel_context_nhyps hyps in
let largs = Array.of_list largs in
if Array.length largs < nparams then
raise (IllFormedInd (LocalNotEnoughArgs l));
let (lpar,largs') = Array.chop nparams largs in
let nhyps = List.length hyps in
let rec check k index = function
| [] -> ()
| (_,Some _,_)::hyps -> check k (index+1) hyps
| _::hyps ->
match kind_of_term (whd_betadeltaiota env lpar.(k)) with
| Rel w when Int.equal w index -> check (k-1) (index+1) hyps
| _ -> raise (IllFormedInd (LocalNonPar (k+1,l)))
in check (nparams-1) (n-nhyps) hyps;
if not (Array.for_all (noccur_between n ntypes) largs') then
failwith_non_pos_vect n ntypes largs'
(* Computes the maximum number of recursive parameters :
the first parameters which are constant in recursive arguments
n is the current depth, nmr is the maximum number of possible
recursive parameters *)
let compute_rec_par (env,n,_,_) hyps nmr largs =
if Int.equal nmr 0 then 0 else
(* start from 0, hyps will be in reverse order *)
let (lpar,_) = List.chop nmr largs in
let rec find k index =
function
([],_) -> nmr
| (_,[]) -> assert false (* |hyps|>=nmr *)
| (lp,(_,Some _,_)::hyps) -> find k (index-1) (lp,hyps)
| (p::lp,_::hyps) ->
( match kind_of_term (whd_betadeltaiota env p) with
| Rel w when Int.equal w index -> find (k+1) (index-1) (lp,hyps)
| _ -> k)
in find 0 (n-1) (lpar,List.rev hyps)
(* [env] is the typing environment
[n] is the dB of the last inductive type
[ntypes] is the number of inductive types in the definition
(i.e. range of inductives is [n; n+ntypes-1])
[lra] is the list of recursive tree of each variable
*)
let ienv_push_var (env, n, ntypes, lra) (x,a,ra) =
(push_rel (x,None,a) env, n+1, ntypes, (Norec,ra)::lra)
let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lpar) =
let auxntyp = 1 in
let specif = (lookup_mind_specif env mi, u) in
let ty = type_of_inductive env specif in
let env' =
push_rel (Anonymous,None,
hnf_prod_applist env ty lpar) env in
let ra_env' =
(Imbr mi,(Rtree.mk_rec_calls 1).(0)) ::
List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in
(* New index of the inductive types *)
let newidx = n + auxntyp in
(env', newidx, ntypes, ra_env')
let rec ienv_decompose_prod (env,_,_,_ as ienv) n c =
if Int.equal n 0 then (ienv,c) else
let c' = whd_betadeltaiota env c in
match kind_of_term c' with
Prod(na,a,b) ->
let ienv' = ienv_push_var ienv (na,a,mk_norec) in
ienv_decompose_prod ienv' (n-1) b
| _ -> assert false
let array_min nmr a = if Int.equal nmr 0 then 0 else
Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a
(* The recursive function that checks positivity and builds the list
of recursive arguments *)
let check_positivity_one (env,_,ntypes,_ as ienv) hyps (_,i as ind) nargs lcnames indlc =
let lparams = rel_context_length hyps in
let nmr = rel_context_nhyps hyps in
(* Checking the (strict) positivity of a constructor argument type [c] *)
let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
(match weaker_noccur_between env n ntypes b with
None -> failwith_non_pos_list n ntypes [b]
| Some b ->
check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d)
| Rel k ->
(try let (ra,rarg) = List.nth ra_env (k-1) in
let nmr1 =
(match ra with
Mrec _ -> compute_rec_par ienv hyps nmr largs
| _ -> nmr)
in
if not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
else (nmr1,rarg)
with Failure _ | Invalid_argument _ -> (nmr,mk_norec))
| Ind ind_kn ->
(* If the inductive type being defined appears in a
parameter, then we have a nested indtype *)
if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec)
else check_positive_nested ienv nmr (ind_kn, largs)
| err ->
if noccur_between n ntypes x &&
List.for_all (noccur_between n ntypes) largs
then (nmr,mk_norec)
else failwith_non_pos_list n ntypes (x::largs)
(* accesses to the environment are not factorised, but is it worth? *)
and check_positive_nested (env,n,ntypes,ra_env as ienv) nmr ((mi,u), largs) =
let (mib,mip) = lookup_mind_specif env mi in
let auxnpar = mib.mind_nparams_rec in
let nonrecpar = mib.mind_nparams - auxnpar in
let (lpar,auxlargs) =
try List.chop auxnpar largs
with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in
(* If the inductive appears in the args (non params) then the
definition is not positive. *)
if not (List.for_all (noccur_between n ntypes) auxlargs) then
failwith_non_pos_list n ntypes auxlargs;
(* We do not deal with imbricated mutual inductive types *)
let auxntyp = mib.mind_ntypes in
if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n));
(* The nested inductive type with parameters removed *)
let auxlcvect = abstract_mind_lc auxntyp auxnpar mip.mind_nf_lc in
(* Extends the environment with a variable corresponding to
the inductive def *)
let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),lpar) in
(* Parameters expressed in env' *)
let lpar' = List.map (lift auxntyp) lpar in
let irecargs_nmr =
(* fails if the inductive type occurs non positively *)
(* with recursive parameters substituted *)
Array.map
(function c ->
let c' = hnf_prod_applist env' c lpar' in
(* skip non-recursive parameters *)
let (ienv',c') = ienv_decompose_prod ienv' nonrecpar c' in
check_constructors ienv' false nmr c')
auxlcvect
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in
(nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0))
(* check the inductive types occur positively in the products of C, if
check_head=true, also check the head corresponds to a constructor of
the ith type *)
and check_constructors ienv check_head nmr c =
let rec check_constr_rec (env,n,ntypes,ra_env as ienv) nmr lrec c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
let () = assert (List.is_empty largs) in
let nmr',recarg = check_pos ienv nmr b in
let ienv' = ienv_push_var ienv (na,b,mk_norec) in
check_constr_rec ienv' nmr' (recarg::lrec) d
| hd ->
let () =
if check_head then
begin match hd with
| Rel j when Int.equal j (n + ntypes - i - 1) ->
check_correct_par ienv hyps (ntypes - i) largs
| _ -> raise (IllFormedInd LocalNotConstructor)
end
else
if not (List.for_all (noccur_between n ntypes) largs)
then failwith_non_pos_list n ntypes largs
in
(nmr, List.rev lrec)
in check_constr_rec ienv nmr [] c
in
let irecargs_nmr =
Array.map2
(fun id c ->
let _,rawc = mind_extract_params lparams c in
try
check_constructors ienv true nmr rawc
with IllFormedInd err ->
explain_ind_err id (ntypes-i) env lparams c nargs err)
(Array.of_list lcnames) indlc
in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr', mk_paths (Mrec ind) irecargs)
let check_positivity kn env_ar params inds =
let ntypes = Array.length inds in
let rc = Array.mapi (fun j t -> (Mrec (kn,j),t)) (Rtree.mk_rec_calls ntypes) in
let lra_ind = Array.rev_to_list rc in
let lparams = rel_context_length params in
let nmr = rel_context_nhyps params in
let check_one i (_,lcnames,lc,(sign,_)) =
let ra_env =
List.init lparams (fun _ -> (Norec,mk_norec)) @ lra_ind in
let ienv = (env_ar, 1+lparams, ntypes, ra_env) in
let nargs = rel_context_nhyps sign - nmr in
check_positivity_one ienv params (kn,i) nargs lcnames lc
in
let irecargs_nmr = Array.mapi check_one inds in
let irecargs = Array.map snd irecargs_nmr
and nmr' = array_min nmr irecargs_nmr
in (nmr',Rtree.mk_rec irecargs)
(************************************************************************)
(************************************************************************)
(* Build the inductive packet *)
(* Allowed eliminations *)
let all_sorts = [InProp;InSet;InType]
let small_sorts = [InProp;InSet]
let logical_sorts = [InProp]
let allowed_sorts is_smashed s =
if not is_smashed
then (** Naturally in the defined sort.
If [s] is Prop, it must be small and unitary.
Unsmashed, predicative Type and Set: all elimination allowed
as well. *)
all_sorts
else
match family_of_sort s with
(* Type: all elimination allowed: above and below *)
| InType -> all_sorts
(* Smashed Set is necessarily impredicative: forbids large elimination *)
| InSet -> small_sorts
(* Smashed to Prop, no informative eliminations allowed *)
| InProp -> logical_sorts
(* Previous comment: *)
(* Unitary/empty Prop: elimination to all sorts are realizable *)
(* unless the type is large. If it is large, forbids large elimination *)
(* which otherwise allows simulating the inconsistent system Type:Type. *)
(* -> this is now handled by is_smashed: *)
(* - all_sorts in case of small, unitary Prop (not smashed) *)
(* - logical_sorts in case of large, unitary Prop (smashed) *)
let arity_conclusion = function
| RegularArity (_, c, _) -> c
| TemplateArity (_, s) -> mkType s
let fold_inductive_blocks f =
Array.fold_left (fun acc (_,_,lc,(arsign,ar)) ->
f (Array.fold_left f acc lc) (it_mkProd_or_LetIn (arity_conclusion ar) arsign))
let used_section_variables env inds =
let ids = fold_inductive_blocks
(fun l c -> Id.Set.union (Environ.global_vars_set env c) l)
Id.Set.empty inds in
keep_hyps env ids
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_appvect n m = rel_vect n (List.length m)
exception UndefinableExpansion
(** From a rel context describing the constructor arguments,
build an expansion function.
The term built is expecting to be substituted first by
a substitution of the form [params, x : ind params] *)
let compute_projections ((kn, _ as ind), u as indsp) n x nparamargs params
mind_consnrealdecls mind_consnrealargs ctx =
let mp, dp, l = repr_mind kn in
let rp = mkApp (mkIndU indsp, rel_vect 0 nparamargs) in
let ci =
let print_info =
{ ind_tags = []; cstr_tags = [|rel_context_tags ctx|]; style = LetStyle } in
{ ci_ind = ind;
ci_npar = nparamargs;
ci_cstr_ndecls = mind_consnrealdecls;
ci_cstr_nargs = mind_consnrealargs;
ci_pp_info = print_info }
in
let len = List.length ctx in
let x = Name x in
let compat_body ccl i =
(* [ccl] is defined in context [params;x:rp] *)
(* [ccl'] is defined in context [params;x:rp;x:rp] *)
let ccl' = liftn 1 2 ccl in
let p = mkLambda (x, lift 1 rp, ccl') in
let branch = it_mkLambda_or_LetIn (mkRel (len - i)) ctx in
let body = mkCase (ci, p, mkRel 1, [|branch|]) in
it_mkLambda_or_LetIn (mkLambda (x,rp,body)) params
in
let projections (na, b, t) (i, j, kns, pbs, subst) =
match b with
| Some c -> (i, j+1, kns, pbs, substl subst c :: subst)
| None ->
match na with
| Name id ->
let kn = Constant.make1 (KerName.make mp dp (Label.of_id id)) in
let ty = substl subst (liftn 1 j t) in
let term = mkProj (Projection.make kn true, mkRel 1) in
let fterm = mkProj (Projection.make kn false, mkRel 1) in
let compat = compat_body ty (j - 1) in
let etab = it_mkLambda_or_LetIn (mkLambda (x, rp, term)) params in
let etat = it_mkProd_or_LetIn (mkProd (x, rp, ty)) params in
let body = { proj_ind = fst ind; proj_npars = nparamargs;
proj_arg = i; proj_type = ty; proj_eta = etab, etat;
proj_body = compat } in
(i + 1, j + 1, kn :: kns, body :: pbs, fterm :: subst)
| Anonymous -> raise UndefinableExpansion
in
let (_, _, kns, pbs, subst) = List.fold_right projections ctx (0, 1, [], [], []) in
Array.of_list (List.rev kns),
Array.of_list (List.rev pbs)
let build_inductive env p prv ctx env_ar params kn isrecord isfinite inds nmr recargs =
let ntypes = Array.length inds in
(* Compute the set of used section variables *)
let hyps = used_section_variables env inds in
let nparamargs = rel_context_nhyps params in
let nparamdecls = rel_context_length params in
let subst, ctx = Univ.abstract_universes p ctx in
let params = Vars.subst_univs_level_context subst params in
let env_ar =
let ctx = Environ.rel_context env_ar in
let ctx' = Vars.subst_univs_level_context subst ctx in
Environ.push_rel_context ctx' env
in
(* Check one inductive *)
let build_one_packet (id,cnames,lc,(ar_sign,ar_kind)) recarg =
(* Type of constructors in normal form *)
let lc = Array.map (Vars.subst_univs_level_constr subst) lc in
let splayed_lc = Array.map (dest_prod_assum env_ar) lc in
let nf_lc = Array.map (fun (d,b) -> it_mkProd_or_LetIn b d) splayed_lc in
let consnrealdecls =
Array.map (fun (d,_) -> rel_context_length d - rel_context_length params)
splayed_lc in
let consnrealargs =
Array.map (fun (d,_) -> rel_context_nhyps d - rel_context_nhyps params)
splayed_lc in
(* Elimination sorts *)
let arkind,kelim =
match ar_kind with
| TemplateArity (paramlevs, lev) ->
let ar = {template_param_levels = paramlevs; template_level = lev} in
TemplateArity ar, all_sorts
| RegularArity (info,ar,defs) ->
let s = sort_of_univ defs in
let kelim = allowed_sorts info s in
let ar = RegularArity
{ mind_user_arity = Vars.subst_univs_level_constr subst ar;
mind_sort = sort_of_univ (Univ.subst_univs_level_universe subst defs); } in
ar, kelim in
(* Assigning VM tags to constructors *)
let nconst, nblock = ref 0, ref 0 in
let transf num =
let arity = List.length (dest_subterms recarg).(num) in
if Int.equal arity 0 then
let p = (!nconst, 0) in
incr nconst; p
else
let p = (!nblock + 1, arity) in
incr nblock; p
(* les tag des constructeur constant commence a 0,
les tag des constructeur non constant a 1 (0 => accumulator) *)
in
let rtbl = Array.init (List.length cnames) transf in
(* Build the inductive packet *)
{ mind_typename = id;
mind_arity = arkind;
mind_arity_ctxt = Vars.subst_univs_level_context subst ar_sign;
mind_nrealargs = rel_context_nhyps ar_sign - nparamargs;
mind_nrealdecls = rel_context_length ar_sign - nparamdecls;
mind_kelim = kelim;
mind_consnames = Array.of_list cnames;
mind_consnrealdecls = consnrealdecls;
mind_consnrealargs = consnrealargs;
mind_user_lc = lc;
mind_nf_lc = nf_lc;
mind_recargs = recarg;
mind_nb_constant = !nconst;
mind_nb_args = !nblock;
mind_reloc_tbl = rtbl;
} in
let packets = Array.map2 build_one_packet inds recargs in
let pkt = packets.(0) in
let isrecord =
match isrecord with
| Some (Some rid) when pkt.mind_kelim == all_sorts && Array.length pkt.mind_consnames == 1 ->
(** The elimination criterion ensures that all projections can be defined. *)
let u =
if p then
subst_univs_level_instance subst (Univ.UContext.instance ctx)
else Univ.Instance.empty
in
let indsp = ((kn, 0), u) in
let rctx, _ = decompose_prod_assum (subst1 (mkIndU indsp) pkt.mind_nf_lc.(0)) in
(try
let fields = List.firstn pkt.mind_consnrealdecls.(0) rctx in
let kns, projs =
compute_projections indsp pkt.mind_typename rid nparamargs params
pkt.mind_consnrealdecls pkt.mind_consnrealargs fields
in Some (Some (rid, kns, projs))
with UndefinableExpansion -> Some None)
| Some _ -> Some None
| None -> None
in
(* Build the mutual inductive *)
{ mind_record = isrecord;
mind_ntypes = ntypes;
mind_finite = isfinite;
mind_hyps = hyps;
mind_nparams = nparamargs;
mind_nparams_rec = nmr;
mind_params_ctxt = params;
mind_packets = packets;
mind_polymorphic = p;
mind_universes = ctx;
mind_private = prv;
}
(************************************************************************)
(************************************************************************)
let check_inductive env kn mie =
(* First type-check the inductive definition *)
let env = push_context mie.mind_entry_universes env in
let (env_ar, params, inds) =
typecheck_inductive env mie.mind_entry_universes mie
in
(* Then check positivity conditions *)
let (nmr,recargs) = check_positivity kn env_ar params inds in
(* Build the inductive packets *)
build_inductive env mie.mind_entry_polymorphic mie.mind_entry_private
mie.mind_entry_universes
env_ar params kn mie.mind_entry_record mie.mind_entry_finite
inds nmr recargs
|