1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
open Names
open Univ
open Term
open Declarations
open Inductive
open Sign
open Environ
open Reduction
open Typeops
(* [check_constructors_names id s cl] checks that all the constructors names
appearing in [l] are not present in the set [s], and returns the new set
of names. The name [id] is the name of the current inductive type, used
when reporting the error. *)
(*s Declaration. *)
type one_inductive_entry = {
mind_entry_nparams : int;
mind_entry_params : (identifier * local_entry) list;
mind_entry_typename : identifier;
mind_entry_arity : constr;
mind_entry_consnames : identifier list;
mind_entry_lc : constr list }
type mutual_inductive_entry = {
mind_entry_finite : bool;
mind_entry_inds : one_inductive_entry list }
(***********************************************************************)
(* Various well-formedness check for inductive declarations *)
type inductive_error =
(* These are errors related to inductive constructions in this module *)
| NonPos of env * constr * constr
| NotEnoughArgs of env * constr * constr
| NotConstructor of env * constr * constr
| NonPar of env * constr * int * constr * constr
| SameNamesTypes of identifier
| SameNamesConstructors of identifier * identifier
| NotAnArity of identifier
| BadEntry
(* These are errors related to recursors building in Indrec *)
| NotAllowedCaseAnalysis of bool * sorts * inductive
| BadInduction of bool * identifier * sorts
| NotMutualInScheme
exception InductiveError of inductive_error
let check_constructors_names id =
let rec check idset = function
| [] -> idset
| c::cl ->
if Idset.mem c idset then
raise (InductiveError (SameNamesConstructors (id,c)))
else
check (Idset.add c idset) cl
in
check
(* [mind_check_names mie] checks the names of an inductive types declaration,
and raises the corresponding exceptions when two types or two constructors
have the same name. *)
let mind_check_names mie =
let rec check indset cstset = function
| [] -> ()
| ind::inds ->
let id = ind.mind_entry_typename in
let cl = ind.mind_entry_consnames in
if Idset.mem id indset then
raise (InductiveError (SameNamesTypes id))
else
let cstset' = check_constructors_names id cstset cl in
check (Idset.add id indset) cstset' inds
in
check Idset.empty Idset.empty mie.mind_entry_inds
(* [mind_extract_params mie] extracts the params from an inductive types
declaration, and checks that they are all present (and all the same)
for all the given types. *)
let mind_extract_params = decompose_prod_n_assum
let mind_check_arities env mie =
let check_arity id c =
if not (is_arity env c) then
raise (InductiveError (NotAnArity id))
in
List.iter
(fun {mind_entry_typename=id; mind_entry_arity=ar} -> check_arity id ar)
mie.mind_entry_inds
let mind_check_wellformed env mie =
if mie.mind_entry_inds = [] then anomaly "empty inductive types declaration";
mind_check_names mie;
mind_check_arities env mie
(***********************************************************************)
(***********************************************************************)
(* Typing the arities and constructor types *)
let is_info_arity env c =
match dest_arity env c with
| (_,Prop Null) -> false
| (_,Prop Pos) -> true
| (_,Type _) -> true
let is_info_type env t =
let s = t.utj_type in
if s = mk_Set then true
else if s = mk_Prop then false
else
try is_info_arity env t.utj_val
with UserError _ -> true
(* [infos] is a sequence of pair [islogic,issmall] for each type in
the product of a constructor or arity *)
let is_small infos = List.for_all (fun (logic,small) -> small) infos
let is_logic_constr infos = List.for_all (fun (logic,small) -> logic) infos
let is_logic_arity infos =
List.for_all (fun (logic,small) -> logic || small) infos
let is_unit arinfos constrsinfos =
match constrsinfos with (* One info = One constructor *)
| [constrinfos] -> is_logic_constr constrinfos && is_logic_arity arinfos
| _ -> false
let rec infos_and_sort env t =
match kind_of_term t with
| Prod (name,c1,c2) ->
let (varj,_) = infer_type env c1 in
let env1 = Environ.push_rel (name,None,varj.utj_val) env in
let logic = not (is_info_type env varj) in
let small = Term.is_small varj.utj_type in
(logic,small) :: (infos_and_sort env1 c2)
| Cast (c,_) -> infos_and_sort env c
| _ -> []
let small_unit constrsinfos (env_ar_par,short_arity) =
let issmall = List.for_all is_small constrsinfos in
let arinfos = infos_and_sort env_ar_par short_arity in
let isunit = is_unit arinfos constrsinfos in
issmall, isunit
(* This (re)computes informations relevant to extraction and the sort of an
arity or type constructor; we do not to recompute universes constraints *)
(* [smax] is the max of the sorts of the products of the constructor type *)
let enforce_type_constructor arsort smax cst =
match smax, arsort with
| Type uc, Type ua -> enforce_geq ua uc cst
| _,_ -> cst
let type_one_constructor env_ar_par params arsort c =
let infos = infos_and_sort env_ar_par c in
(* Each constructor is typed-checked here *)
let (j,cst) = infer_type env_ar_par c in
let full_cstr_type = it_mkProd_or_LetIn j.utj_val params in
(* If the arity is at some level Type arsort, then the sort of the
constructor must be below arsort; here we consider constructors with the
global parameters (which add a priori more constraints on their sort) *)
let cst2 = enforce_type_constructor arsort j.utj_type cst in
(infos, full_cstr_type, cst2)
let infer_constructor_packet env_ar params short_arity arsort vc =
let env_ar_par = push_rel_context params env_ar in
let (constrsinfos,jlc,cst) =
List.fold_right
(fun c (infosl,l,cst) ->
let (infos,ct,cst') =
type_one_constructor env_ar_par params arsort c in
(infos::infosl,ct::l, Constraint.union cst cst'))
vc
([],[],Constraint.empty) in
let vc' = Array.of_list jlc in
let issmall,isunit = small_unit constrsinfos (env_ar_par,short_arity) in
(issmall,isunit,vc', cst)
let type_inductive env mie =
(* We first type params and arity of each inductive definition *)
(* This allows to build the environment of arities and to share *)
(* the set of constraints *)
let cst, arities, rev_params_arity_list =
List.fold_left
(fun (cst,arities,l) ind ->
(* Params are typed-checked here *)
let params = ind.mind_entry_params in
let env_params, params, cst1 =
infer_local_decls env params in
(* Arities (without params) are typed-checked here *)
let arity, cst2 =
infer_type env_params ind.mind_entry_arity in
(* We do not need to generate the universe of full_arity; if
later, after the validation of the inductive definition,
full_arity is used as argument or subject to cast, an
upper universe will be generated *)
let id = ind.mind_entry_typename in
let full_arity = it_mkProd_or_LetIn arity.utj_val params in
Constraint.union cst (Constraint.union cst1 cst2),
Sign.add_rel_decl (Name id, None, full_arity) arities,
(params, id, full_arity, arity.utj_val)::l)
(Constraint.empty,empty_rel_context,[])
mie.mind_entry_inds in
let env_arities = push_rel_context arities env in
let params_arity_list = List.rev rev_params_arity_list in
(* Now, we type the constructors (without params) *)
let inds,cst =
List.fold_right2
(fun ind (params,id,full_arity,short_arity) (inds,cst) ->
let (_,arsort) = dest_arity env full_arity in
let lc = ind.mind_entry_lc in
let (issmall,isunit,lc',cst') =
infer_constructor_packet env_arities params short_arity arsort lc
in
let nparams = ind.mind_entry_nparams in
let consnames = ind.mind_entry_consnames in
let ind' = (params,nparams,id,full_arity,consnames,issmall,isunit,lc')
in
(ind'::inds, Constraint.union cst cst'))
mie.mind_entry_inds
params_arity_list
([],cst) in
(env_arities, inds, cst)
(***********************************************************************)
(***********************************************************************)
let allowed_sorts issmall isunit = function
| Type _ ->
[InProp;InSet;InType]
| Prop Pos ->
if issmall then [InProp;InSet;InType]
else [InProp;InSet]
| Prop Null ->
if isunit then [InProp;InSet] else [InProp]
type ill_formed_ind =
| LocalNonPos of int
| LocalNotEnoughArgs of int
| LocalNotConstructor
| LocalNonPar of int * int
exception IllFormedInd of ill_formed_ind
let explain_ind_err ntyp env0 nbpar c err =
let (lpar,c') = mind_extract_params nbpar c in
let env = push_rel_context lpar env0 in
match err with
| LocalNonPos kt ->
raise (InductiveError (NonPos (env,c',mkRel (kt+nbpar))))
| LocalNotEnoughArgs kt ->
raise (InductiveError
(NotEnoughArgs (env,c',mkRel (kt+nbpar))))
| LocalNotConstructor ->
raise (InductiveError
(NotConstructor (env,c',mkRel (ntyp+nbpar))))
| LocalNonPar (n,l) ->
raise (InductiveError
(NonPar (env,c',n,mkRel (nbpar-n+1), mkRel (l+nbpar))))
let failwith_non_pos_vect n ntypes v =
for i = 0 to Array.length v - 1 do
for k = n to n + ntypes - 1 do
if not (noccurn k v.(i)) then raise (IllFormedInd (LocalNonPos (k-n+1)))
done
done;
anomaly "failwith_non_pos_vect: some k in [n;n+ntypes-1] should occur in v"
let check_correct_par env hyps nparams ntypes n l largs =
let largs = Array.of_list largs in
if Array.length largs < nparams then
raise (IllFormedInd (LocalNotEnoughArgs l));
let (lpar,largs') = array_chop nparams largs in
let nhyps = List.length hyps in
let rec check k index = function
| [] -> ()
| (_,Some _,_)::hyps -> check k (index+1) hyps
| _::hyps ->
match kind_of_term (whd_betadeltaiota env lpar.(k)) with
| Rel w when w = index -> check (k-1) (index+1) hyps
| _ -> raise (IllFormedInd (LocalNonPar (k+1,l)))
in check (nparams-1) (n-nhyps) hyps;
if not (array_for_all (noccur_between n ntypes) largs') then
failwith_non_pos_vect n ntypes largs'
(* This removes global parameters of the inductive types in lc *)
let abstract_mind_lc env ntyps npars lc =
if npars = 0 then
lc
else
let make_abs =
list_tabulate
(function i -> lambda_implicit_lift npars (mkRel (i+1))) ntyps
in
Array.map (substl make_abs) lc
let listrec_mconstr env ntypes hyps nparams i indlc =
let nhyps = List.length hyps in
(* check the inductive types occur positively in [c] *)
let rec check_pos env n c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
assert (largs = []);
if not (noccur_between n ntypes b) then
raise (IllFormedInd (LocalNonPos n));
check_pos (push_rel (na, None, b) env) (n+1) d
| Rel k ->
if k >= n && k<n+ntypes then begin
check_correct_par env hyps nparams ntypes n (k-n+1) largs;
Mrec(n+ntypes-k-1)
end else if List.for_all (noccur_between n ntypes) largs then
if (n-nhyps) <= k & k <= (n-1)
then Param(n-1-k)
else Norec
else
raise (IllFormedInd (LocalNonPos n))
| Ind ind_sp ->
(* If the inductive type being defined or a parameter appears as
parameter, then we have an imbricated type *)
if List.for_all (noccur_between n ntypes) largs &&
List.for_all (noccur_between (n-nhyps) nhyps) largs
then Norec
else Imbr(ind_sp,imbr_positive env n ind_sp largs)
| err ->
if noccur_between n ntypes x &&
List.for_all (noccur_between n ntypes) largs
then Norec
else raise (IllFormedInd (LocalNonPos n))
(* accesses to the environment are not factorised, but does it worth
it? *)
and imbr_positive env n mi largs =
let (mib,mip) = lookup_mind_specif env mi in
let auxnpar = mip.mind_nparams in
let (lpar,auxlargs) = list_chop auxnpar largs in
if not (List.for_all (noccur_between n ntypes) auxlargs) then
raise (IllFormedInd (LocalNonPos n));
let auxlc = mip.mind_nf_lc in
let auxntyp = mib.mind_ntypes in
if auxntyp <> 1 then raise (IllFormedInd (LocalNonPos n));
let lrecargs = List.map (check_weak_pos env n) lpar in
(* The abstract imbricated inductive type with parameters substituted *)
let auxlcvect = abstract_mind_lc env auxntyp auxnpar auxlc in
let newidx = n + auxntyp in
(* Extends the environment with a variable corresponding to the inductive def *)
let env' = push_rel (Anonymous,None,type_of_inductive env mi) env in
let _ =
(* fails if the inductive type occurs non positively *)
(* when substituted *)
Array.map
(function c ->
let c' = hnf_prod_applist env c
(List.map (lift auxntyp) lpar) in
check_construct env' false newidx c')
auxlcvect
in
lrecargs
(* The function check_weak_pos is exactly the same as check_pos, but
with an extra case for traversing abstractions, like in Marseille's
contribution about bisimulations:
CoInductive strong_eq:process->process->Prop:=
str_eq:(p,q:process)((a:action)(p':process)(transition p a p')->
(Ex [q':process] (transition q a q')/\(strong_eq p' q')))->
((a:action)(q':process)(transition q a q')->
(Ex [p':process] (transition p a p')/\(strong_eq p' q')))->
(strong_eq p q).
Abstractions may occur in imbricated recursive ocurrences, but I am
not sure if they make sense in a form of constructor. This is why I
chose to duplicated the code. Eduardo 13/7/99. *)
(* Since Lambda can no longer occur after a product or a Ind,
I have branched the remaining cases on check_pos. HH 28/1/00 *)
and check_weak_pos env n c =
let x = whd_betadeltaiota env c in
match kind_of_term x with
(* The extra case *)
| Lambda (na,b,d) ->
if noccur_between n ntypes b
then check_weak_pos (push_rel (na,None,b) env) (n+1) d
else raise (IllFormedInd (LocalNonPos n))
(******************)
| _ -> check_pos env n x
(* check the inductive types occur positively in the products of C, if
check_head=true, also check the head corresponds to a constructor of
the ith type *)
and check_construct env check_head n c =
let rec check_constr_rec env lrec n c =
let x,largs = decompose_app (whd_betadeltaiota env c) in
match kind_of_term x with
| Prod (na,b,d) ->
assert (largs = []);
let recarg = check_pos env n b in
check_constr_rec (push_rel (na, None, b) env)
(recarg::lrec) (n+1) d
(* LetIn's must be free of occurrence of the inductive types and
they do not contribute to recargs *)
| LetIn (na,b,t,d) ->
assert (largs = []);
if not (noccur_between n ntypes b & noccur_between n ntypes t) then
check_constr_rec (push_rel (na,Some b, b) env)
lrec n (subst1 b d)
else
let recarg = check_pos env n b in
check_constr_rec (push_rel (na,Some b, b) env)
lrec (n+1) d
| hd ->
if check_head then
if hd = Rel (n+ntypes-i) then
check_correct_par env hyps nparams ntypes n (ntypes-i+1) largs
else
raise (IllFormedInd LocalNotConstructor)
else
if not (List.for_all (noccur_between n ntypes) largs)
then raise (IllFormedInd (LocalNonPos n));
List.rev lrec
in check_constr_rec env [] n c
in
Array.map
(fun c ->
let c = body_of_type c in
let sign, rawc = mind_extract_params nhyps c in
let env' = push_rel_context sign env in
try
check_construct env' true (1+nhyps) rawc
with IllFormedInd err ->
explain_ind_err (ntypes-i+1) env nhyps c err)
indlc
let is_recursive listind =
let rec one_is_rec rvec =
List.exists (function Mrec(i) -> List.mem i listind
| Imbr(_,lvec) -> one_is_rec lvec
| Norec -> false
| Param _ -> false) rvec
in
array_exists one_is_rec
let cci_inductive env env_ar finite inds cst =
let ntypes = List.length inds in
let ids =
List.fold_left
(fun acc (_,_,_,ar,_,_,_,lc) ->
Idset.union (Environ.global_vars_set env (body_of_type ar))
(Array.fold_left
(fun acc c ->
Idset.union (global_vars_set env (body_of_type c)) acc)
acc
lc))
Idset.empty inds
in
let hyps = keep_hyps env ids in
let one_packet i (params,nparams,id,ar,cnames,issmall,isunit,lc) =
let recargs = listrec_mconstr env_ar ntypes params nparams i lc in
let isunit = isunit && ntypes = 1 && (not (is_recursive [0] recargs)) in
let (ar_sign,ar_sort) = dest_arity env ar in
let nf_ar =
if isArity (body_of_type ar) then ar
else it_mkProd_or_LetIn (mkSort ar_sort) ar_sign in
let kelim = allowed_sorts issmall isunit ar_sort in
let splayed_lc = Array.map (dest_prod_assum env_ar) lc in
let nf_lc =
array_map2 (fun (d,b) c -> it_mkProd_or_LetIn b d) splayed_lc lc in
let nf_lc = if nf_lc = lc then lc else nf_lc in
{ mind_consnames = Array.of_list cnames;
mind_typename = id;
mind_user_lc = lc;
mind_nf_lc = nf_lc;
mind_user_arity = ar;
mind_nf_arity = nf_ar;
mind_nrealargs = rel_context_length ar_sign - nparams;
mind_sort = ar_sort;
mind_kelim = kelim;
mind_listrec = recargs;
mind_nparams = nparams;
mind_params_ctxt = params }
in
let packets = Array.of_list (list_map_i one_packet 1 inds) in
{ mind_ntypes = ntypes;
mind_finite = finite;
mind_hyps = hyps;
mind_packets = packets;
mind_constraints = cst;
mind_singl = None }
(***********************************************************************)
(***********************************************************************)
let check_inductive env mie =
mind_check_wellformed env mie;
let (env_arities, inds, cst) = type_inductive env mie in
cci_inductive env env_arities mie.mind_entry_finite inds cst
|