blob: cd9c1690706924f46cde7a9b4f19b679ec258339 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(*s Compact representation of explicit relocations. \\
[ELSHFT(l,n)] == lift of [n], then apply [lift l].
[ELLFT(n,l)] == apply [l] to de Bruijn > [n] i.e under n binders. *)
type lift =
| ELID
| ELSHFT of lift * int
| ELLFT of int * lift
val el_shft : int -> lift -> lift
val el_liftn : int -> lift -> lift
val el_lift : lift -> lift
val reloc_rel : int -> lift -> int
val is_lift_id : lift -> bool
(*s Explicit substitutions of type ['a]. [ESID n] = %n~END = bounded identity.
[CONS(t,S)] = $S.t$ i.e. parallel substitution. [SHIFT(n,S)] =
$(\uparrow n~o~S)$ i.e. terms in S are relocated with n vars.
[LIFT(n,S)] = $(\%n~S)$ stands for $((\uparrow n~o~S).n...1)$. *)
type 'a subs =
| ESID of int
| CONS of 'a * 'a subs
| SHIFT of int * 'a subs
| LIFT of int * 'a subs
val subs_cons: 'a * 'a subs -> 'a subs
val subs_shft: int * 'a subs -> 'a subs
val subs_lift: 'a subs -> 'a subs
val subs_liftn: int -> 'a subs -> 'a subs
val subs_shift_cons: int * 'a subs * 'a -> 'a subs
val expand_rel: int -> 'a subs -> (int * 'a, int * int option) Util.union
val is_subs_id: 'a subs -> bool
val comp : ('a subs * 'a -> 'a) -> 'a subs -> 'a subs -> 'a subs
|