1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
(*********************)
(* Lifting *)
(*********************)
(* Explicit lifts and basic operations *)
type lift =
| ELID
| ELSHFT of lift * int (* ELSHFT(l,n) == lift of n, then apply lift l *)
| ELLFT of int * lift (* ELLFT(n,l) == apply l to de Bruijn > n *)
(* i.e under n binders *)
(* compose a relocation of magnitude n *)
let rec el_shft_rec n = function
| ELSHFT(el,k) -> el_shft_rec (k+n) el
| el -> ELSHFT(el,n)
let el_shft n el = if n = 0 then el else el_shft_rec n el
(* cross n binders *)
let rec el_liftn_rec n = function
| ELID -> ELID
| ELLFT(k,el) -> el_liftn_rec (n+k) el
| el -> ELLFT(n, el)
let el_liftn n el = if n = 0 then el else el_liftn_rec n el
let el_lift el = el_liftn_rec 1 el
(* relocation of de Bruijn n in an explicit lift *)
let rec reloc_rel n = function
| ELID -> n
| ELLFT(k,el) ->
if n <= k then n else (reloc_rel (n-k) el) + k
| ELSHFT(el,k) -> (reloc_rel (n+k) el)
let rec is_lift_id = function
| ELID -> true
| ELSHFT(e,n) -> n=0 & is_lift_id e
| ELLFT (_,e) -> is_lift_id e
(*********************)
(* Substitutions *)
(*********************)
(* (bounded) explicit substitutions of type 'a *)
type 'a subs =
| ESID of int (* ESID(n) = %n END bounded identity *)
| CONS of 'a * 'a subs (* CONS(t,S) = (S.t) parallel substitution *)
| SHIFT of int * 'a subs (* SHIFT(n,S) = (^n o S) terms in S are relocated *)
(* with n vars *)
| LIFT of int * 'a subs (* LIFT(n,S) = (%n S) stands for ((^n o S).n...1) *)
(* operations of subs: collapses constructors when possible.
* Needn't be recursive if we always use these functions
*)
let subs_cons(x,s) = CONS(x,s)
let subs_liftn n = function
| ESID p -> ESID (p+n) (* bounded identity lifted extends by p *)
| LIFT (p,lenv) -> LIFT (p+n, lenv)
| lenv -> LIFT (n,lenv)
let subs_lift a = subs_liftn 1 a
let subs_liftn n a = if n = 0 then a else subs_liftn n a
let subs_shft = function
| (0, s) -> s
| (n, SHIFT (k,s1)) -> SHIFT (k+n, s1)
| (n, s) -> SHIFT (n,s)
let subs_shft (n,a) = if n = 0 then a else subs_shft(n,a)
let subs_shift_cons = function
(0, s, t) -> CONS(t,s)
| (k, SHIFT(n,s1), t) -> CONS(t,SHIFT(k+n, s1))
| (k, s, t) -> CONS(t,SHIFT(k, s));;
(* Tests whether a substitution is extensionnaly equal to the identity *)
let rec is_subs_id = function
ESID _ -> true
| LIFT(_,s) -> is_subs_id s
| SHIFT(0,s) -> is_subs_id s
| _ -> false
(* Expands de Bruijn k in the explicit substitution subs
* lams accumulates de shifts to perform when retrieving the i-th value
* the rules used are the following:
*
* [id]k --> k
* [S.t]1 --> t
* [S.t]k --> [S](k-1) if k > 1
* [^n o S] k --> [^n]([S]k)
* [(%n S)] k --> k if k <= n
* [(%n S)] k --> [^n]([S](k-n))
*
* the result is (Inr (k+lams,p)) when the variable is just relocated
* where p is None if the variable points inside subs and Some(k) if the
* variable points k bindings beyond subs.
*)
let rec exp_rel lams k subs =
match (k,subs) with
| (1, CONS (def,_)) -> Inl(lams,def)
| (_, CONS (_,l)) -> exp_rel lams (pred k) l
| (_, LIFT (n,_)) when k<=n -> Inr(lams+k,None)
| (_, LIFT (n,l)) -> exp_rel (n+lams) (k-n) l
| (_, SHIFT (n,s)) -> exp_rel (n+lams) k s
| (_, ESID n) when k<=n -> Inr(lams+k,None)
| (_, ESID n) -> Inr(lams+k,Some (k-n))
let expand_rel k subs = exp_rel 0 k subs
let rec comp mk_cl s1 s2 =
match (s1, s2) with
| _, ESID _ -> s1
| ESID _, _ -> s2
| SHIFT(k,s), _ -> subs_shft(k, comp mk_cl s s2)
| _, CONS(x,s') -> CONS(mk_cl(s1,x), comp mk_cl s1 s')
| CONS(x,s), SHIFT(k,s') -> comp mk_cl s (subs_shft(k-1, s'))
| CONS(x,s), LIFT(k,s') -> CONS(x,comp mk_cl s (subs_liftn (k-1) s'))
| LIFT(k,s), SHIFT(k',s') ->
if k<k'
then subs_shft(k, comp mk_cl s (subs_shft(k'-k, s')))
else subs_shft(k', comp mk_cl (subs_liftn (k-k') s) s')
| LIFT(k,s), LIFT(k',s') ->
if k<k'
then subs_liftn k (comp mk_cl s (subs_liftn (k'-k) s'))
else subs_liftn k' (comp mk_cl (subs_liftn (k-k') s) s')
|