blob: 303d27d3557f8af23360df0b8ef0115924b5691f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Term
(** This module defines the entry types for global declarations. This
information is entered in the environments. This includes global
constants/axioms, mutual inductive definitions, modules and module
types *)
(** {6 Local entries } *)
type local_entry =
| LocalDef of constr
| LocalAssum of constr
(** {6 Declaration of inductive types. } *)
(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}
then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)
type one_inductive_entry = {
mind_entry_typename : Id.t;
mind_entry_arity : constr;
mind_entry_template : bool; (* Use template polymorphism *)
mind_entry_consnames : Id.t list;
mind_entry_lc : constr list }
type mutual_inductive_entry = {
mind_entry_record : (Id.t option) option;
(** Some (Some id): primitive record with id the binder name of the record
in projections.
Some None: non-primitive record *)
mind_entry_finite : Decl_kinds.recursivity_kind;
mind_entry_params : (Id.t * local_entry) list;
mind_entry_inds : one_inductive_entry list;
mind_entry_polymorphic : bool;
mind_entry_universes : Univ.universe_context;
mind_entry_private : bool option }
(** {6 Constants (Definition/Axiom) } *)
type proof_output = constr Univ.in_universe_context_set * Declareops.side_effects
type const_entry_body = proof_output Future.computation
type definition_entry = {
const_entry_body : const_entry_body;
(* List of section variables *)
const_entry_secctx : Context.section_context option;
(* State id on which the completion of type checking is reported *)
const_entry_feedback : Stateid.t option;
const_entry_type : types option;
const_entry_polymorphic : bool;
const_entry_universes : Univ.universe_context;
const_entry_opaque : bool;
const_entry_inline_code : bool }
type inline = int option (* inlining level, None for no inlining *)
type parameter_entry =
Context.section_context option * bool * types Univ.in_universe_context * inline
type projection_entry = {
proj_entry_ind : mutual_inductive;
proj_entry_arg : int }
type constant_entry =
| DefinitionEntry of definition_entry
| ParameterEntry of parameter_entry
| ProjectionEntry of projection_entry
(** {6 Modules } *)
type module_struct_entry = Declarations.module_alg_expr
type module_params_entry =
(MBId.t * module_struct_entry) list (** older first *)
type module_type_entry = module_params_entry * module_struct_entry
type module_entry =
| MType of module_params_entry * module_struct_entry
| MExpr of
module_params_entry * module_struct_entry * module_struct_entry option
|