1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Declarations
open Mod_subst
open Util
open Context.Rel.Declaration
(** Operations concernings types in [Declarations] :
[constant_body], [mutual_inductive_body], [module_body] ... *)
(** {6 Arities } *)
let subst_decl_arity f g sub ar =
match ar with
| RegularArity x ->
let x' = f sub x in
if x' == x then ar
else RegularArity x'
| TemplateArity x ->
let x' = g sub x in
if x' == x then ar
else TemplateArity x'
let map_decl_arity f g = function
| RegularArity a -> RegularArity (f a)
| TemplateArity a -> TemplateArity (g a)
let hcons_template_arity ar =
{ template_param_levels = ar.template_param_levels;
(* List.smartmap (Option.smartmap Univ.hcons_univ_level) ar.template_param_levels; *)
template_level = Univ.hcons_univ ar.template_level }
(** {6 Constants } *)
let instantiate cb c =
if cb.const_polymorphic then
Vars.subst_instance_constr (Univ.UContext.instance cb.const_universes) c
else c
let body_of_constant otab cb = match cb.const_body with
| Undef _ -> None
| Def c -> Some (instantiate cb (force_constr c))
| OpaqueDef o -> Some (instantiate cb (Opaqueproof.force_proof otab o))
let type_of_constant cb =
match cb.const_type with
| RegularArity t as x ->
let t' = instantiate cb t in
if t' == t then x else RegularArity t'
| TemplateArity _ as x -> x
let constraints_of_constant otab cb = Univ.Constraint.union
(Univ.UContext.constraints cb.const_universes)
(match cb.const_body with
| Undef _ -> Univ.empty_constraint
| Def c -> Univ.empty_constraint
| OpaqueDef o ->
Univ.ContextSet.constraints (Opaqueproof.force_constraints otab o))
let universes_of_constant otab cb =
match cb.const_body with
| Undef _ | Def _ -> cb.const_universes
| OpaqueDef o ->
let body_uctxs = Opaqueproof.force_constraints otab o in
assert(not cb.const_polymorphic || Univ.ContextSet.is_empty body_uctxs);
let uctxs = Univ.ContextSet.of_context cb.const_universes in
Univ.ContextSet.to_context (Univ.ContextSet.union body_uctxs uctxs)
let universes_of_polymorphic_constant otab cb =
if cb.const_polymorphic then
let univs = universes_of_constant otab cb in
Univ.instantiate_univ_context univs
else Univ.UContext.empty
let constant_has_body cb = match cb.const_body with
| Undef _ -> false
| Def _ | OpaqueDef _ -> true
let is_opaque cb = match cb.const_body with
| OpaqueDef _ -> true
| Undef _ | Def _ -> false
(** {7 Constant substitutions } *)
let subst_rel_declaration sub =
map_constr (subst_mps sub)
let subst_rel_context sub = List.smartmap (subst_rel_declaration sub)
let subst_template_cst_arity sub (ctx,s as arity) =
let ctx' = subst_rel_context sub ctx in
if ctx==ctx' then arity else (ctx',s)
let subst_const_type sub arity =
if is_empty_subst sub then arity
else subst_mps sub arity
(** No need here to check for physical equality after substitution,
at least for Def due to the delayed substitution [subst_constr_subst]. *)
let subst_const_def sub def = match def with
| Undef _ -> def
| Def c -> Def (subst_constr sub c)
| OpaqueDef o -> OpaqueDef (Opaqueproof.subst_opaque sub o)
let subst_const_proj sub pb =
{ pb with proj_ind = subst_mind sub pb.proj_ind;
proj_type = subst_mps sub pb.proj_type;
proj_body = subst_const_type sub pb.proj_body }
let subst_const_body sub cb =
assert (List.is_empty cb.const_hyps); (* we're outside sections *)
if is_empty_subst sub then cb
else
let body' = subst_const_def sub cb.const_body in
let type' = subst_decl_arity subst_const_type subst_template_cst_arity sub cb.const_type in
let proj' = Option.smartmap (subst_const_proj sub) cb.const_proj in
if body' == cb.const_body && type' == cb.const_type
&& proj' == cb.const_proj then cb
else
{ const_hyps = [];
const_body = body';
const_type = type';
const_proj = proj';
const_body_code =
Option.map (Cemitcodes.subst_to_patch_subst sub) cb.const_body_code;
const_polymorphic = cb.const_polymorphic;
const_universes = cb.const_universes;
const_inline_code = cb.const_inline_code }
(** {7 Hash-consing of constants } *)
(** This hash-consing is currently quite partial : we only
share internal fields (e.g. constr), and not the records
themselves. But would it really bring substantial gains ? *)
let hcons_rel_decl =
map_type Term.hcons_types % map_value Term.hcons_constr % map_name Names.Name.hcons
let hcons_rel_context l = List.smartmap hcons_rel_decl l
let hcons_regular_const_arity t = Term.hcons_constr t
let hcons_template_const_arity (ctx, ar) =
(hcons_rel_context ctx, hcons_template_arity ar)
let hcons_const_type =
map_decl_arity hcons_regular_const_arity hcons_template_const_arity
let hcons_const_def = function
| Undef inl -> Undef inl
| Def l_constr ->
let constr = force_constr l_constr in
Def (from_val (Term.hcons_constr constr))
| OpaqueDef _ as x -> x (* hashconsed when turned indirect *)
let hcons_const_body cb =
{ cb with
const_body = hcons_const_def cb.const_body;
const_type = hcons_const_type cb.const_type;
const_universes = Univ.hcons_universe_context cb.const_universes }
(** {6 Inductive types } *)
let eq_recarg r1 r2 = match r1, r2 with
| Norec, Norec -> true
| Mrec i1, Mrec i2 -> Names.eq_ind i1 i2
| Imbr i1, Imbr i2 -> Names.eq_ind i1 i2
| _ -> false
let subst_recarg sub r = match r with
| Norec -> r
| Mrec (kn,i) ->
let kn' = subst_mind sub kn in
if kn==kn' then r else Mrec (kn',i)
| Imbr (kn,i) ->
let kn' = subst_mind sub kn in
if kn==kn' then r else Imbr (kn',i)
let mk_norec = Rtree.mk_node Norec [||]
let mk_paths r recargs =
Rtree.mk_node r
(Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs)
let dest_recarg p = fst (Rtree.dest_node p)
(* dest_subterms returns the sizes of each argument of each constructor of
an inductive object of size [p]. This should never be done for Norec,
because the number of sons does not correspond to the number of
constructors.
*)
let dest_subterms p =
let (ra,cstrs) = Rtree.dest_node p in
assert (match ra with Norec -> false | _ -> true);
Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs
let recarg_length p j =
let (_,cstrs) = Rtree.dest_node p in
Array.length (snd (Rtree.dest_node cstrs.(j-1)))
let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p
(** {7 Substitution of inductive declarations } *)
let subst_regular_ind_arity sub s =
let uar' = subst_mps sub s.mind_user_arity in
if uar' == s.mind_user_arity then s
else { mind_user_arity = uar'; mind_sort = s.mind_sort }
let subst_template_ind_arity sub s = s
(* FIXME records *)
let subst_ind_arity =
subst_decl_arity subst_regular_ind_arity subst_template_ind_arity
let subst_mind_packet sub mbp =
{ mind_consnames = mbp.mind_consnames;
mind_consnrealdecls = mbp.mind_consnrealdecls;
mind_consnrealargs = mbp.mind_consnrealargs;
mind_typename = mbp.mind_typename;
mind_nf_lc = Array.smartmap (subst_mps sub) mbp.mind_nf_lc;
mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt;
mind_arity = subst_ind_arity sub mbp.mind_arity;
mind_user_lc = Array.smartmap (subst_mps sub) mbp.mind_user_lc;
mind_nrealargs = mbp.mind_nrealargs;
mind_nrealdecls = mbp.mind_nrealdecls;
mind_kelim = mbp.mind_kelim;
mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*);
mind_nb_constant = mbp.mind_nb_constant;
mind_nb_args = mbp.mind_nb_args;
mind_reloc_tbl = mbp.mind_reloc_tbl }
let subst_mind_record sub (id, ps, pb as r) =
let ps' = Array.smartmap (subst_constant sub) ps in
let pb' = Array.smartmap (subst_const_proj sub) pb in
if ps' == ps && pb' == pb then r
else (id, ps', pb')
let subst_mind_body sub mib =
{ mind_record = Option.smartmap (Option.smartmap (subst_mind_record sub)) mib.mind_record ;
mind_finite = mib.mind_finite ;
mind_ntypes = mib.mind_ntypes ;
mind_hyps = (match mib.mind_hyps with [] -> [] | _ -> assert false);
mind_nparams = mib.mind_nparams;
mind_nparams_rec = mib.mind_nparams_rec;
mind_params_ctxt =
Context.Rel.map (subst_mps sub) mib.mind_params_ctxt;
mind_packets = Array.smartmap (subst_mind_packet sub) mib.mind_packets ;
mind_polymorphic = mib.mind_polymorphic;
mind_universes = mib.mind_universes;
mind_private = mib.mind_private }
let inductive_instance mib =
if mib.mind_polymorphic then
Univ.UContext.instance mib.mind_universes
else Univ.Instance.empty
let inductive_context mib =
if mib.mind_polymorphic then
Univ.instantiate_univ_context mib.mind_universes
else Univ.UContext.empty
(** {6 Hash-consing of inductive declarations } *)
let hcons_regular_ind_arity a =
{ mind_user_arity = Term.hcons_constr a.mind_user_arity;
mind_sort = Term.hcons_sorts a.mind_sort }
(** Just as for constants, this hash-consing is quite partial *)
let hcons_ind_arity =
map_decl_arity hcons_regular_ind_arity hcons_template_arity
(** Substitution of inductive declarations *)
let hcons_mind_packet oib =
let user = Array.smartmap Term.hcons_types oib.mind_user_lc in
let nf = Array.smartmap Term.hcons_types oib.mind_nf_lc in
(* Special optim : merge [mind_user_lc] and [mind_nf_lc] if possible *)
let nf = if Array.equal (==) user nf then user else nf in
{ oib with
mind_typename = Names.Id.hcons oib.mind_typename;
mind_arity_ctxt = hcons_rel_context oib.mind_arity_ctxt;
mind_arity = hcons_ind_arity oib.mind_arity;
mind_consnames = Array.smartmap Names.Id.hcons oib.mind_consnames;
mind_user_lc = user;
mind_nf_lc = nf }
let hcons_mind mib =
{ mib with
mind_packets = Array.smartmap hcons_mind_packet mib.mind_packets;
mind_params_ctxt = hcons_rel_context mib.mind_params_ctxt;
mind_universes = Univ.hcons_universe_context mib.mind_universes }
(** {6 Stm machinery } *)
let string_of_side_effect { Entries.eff } = match eff with
| Entries.SEsubproof (c,_,_) -> "P(" ^ Names.string_of_con c ^ ")"
| Entries.SEscheme (cl,_) ->
"S(" ^ String.concat ", " (List.map (fun (_,c,_,_) -> Names.string_of_con c) cl) ^ ")"
(** Hashconsing of modules *)
let hcons_functorize hty he hself f = match f with
| NoFunctor e ->
let e' = he e in
if e == e' then f else NoFunctor e'
| MoreFunctor (mid, ty, nf) ->
(** FIXME *)
let mid' = mid in
let ty' = hty ty in
let nf' = hself nf in
if mid == mid' && ty == ty' && nf == nf' then f
else MoreFunctor (mid, ty', nf')
let hcons_module_alg_expr me = me
let rec hcons_structure_field_body sb = match sb with
| SFBconst cb ->
let cb' = hcons_const_body cb in
if cb == cb' then sb else SFBconst cb'
| SFBmind mib ->
let mib' = hcons_mind mib in
if mib == mib' then sb else SFBmind mib'
| SFBmodule mb ->
let mb' = hcons_module_body mb in
if mb == mb' then sb else SFBmodule mb'
| SFBmodtype mb ->
let mb' = hcons_module_body mb in
if mb == mb' then sb else SFBmodtype mb'
and hcons_structure_body sb =
(** FIXME *)
let map (l, sfb as fb) =
let l' = Names.Label.hcons l in
let sfb' = hcons_structure_field_body sfb in
if l == l' && sfb == sfb' then fb else (l', sfb')
in
List.smartmap map sb
and hcons_module_signature ms =
hcons_functorize hcons_module_body hcons_structure_body hcons_module_signature ms
and hcons_module_expression me =
hcons_functorize hcons_module_body hcons_module_alg_expr hcons_module_expression me
and hcons_module_implementation mip = match mip with
| Abstract -> Abstract
| Algebraic me ->
let me' = hcons_module_expression me in
if me == me' then mip else Algebraic me'
| Struct ms ->
let ms' = hcons_module_signature ms in
if ms == ms' then mip else Struct ms
| FullStruct -> FullStruct
and hcons_module_body mb =
let mp' = mb.mod_mp in
let expr' = hcons_module_implementation mb.mod_expr in
let type' = hcons_module_signature mb.mod_type in
let type_alg' = mb.mod_type_alg in
let constraints' = Univ.hcons_universe_context_set mb.mod_constraints in
let delta' = mb.mod_delta in
let retroknowledge' = mb.mod_retroknowledge in
if
mb.mod_mp == mp' &&
mb.mod_expr == expr' &&
mb.mod_type == type' &&
mb.mod_type_alg == type_alg' &&
mb.mod_constraints == constraints' &&
mb.mod_delta == delta' &&
mb.mod_retroknowledge == retroknowledge'
then mb
else {
mod_mp = mp';
mod_expr = expr';
mod_type = type';
mod_type_alg = type_alg';
mod_constraints = constraints';
mod_delta = delta';
mod_retroknowledge = retroknowledge';
}
|