1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Univ
open Term
open Cemitcodes
open Sign
open Mod_subst
(** This module defines the internal representation of global
declarations. This includes global constants/axioms, mutual
inductive definitions, modules and module types *)
type engagement = ImpredicativeSet
(** {6 Representation of constants (Definition/Axiom) } *)
type polymorphic_arity = {
poly_param_levels : universe option list;
poly_level : universe;
}
type constant_type =
| NonPolymorphicType of types
| PolymorphicArity of rel_context * polymorphic_arity
type constr_substituted
val from_val : constr -> constr_substituted
val force : constr_substituted -> constr
(** Opaque proof terms are not loaded immediately, but are there
in a lazy form. Forcing this lazy may trigger some unmarshal of
the necessary structure. *)
type lazy_constr
val subst_lazy_constr : substitution -> lazy_constr -> lazy_constr
val force_lazy_constr : lazy_constr -> constr_substituted
val make_lazy_constr : constr_substituted Lazy.t -> lazy_constr
val lazy_constr_is_val : lazy_constr -> bool
val force_opaque : lazy_constr -> constr
val opaque_from_val : constr -> lazy_constr
(** Inlining level of parameters at functor applications.
None means no inlining *)
type inline = int option
(** A constant can have no body (axiom/parameter), or a
transparent body, or an opaque one *)
type constant_def =
| Undef of inline
| Def of constr_substituted
| OpaqueDef of lazy_constr
type constant_body = {
const_hyps : section_context; (** New: younger hyp at top *)
const_body : constant_def;
const_type : constant_type;
const_body_code : to_patch_substituted;
const_constraints : constraints }
val subst_const_def : substitution -> constant_def -> constant_def
val subst_const_body : substitution -> constant_body -> constant_body
(** Is there a actual body in const_body or const_body_opaque ? *)
val constant_has_body : constant_body -> bool
(** Accessing const_body_opaque or const_body *)
val body_of_constant : constant_body -> constr_substituted option
val is_opaque : constant_body -> bool
(** {6 Representation of mutual inductive types in the kernel } *)
type recarg =
| Norec
| Mrec of inductive
| Imbr of inductive
val eq_recarg : recarg -> recarg -> bool
val subst_recarg : substitution -> recarg -> recarg
type wf_paths = recarg Rtree.t
val mk_norec : wf_paths
val mk_paths : recarg -> wf_paths list array -> wf_paths
val dest_recarg : wf_paths -> recarg
val dest_subterms : wf_paths -> wf_paths list array
val recarg_length : wf_paths -> int -> int
val subst_wf_paths : substitution -> wf_paths -> wf_paths
(**
{v
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
v}
*)
type monomorphic_inductive_arity = {
mind_user_arity : constr;
mind_sort : sorts;
}
type inductive_arity =
| Monomorphic of monomorphic_inductive_arity
| Polymorphic of polymorphic_arity
type one_inductive_body = {
(** {8 Primitive datas } *)
mind_typename : identifier; (** Name of the type: [Ii] *)
mind_arity_ctxt : rel_context; (** Arity context of [Ii] with parameters: [forall params, Ui] *)
mind_arity : inductive_arity; (** Arity sort and original user arity if monomorphic *)
mind_consnames : identifier array; (** Names of the constructors: [cij] *)
mind_user_lc : types array;
(** Types of the constructors with parameters: [forall params, Tij],
where the Ik are replaced by de Bruijn index in the
context I1:forall params, U1 .. In:forall params, Un *)
(** {8 Derived datas } *)
mind_nrealargs : int; (** Number of expected real arguments of the type (no let, no params) *)
mind_nrealargs_ctxt : int; (** Length of realargs context (with let, no params) *)
mind_kelim : sorts_family list; (** List of allowed elimination sorts *)
mind_nf_lc : types array; (** Head normalized constructor types so that their conclusion is atomic *)
mind_consnrealdecls : int array;
(** Length of the signature of the constructors (with let, w/o params)
(not used in the kernel) *)
mind_recargs : wf_paths; (** Signature of recursive arguments in the constructors *)
(** {8 Datas for bytecode compilation } *)
mind_nb_constant : int; (** number of constant constructor *)
mind_nb_args : int; (** number of no constant constructor *)
mind_reloc_tbl : Cbytecodes.reloc_table;
}
type mutual_inductive_body = {
mind_packets : one_inductive_body array; (** The component of the mutual inductive block *)
mind_record : bool; (** Whether the inductive type has been declared as a record *)
mind_finite : bool; (** Whether the type is inductive or coinductive *)
mind_ntypes : int; (** Number of types in the block *)
mind_hyps : section_context; (** Section hypotheses on which the block depends *)
mind_nparams : int; (** Number of expected parameters *)
mind_nparams_rec : int; (** Number of recursively uniform (i.e. ordinary) parameters *)
mind_params_ctxt : rel_context; (** The context of parameters (includes let-in declaration) *)
mind_constraints : constraints; (** Universes constraints enforced by the inductive declaration *)
}
val subst_mind : substitution -> mutual_inductive_body -> mutual_inductive_body
(** {6 Modules: signature component specifications, module types, and
module declarations } *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
(** NB: we may encounter now (at most) twice the same label in
a [structure_body], once for a module ([SFBmodule] or [SFBmodtype])
and once for an object ([SFBconst] or [SFBmind]) *)
and structure_body = (label * structure_field_body) list
and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBapply of struct_expr_body * struct_expr_body * constraints
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body
and with_declaration_body =
With_module_body of identifier list * module_path
| With_definition_body of identifier list * constant_body
and module_body =
{ (** absolute path of the module *)
mod_mp : module_path;
(** Implementation *)
mod_expr : struct_expr_body option;
(** Signature *)
mod_type : struct_expr_body;
(** algebraic structure expression is kept
if it's relevant for extraction *)
mod_type_alg : struct_expr_body option;
(** set of all constraint in the module *)
mod_constraints : constraints;
(** quotiented set of equivalent constant and inductive name *)
mod_delta : delta_resolver;
mod_retroknowledge : Retroknowledge.action list}
and module_type_body =
{
(** Path of the module type *)
typ_mp : module_path;
typ_expr : struct_expr_body;
(** algebraic structure expression is kept
if it's relevant for extraction *)
typ_expr_alg : struct_expr_body option ;
typ_constraints : constraints;
(** quotiented set of equivalent constant and inductive name *)
typ_delta :delta_resolver}
(** Hash-consing *)
(** Here, strictly speaking, we don't perform true hash-consing
of the structure, but simply hash-cons all inner constr
and other known elements *)
val hcons_const_body : constant_body -> constant_body
val hcons_mind : mutual_inductive_body -> mutual_inductive_body
|