aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/declarations.mli
blob: 71e228b19cc45dd74eb256892cb6ed9b15855f11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Names
open Term

(** This module defines the internal representation of global
   declarations. This includes global constants/axioms, mutual
   inductive definitions, modules and module types *)

type set_predicativity = ImpredicativeSet | PredicativeSet

type engagement = set_predicativity

(** {6 Representation of constants (Definition/Axiom) } *)

(** Non-universe polymorphic mode polymorphism (Coq 8.2+): inductives
    and constants hiding inductives are implicitely polymorphic when
    applied to parameters, on the universes appearing in the whnf of
    their parameters and their conclusion, in a template style.
    
    In truely universe polymorphic mode, we always use RegularArity.
*)

type template_arity = {
  template_param_levels : Univ.universe_level option list;
  template_level : Univ.universe;
}

type ('a, 'b) declaration_arity = 
  | RegularArity of 'a
  | TemplateArity of 'b

type constant_type = (types, Context.Rel.t * template_arity) declaration_arity

(** Inlining level of parameters at functor applications.
    None means no inlining *)

type inline = int option

(** A constant can have no body (axiom/parameter), or a
    transparent body, or an opaque one *)

(** Projections are a particular kind of constant: 
    always transparent. *)

type projection_body = {
  proj_ind : mutual_inductive;
  proj_npars : int;
  proj_arg : int;
  proj_type : types; (* Type under params *)
  proj_eta : constr * types; (* Eta-expanded term and type *)
  proj_body : constr; (* For compatibility with VMs only, the match version *)
}

(* Global declarations (i.e. constants) can be either: *)
type constant_def =
  | Undef of inline                       (** a global assumption *)
  | Def of constr Mod_subst.substituted   (** or a transparent global definition *)
  | OpaqueDef of Opaqueproof.opaque       (** or an opaque global definition *)

type constant_universes = Univ.universe_context

(** The [typing_flags] are instructions to the type-checker which
    modify its behaviour. The typing flags used in the type-checking
    of a constant are tracked in their {!constant_body} so that they
    can be displayed to the user. *)
type typing_flags = {
  check_guarded : bool; (** If [false] then fixed points and co-fixed
                            points are assumed to be total. *)
  check_universes : bool; (** If [false] universe constraints are not checked *)
}

(* some contraints are in constant_constraints, some other may be in
 * the OpaqueDef *)
type constant_body = {
    const_hyps : Context.Named.t; (** New: younger hyp at top *)
    const_body : constant_def;
    const_type : constant_type;
    const_body_code : Cemitcodes.to_patch_substituted option;
    const_polymorphic : bool; (** Is it polymorphic or not *)
    const_universes : constant_universes;
    const_proj : projection_body option;
    const_inline_code : bool;
    const_typing_flags : typing_flags; (** The typing options which
                                           were used for
                                           type-checking. *)
}

(** {6 Representation of mutual inductive types in the kernel } *)

type recarg =
  | Norec
  | Mrec of inductive
  | Imbr of inductive

type wf_paths = recarg Rtree.t

(**
{v
   Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
   ...
   with      In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
v}
*)

(** Record information:
    If the record is not primitive, then None
    Otherwise, we get:
    - The identifier for the binder name of the record in primitive projections.
    - The constants associated to each projection.
    - The checked projection bodies. *)

type record_body = (Id.t * constant array * projection_body array) option

type regular_inductive_arity = {
  mind_user_arity : types;
  mind_sort : sorts;
}

type inductive_arity = (regular_inductive_arity, template_arity) declaration_arity

type one_inductive_body = {
(** {8 Primitive datas } *)

    mind_typename : Id.t; (** Name of the type: [Ii] *)

    mind_arity_ctxt : Context.Rel.t; (** Arity context of [Ii] with parameters: [forall params, Ui] *)

    mind_arity : inductive_arity; (** Arity sort and original user arity *)

    mind_consnames : Id.t array; (** Names of the constructors: [cij] *)

    mind_user_lc : types array;
 (** Types of the constructors with parameters:  [forall params, Tij],
     where the Ik are replaced by de Bruijn index in the
     context I1:forall params, U1 ..  In:forall params, Un *)

(** {8 Derived datas } *)

    mind_nrealargs : int; (** Number of expected real arguments of the type (no let, no params) *)

    mind_nrealdecls : int; (** Length of realargs context (with let, no params) *)

    mind_kelim : sorts_family list; (** List of allowed elimination sorts *)

    mind_nf_lc : types array; (** Head normalized constructor types so that their conclusion exposes the inductive type *)

    mind_consnrealargs : int array;
 (** Number of expected proper arguments of the constructors (w/o params) *)

    mind_consnrealdecls : int array;
 (** Length of the signature of the constructors (with let, w/o params) *)

    mind_recargs : wf_paths; (** Signature of recursive arguments in the constructors *)

(** {8 Datas for bytecode compilation } *)

    mind_nb_constant : int; (** number of constant constructor *)

    mind_nb_args : int; (** number of no constant constructor *)

    mind_reloc_tbl :  Cbytecodes.reloc_table;
  }

type mutual_inductive_body = {

    mind_packets : one_inductive_body array;  (** The component of the mutual inductive block *)

    mind_record : record_body option; (** The record information *)

    mind_finite : Decl_kinds.recursivity_kind;  (** Whether the type is inductive or coinductive *)

    mind_ntypes : int;  (** Number of types in the block *)

    mind_hyps : Context.Named.t;  (** Section hypotheses on which the block depends *)

    mind_nparams : int;  (** Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in) *)

    mind_nparams_rec : int;  (** Number of recursively uniform (i.e. ordinary) parameters *)

    mind_params_ctxt : Context.Rel.t;  (** The context of parameters (includes let-in declaration) *)

    mind_polymorphic : bool; (** Is it polymorphic or not *)

    mind_universes : Univ.universe_context; (** Local universe variables and constraints *)

    mind_private : bool option; (** allow pattern-matching: Some true ok, Some false blocked *)

    mind_typing_flags : typing_flags; (** typing flags at the time of the inductive creation *)
}

(** {6 Module declarations } *)

(** Functor expressions are forced to be on top of other expressions *)

type ('ty,'a) functorize =
  | NoFunctor of 'a
  | MoreFunctor of MBId.t * 'ty * ('ty,'a) functorize

(** The fully-algebraic module expressions : names, applications, 'with ...'.
    They correspond to the user entries of non-interactive modules.
    They will be later expanded into module structures in [Mod_typing],
    and won't play any role into the kernel after that : they are kept
    only for short module printing and for extraction. *)

type with_declaration =
  | WithMod of Id.t list * module_path
  | WithDef of Id.t list * constr Univ.in_universe_context

type module_alg_expr =
  | MEident of module_path
  | MEapply of module_alg_expr * module_path
  | MEwith of module_alg_expr * with_declaration

(** A component of a module structure *)

type structure_field_body =
  | SFBconst of constant_body
  | SFBmind of mutual_inductive_body
  | SFBmodule of module_body
  | SFBmodtype of module_type_body

(** A module structure is a list of labeled components.

    Note : we may encounter now (at most) twice the same label in
    a [structure_body], once for a module ([SFBmodule] or [SFBmodtype])
    and once for an object ([SFBconst] or [SFBmind]) *)

and structure_body = (Label.t * structure_field_body) list

(** A module signature is a structure, with possibly functors on top of it *)

and module_signature = (module_type_body,structure_body) functorize

(** A module expression is an algebraic expression, possibly functorized. *)

and module_expression = (module_type_body,module_alg_expr) functorize

and module_implementation =
  | Abstract (** no accessible implementation *)
  | Algebraic of module_expression (** non-interactive algebraic expression *)
  | Struct of module_signature (** interactive body *)
  | FullStruct (** special case of [Struct] : the body is exactly [mod_type] *)

and module_body =
  { mod_mp : module_path; (** absolute path of the module *)
    mod_expr : module_implementation; (** implementation *)
    mod_type : module_signature; (** expanded type *)
    mod_type_alg : module_expression option; (** algebraic type *)
    mod_constraints : Univ.ContextSet.t; (**
      set of all universes constraints in the module  *)
    mod_delta : Mod_subst.delta_resolver; (**
      quotiented set of equivalent constants and inductive names *)
    mod_retroknowledge : Retroknowledge.action list }

(** For a module, there are five possible situations:
    - [Declare Module M : T] then [mod_expr = Abstract; mod_type_alg = Some T]
    - [Module M := E] then [mod_expr = Algebraic E; mod_type_alg = None]
    - [Module M : T := E] then [mod_expr = Algebraic E; mod_type_alg = Some T]
    - [Module M. ... End M] then [mod_expr = FullStruct; mod_type_alg = None]
    - [Module M : T. ... End M] then [mod_expr = Struct; mod_type_alg = Some T]
    And of course, all these situations may be functors or not. *)

(** A [module_type_body] is just a [module_body] with no
    implementation ([mod_expr] always [Abstract]) and also
    an empty [mod_retroknowledge]. Its [mod_type_alg] contains
    the algebraic definition of this module type, or [None]
    if it has been built interactively. *)

and module_type_body = module_body

(** Extra invariants :

    - No [MEwith] inside a [mod_expr] implementation : the 'with' syntax
      is only supported for module types

    - A module application is atomic, for instance ((M N) P) :
      * the head of [MEapply] can only be another [MEapply] or a [MEident]
      * the argument of [MEapply] is now directly forced to be a [module_path].
*)