1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** The modules defined below represent a {e local context}
as defined by Chapter 4 in the Reference Manual:
A {e local context} is an ordered list of of {e local declarations}
of names that we call {e variables}.
A {e local declaration} of some variable can be either:
- a {e local assumption}, or
- a {e local definition}.
{e Local assumptions} are denoted in the Reference Manual as [(name : typ)] and
{e local definitions} are there denoted as [(name := value : typ)].
*)
open Names
(** Representation of contexts that can capture anonymous as well as non-anonymous variables.
Individual declarations are then designated by de Bruijn indexes. *)
module Rel :
sig
module Declaration :
sig
(* local declaration *)
type ('constr, 'types) pt =
| LocalAssum of Name.t * 'types (** name, type *)
| LocalDef of Name.t * 'constr * 'types (** name, value, type *)
type t = (Constr.constr, Constr.types) pt
(** Return the name bound by a given declaration. *)
val get_name : ('c, 't) pt -> Name.t
(** Return [Some value] for local-declarations and [None] for local-assumptions. *)
val get_value : ('c, 't) pt -> 'c option
(** Return the type of the name bound by a given declaration. *)
val get_type : ('c, 't) pt -> 't
(** Set the name that is bound by a given declaration. *)
val set_name : Name.t -> ('c, 't) pt -> ('c, 't) pt
(** Set the type of the bound variable in a given declaration. *)
val set_type : 't -> ('c, 't) pt -> ('c, 't) pt
(** Return [true] iff a given declaration is a local assumption. *)
val is_local_assum : ('c, 't) pt -> bool
(** Return [true] iff a given declaration is a local definition. *)
val is_local_def : ('c, 't) pt -> bool
(** Check whether any term in a given declaration satisfies a given predicate. *)
val exists : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether all terms in a given declaration satisfy a given predicate. *)
val for_all : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether the two given declarations are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Map the name bound by a given declaration. *)
val map_name : (Name.t -> Name.t) -> ('c, 't) pt -> ('c, 't) pt
(** For local assumptions, this function returns the original local assumptions.
For local definitions, this function maps the value in the local definition. *)
val map_value : ('c -> 'c) -> ('c, 't) pt -> ('c, 't) pt
(** Map the type of the name bound by a given declaration. *)
val map_type : ('t -> 't) -> ('c, 't) pt -> ('c, 't) pt
(** Map all terms in a given declaration. *)
val map_constr : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Perform a given action on all terms in a given declaration. *)
val iter_constr : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given declaration to a single value. *)
val fold_constr : ('c -> 'a -> 'a) -> ('c, 'c) pt -> 'a -> 'a
val to_tuple : ('c, 't) pt -> Name.t * 'c option * 't
end
(** Rel-context is represented as a list of declarations.
Inner-most declarations are at the beginning of the list.
Outer-most declarations are at the end of the list. *)
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
type t = Declaration.t list
(** empty rel-context *)
val empty : ('c, 't) pt
(** Return a new rel-context enriched by with a given inner-most declaration. *)
val add : ('c, 't) Declaration.pt -> ('c, 't) pt -> ('c, 't) pt
(** Return the number of {e local declarations} in a given context. *)
val length : ('c, 't) pt -> int
(** Check whether given two rel-contexts are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Return the number of {e local assumptions} in a given rel-context. *)
val nhyps : ('c, 't) pt -> int
(** Return a declaration designated by a given de Bruijn index.
@raise Not_found if the designated de Bruijn index outside the range. *)
val lookup : int -> ('c, 't) pt -> ('c, 't) Declaration.pt
(** Map all terms in a given rel-context. *)
val map : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Perform a given action on every declaration in a given rel-context. *)
val iter : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given rel-context to a single value.
Innermost declarations are processed first. *)
val fold_inside : ('a -> ('c, 't) Declaration.pt -> 'a) -> init:'a -> ('c, 't) pt -> 'a
(** Reduce all terms in a given rel-context to a single value.
Outermost declarations are processed first. *)
val fold_outside : (('c, 't) Declaration.pt -> 'a -> 'a) -> ('c, 't) pt -> init:'a -> 'a
(** Map a given rel-context to a list where each {e local assumption} is mapped to [true]
and each {e local definition} is mapped to [false]. *)
val to_tags : ('c, 't) pt -> bool list
(** [extended_list mk n Γ] builds an instance [args] such that [Γ,Δ ⊢ args:Γ]
with n = |Δ| and with the {e local definitions} of [Γ] skipped in
[args] where [mk] is used to build the corresponding variables.
Example: for [x:T, y:=c, z:U] and [n]=2, it gives [mk 5, mk 3]. *)
val to_extended_list : (int -> 'r) -> int -> ('c, 't) pt -> 'r list
(** [extended_vect n Γ] does the same, returning instead an array. *)
val to_extended_vect : (int -> 'r) -> int -> ('c, 't) pt -> 'r array
end
(** This module represents contexts that can capture non-anonymous variables.
Individual declarations are then designated by the identifiers they bind. *)
module Named :
sig
(** Representation of {e local declarations}. *)
module Declaration :
sig
type ('constr, 'types) pt =
| LocalAssum of Id.t * 'types (** identifier, type *)
| LocalDef of Id.t * 'constr * 'types (** identifier, value, type *)
type t = (Constr.constr, Constr.types) pt
(** Return the identifier bound by a given declaration. *)
val get_id : ('c, 't) pt -> Id.t
(** Return [Some value] for local-declarations and [None] for local-assumptions. *)
val get_value : ('c, 't) pt -> 'c option
(** Return the type of the name bound by a given declaration. *)
val get_type : ('c, 't) pt -> 't
(** Set the identifier that is bound by a given declaration. *)
val set_id : Id.t -> ('c, 't) pt -> ('c, 't) pt
(** Set the type of the bound variable in a given declaration. *)
val set_type : 't -> ('c, 't) pt -> ('c, 't) pt
(** Return [true] iff a given declaration is a local assumption. *)
val is_local_assum : ('c, 't) pt -> bool
(** Return [true] iff a given declaration is a local definition. *)
val is_local_def : ('c, 't) pt -> bool
(** Check whether any term in a given declaration satisfies a given predicate. *)
val exists : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether all terms in a given declaration satisfy a given predicate. *)
val for_all : ('c -> bool) -> ('c, 'c) pt -> bool
(** Check whether the two given declarations are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Map the identifier bound by a given declaration. *)
val map_id : (Id.t -> Id.t) -> ('c, 't) pt -> ('c, 't) pt
(** For local assumptions, this function returns the original local assumptions.
For local definitions, this function maps the value in the local definition. *)
val map_value : ('c -> 'c) -> ('c, 't) pt -> ('c, 't) pt
(** Map the type of the name bound by a given declaration. *)
val map_type : ('t -> 't) -> ('c, 't) pt -> ('c, 't) pt
(** Map all terms in a given declaration. *)
val map_constr : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Perform a given action on all terms in a given declaration. *)
val iter_constr : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given declaration to a single value. *)
val fold_constr : ('c -> 'a -> 'a) -> ('c, 'c) pt -> 'a -> 'a
val to_tuple : ('c, 't) pt -> Id.t * 'c option * 't
val of_tuple : Id.t * 'c option * 't -> ('c, 't) pt
(** Convert [Rel.Declaration.t] value to the corresponding [Named.Declaration.t] value.
The function provided as the first parameter determines how to translate "names" to "ids". *)
val of_rel_decl : (Name.t -> Id.t) -> ('c, 't) Rel.Declaration.pt -> ('c, 't) pt
(** Convert [Named.Declaration.t] value to the corresponding [Rel.Declaration.t] value. *)
(* TODO: Move this function to [Rel.Declaration] module and rename it to [of_named]. *)
val to_rel_decl : ('c, 't) pt -> ('c, 't) Rel.Declaration.pt
end
(** Named-context is represented as a list of declarations.
Inner-most declarations are at the beginning of the list.
Outer-most declarations are at the end of the list. *)
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
type t = Declaration.t list
(** empty named-context *)
val empty : ('c, 't) pt
(** Return a new named-context enriched by with a given inner-most declaration. *)
val add : ('c, 't) Declaration.pt -> ('c, 't) pt -> ('c, 't) pt
(** Return the number of {e local declarations} in a given named-context. *)
val length : ('c, 't) pt -> int
(** Return a declaration designated by an identifier of the variable bound in that declaration.
@raise Not_found if the designated identifier is not bound in a given named-context. *)
val lookup : Id.t -> ('c, 't) pt -> ('c, 't) Declaration.pt
(** Check whether given two named-contexts are equal. *)
val equal : ('c -> 'c -> bool) -> ('c, 'c) pt -> ('c, 'c) pt -> bool
(** Map all terms in a given named-context. *)
val map : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
(** Perform a given action on every declaration in a given named-context. *)
val iter : ('c -> unit) -> ('c, 'c) pt -> unit
(** Reduce all terms in a given named-context to a single value.
Innermost declarations are processed first. *)
val fold_inside : ('a -> ('c, 't) Declaration.pt -> 'a) -> init:'a -> ('c, 't) pt -> 'a
(** Reduce all terms in a given named-context to a single value.
Outermost declarations are processed first. *)
val fold_outside : (('c, 't) Declaration.pt -> 'a -> 'a) -> ('c, 't) pt -> init:'a -> 'a
(** Return the set of all identifiers bound in a given named-context. *)
val to_vars : ('c, 't) pt -> Id.Set.t
(** [to_instance Ω] builds an instance [args] such
that [Ω ⊢ args:Ω] where [Ω] is a named-context and with the local
definitions of [Ω] skipped. Example: for [id1:T,id2:=c,id3:U], it
gives [Var id1, Var id3]. All [idj] are supposed distinct. *)
val to_instance : (Id.t -> 'r) -> ('c, 't) pt -> 'r list
end
module Compacted :
sig
module Declaration :
sig
type ('constr, 'types) pt =
| LocalAssum of Id.t list * 'types
| LocalDef of Id.t list * 'constr * 'types
type t = (Constr.constr, Constr.types) pt
val map_constr : ('c -> 'c) -> ('c, 'c) pt -> ('c, 'c) pt
val of_named_decl : ('c, 't) Named.Declaration.pt -> ('c, 't) pt
val to_named_context : ('c, 't) pt -> ('c, 't) Named.pt
end
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
type t = Declaration.t list
val fold : (('c, 't) Declaration.pt -> 'a -> 'a) -> ('c, 't) pt -> init:'a -> 'a
end
|