1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Jean-Christophe Filliâtre out of names.ml as part of the
rebuilding of Coq around a purely functional abstract type-checker,
Aug 1999 *)
(* Miscellaneous extensions, restructurations and bug-fixes by Hugo
Herbelin and Bruno Barras *)
(* This file defines types and combinators regarding indexes-based and
names-based contexts *)
open Util
open Names
(***************************************************************************)
(* Type of assumptions *)
(***************************************************************************)
type named_declaration = Id.t * Constr.t option * Constr.t
type rel_declaration = Name.t * Constr.t option * Constr.t
let map_named_declaration f (id, (v : Constr.t option), ty) =
(id, Option.map f v, f ty)
let map_rel_declaration = map_named_declaration
let fold_named_declaration f (_, v, ty) a = f ty (Option.fold_right f v a)
let fold_rel_declaration = fold_named_declaration
let exists_named_declaration f (_, v, ty) = Option.cata f false v || f ty
let exists_rel_declaration f (_, v, ty) = Option.cata f false v || f ty
let for_all_named_declaration f (_, v, ty) = Option.cata f true v && f ty
let for_all_rel_declaration f (_, v, ty) = Option.cata f true v && f ty
let eq_named_declaration (i1, c1, t1) (i2, c2, t2) =
Id.equal i1 i2 && Option.equal Constr.equal c1 c2 && Constr.equal t1 t2
let eq_rel_declaration (n1, c1, t1) (n2, c2, t2) =
Name.equal n1 n2 && Option.equal Constr.equal c1 c2 && Constr.equal t1 t2
(***************************************************************************)
(* Type of local contexts (telescopes) *)
(***************************************************************************)
(*s Signatures of ordered optionally named variables, intended to be
accessed by de Bruijn indices (to represent bound variables) *)
type rel_context = rel_declaration list
let empty_rel_context = []
let add_rel_decl d ctxt = d::ctxt
let rec lookup_rel n sign =
match n, sign with
| 1, decl :: _ -> decl
| n, _ :: sign -> lookup_rel (n-1) sign
| _, [] -> raise Not_found
let rel_context_length = List.length
let rel_context_nhyps hyps =
let rec nhyps acc = function
| [] -> acc
| (_,None,_)::hyps -> nhyps (1+acc) hyps
| (_,Some _,_)::hyps -> nhyps acc hyps in
nhyps 0 hyps
(*s Signatures of named hypotheses. Used for section variables and
goal assumptions. *)
type named_context = named_declaration list
let empty_named_context = []
let add_named_decl d sign = d::sign
let rec lookup_named id = function
| (id',_,_ as decl) :: _ when Id.equal id id' -> decl
| _ :: sign -> lookup_named id sign
| [] -> raise Not_found
let named_context_length = List.length
let named_context_equal = List.equal eq_named_declaration
let vars_of_named_context ctx =
List.fold_left (fun accu (id, _, _) -> Id.Set.add id accu) Id.Set.empty ctx
let instance_from_named_context sign =
let filter = function
| (id, None, _) -> Some (Constr.mkVar id)
| (_, Some _, _) -> None
in
List.map_filter filter sign
let fold_named_context f l ~init = List.fold_right f l init
let fold_named_context_reverse f ~init l = List.fold_left f init l
(*s Signatures of ordered section variables *)
type section_context = named_context
let fold_rel_context f l ~init:x = List.fold_right f l x
let fold_rel_context_reverse f ~init:x l = List.fold_left f x l
let map_context f l =
let map_decl (n, body_o, typ as decl) =
let body_o' = Option.smartmap f body_o in
let typ' = f typ in
if body_o' == body_o && typ' == typ then decl else
(n, body_o', typ')
in
List.smartmap map_decl l
let map_rel_context = map_context
let map_named_context = map_context
let iter_rel_context f = List.iter (fun (_,b,t) -> f t; Option.iter f b)
let iter_named_context f = List.iter (fun (_,b,t) -> f t; Option.iter f b)
|