1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** This file defines the most important datatype of Coq, namely kernel terms,
as well as a handful of generic manipulation functions. *)
open Names
(** {6 Value under universe substitution } *)
type 'a puniverses = 'a Univ.puniverses
(** {6 Simply type aliases } *)
type pconstant = constant puniverses
type pinductive = inductive puniverses
type pconstructor = constructor puniverses
(** {6 Existential variables } *)
type existential_key = Evar.t
(** {6 Existential variables } *)
type metavariable = int
(** {6 Case annotation } *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle
| RegularStyle (** infer printing form from number of constructor *)
type case_printing =
{ ind_tags : bool list; (** tell whether letin or lambda in the arity of the inductive type *)
cstr_tags : bool list array; (** tell whether letin or lambda in the signature of each constructor *)
style : case_style }
(* INVARIANT:
* - Array.length ci_cstr_ndecls = Array.length ci_cstr_nargs
* - forall (i : 0 .. pred (Array.length ci_cstr_ndecls)),
* ci_cstr_ndecls.(i) >= ci_cstr_nargs.(i)
*)
type case_info =
{ ci_ind : inductive; (* inductive type to which belongs the value that is being matched *)
ci_npar : int; (* number of parameters of the above inductive type *)
ci_cstr_ndecls : int array; (* For each constructor, the corresponding integer determines
the number of values that can be bound in a match-construct.
NOTE: parameters of the inductive type are therefore excluded from the count *)
ci_cstr_nargs : int array; (* for each constructor, the corresponding integers determines
the number of values that can be applied to the constructor,
in addition to the parameters of the related inductive type
NOTE: "lets" are therefore excluded from the count
NOTE: parameters of the inductive type are also excluded from the count *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
(** {6 The type of constructions } *)
type t
type constr = t
(** [types] is the same as [constr] but is intended to be used for
documentation to indicate that such or such function specifically works
with {e types} (i.e. terms of type a sort).
(Rem:plurial form since [type] is a reserved ML keyword) *)
type types = constr
(** {5 Functions for dealing with constr terms. }
The following functions are intended to simplify and to uniform the
manipulation of terms. Some of these functions may be overlapped with
previous ones. *)
(** {6 Term constructors. } *)
(** Constructs a DeBrujin index (DB indices begin at 1) *)
val mkRel : int -> constr
(** Constructs a Variable *)
val mkVar : Id.t -> constr
(** Constructs an patvar named "?n" *)
val mkMeta : metavariable -> constr
(** Constructs an existential variable *)
type existential = existential_key * constr array
val mkEvar : existential -> constr
(** Construct a sort *)
val mkSort : Sorts.t -> types
val mkProp : types
val mkSet : types
val mkType : Univ.universe -> types
(** This defines the strategy to use for verifiying a Cast *)
type cast_kind = VMcast | NATIVEcast | DEFAULTcast | REVERTcast
(** Constructs the term [t1::t2], i.e. the term t{_ 1} casted with the
type t{_ 2} (that means t2 is declared as the type of t1). *)
val mkCast : constr * cast_kind * constr -> constr
(** Constructs the product [(x:t1)t2] *)
val mkProd : Name.t * types * types -> types
(** Constructs the abstraction \[x:t{_ 1}\]t{_ 2} *)
val mkLambda : Name.t * types * constr -> constr
(** Constructs the product [let x = t1 : t2 in t3] *)
val mkLetIn : Name.t * constr * types * constr -> constr
(** [mkApp (f, [|t1; ...; tN|]] constructs the application
{%html:(f t<sub>1</sub> ... t<sub>n</sub>)%}
{%latex:$(f~t_1\dots f_n)$%}. *)
val mkApp : constr * constr array -> constr
val map_puniverses : ('a -> 'b) -> 'a puniverses -> 'b puniverses
(** Constructs a constant *)
val mkConst : constant -> constr
val mkConstU : pconstant -> constr
(** Constructs a projection application *)
val mkProj : (projection * constr) -> constr
(** Inductive types *)
(** Constructs the ith (co)inductive type of the block named kn *)
val mkInd : inductive -> constr
val mkIndU : pinductive -> constr
(** Constructs the jth constructor of the ith (co)inductive type of the
block named kn. *)
val mkConstruct : constructor -> constr
val mkConstructU : pconstructor -> constr
val mkConstructUi : pinductive * int -> constr
(** Constructs a destructor of inductive type.
[mkCase ci p c ac] stand for match [c] as [x] in [I args] return [p] with [ac]
presented as describe in [ci].
[p] stucture is [fun args x -> "return clause"]
[ac]{^ ith} element is ith constructor case presented as
{e lambda construct_args (without params). case_term } *)
val mkCase : case_info * constr * constr * constr array -> constr
(** If [recindxs = [|i1,...in|]]
[funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [|b1,.....bn|]]
then [mkFix ((recindxs,i), funnames, typarray, bodies) ]
constructs the {% $ %}i{% $ %}th function of the block (counting from 0)
[Fixpoint f1 [ctx1] = b1
with f2 [ctx2] = b2
...
with fn [ctxn] = bn.]
where the length of the {% $ %}j{% $ %}th context is {% $ %}ij{% $ %}.
*)
type rec_declaration = Name.t array * types array * constr array
type fixpoint = (int array * int) * rec_declaration
val mkFix : fixpoint -> constr
(** If [funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [b1,.....bn]]
then [mkCoFix (i, (funnames, typarray, bodies))]
constructs the ith function of the block
[CoFixpoint f1 = b1
with f2 = b2
...
with fn = bn.]
*)
type cofixpoint = int * rec_declaration
val mkCoFix : cofixpoint -> constr
(** {6 Concrete type for making pattern-matching. } *)
(** [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
type ('constr, 'types) prec_declaration =
Name.t array * 'types array * 'constr array
type ('constr, 'types) pfixpoint =
(int array * int) * ('constr, 'types) prec_declaration
type ('constr, 'types) pcofixpoint =
int * ('constr, 'types) prec_declaration
type ('constr, 'types) kind_of_term =
| Rel of int
| Var of Id.t
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of Sorts.t
| Cast of 'constr * cast_kind * 'types
| Prod of Name.t * 'types * 'types (** Concrete syntax ["forall A:B,C"] is represented as [Prod (A,B,C)]. *)
| Lambda of Name.t * 'types * 'constr (** Concrete syntax ["fun A:B => C"] is represented as [Lambda (A,B,C)]. *)
| LetIn of Name.t * 'constr * 'types * 'constr (** Concrete syntax ["let A:B := C in D"] is represented as [LetIn (A,B,C,D)]. *)
| App of 'constr * 'constr array (** Concrete syntax ["(F P1 P2 ... Pn)"] is represented as [App (F, [|P1; P2; ...; Pn|])].
The {!mkApp} constructor also enforces the following invariant:
- [F] itself is not {!App}
- and [[|P1;..;Pn|]] is not empty. *)
| Const of constant puniverses
| Ind of inductive puniverses
| Construct of constructor puniverses
| Case of case_info * 'constr * 'constr * 'constr array
| Fix of ('constr, 'types) pfixpoint
| CoFix of ('constr, 'types) pcofixpoint
| Proj of projection * 'constr
(** User view of [constr]. For [App], it is ensured there is at
least one argument and the function is not itself an applicative
term *)
val kind : constr -> (constr, types) kind_of_term
(** [equal a b] is true if [a] equals [b] modulo alpha, casts,
and application grouping *)
val equal : constr -> constr -> bool
(** [eq_constr_univs u a b] is [true] if [a] equals [b] modulo alpha, casts,
application grouping and the universe equalities in [u]. *)
val eq_constr_univs : constr UGraph.check_function
(** [leq_constr_univs u a b] is [true] if [a] is convertible to [b] modulo
alpha, casts, application grouping and the universe inequalities in [u]. *)
val leq_constr_univs : constr UGraph.check_function
(** [eq_constr_univs u a b] is [true] if [a] equals [b] modulo alpha, casts,
application grouping and the universe equalities in [u]. *)
val eq_constr_univs_infer : UGraph.t -> constr -> constr -> bool Univ.constrained
(** [leq_constr_univs u a b] is [true] if [a] is convertible to [b] modulo
alpha, casts, application grouping and the universe inequalities in [u]. *)
val leq_constr_univs_infer : UGraph.t -> constr -> constr -> bool Univ.constrained
(** [eq_constr_univs a b] [true, c] if [a] equals [b] modulo alpha, casts,
application grouping and ignoring universe instances. *)
val eq_constr_nounivs : constr -> constr -> bool
(** Total ordering compatible with [equal] *)
val compare : constr -> constr -> int
(** {6 Functionals working on the immediate subterm of a construction } *)
(** [fold f acc c] folds [f] on the immediate subterms of [c]
starting from [acc] and proceeding from left to right according to
the usual representation of the constructions; it is not recursive *)
val fold : ('a -> constr -> 'a) -> 'a -> constr -> 'a
(** [map f c] maps [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val map : (constr -> constr) -> constr -> constr
(** Like {!map}, but also has an additional accumulator. *)
val fold_map : ('a -> constr -> 'a * constr) -> 'a -> constr -> 'a * constr
(** [map_with_binders g f n c] maps [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val map_with_binders :
('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr
(** [iter f c] iters [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val iter : (constr -> unit) -> constr -> unit
(** [iter_with_binders g f n c] iters [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val iter_with_binders :
('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
(** [compare_head f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's, binders
name and Cases annotations are not taken into account *)
val compare_head : (constr -> constr -> bool) -> constr -> constr -> bool
(** [compare_head_gen u s f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed, [u] to compare universe
instances (the first boolean tells if they belong to a constant), [s] to
compare sorts; Cast's, binders name and Cases annotations are not taken
into account *)
val compare_head_gen : (bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
(Sorts.t -> Sorts.t -> bool) ->
(constr -> constr -> bool) ->
constr -> constr -> bool
(** [compare_head_gen_with k1 k2 u s f c1 c2] compares [c1] and [c2]
like [compare_head_gen u s f c1 c2], except that [k1] (resp. [k2])
is used,rather than {!kind}, to expose the immediate subterms of
[c1] (resp. [c2]). *)
val compare_head_gen_with :
(constr -> (constr,types) kind_of_term) ->
(constr -> (constr,types) kind_of_term) ->
(bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
(Sorts.t -> Sorts.t -> bool) ->
(constr -> constr -> bool) ->
constr -> constr -> bool
(** [compare_head_gen_leq u s f fle c1 c2] compare [c1] and [c2] using
[f] to compare the immediate subterms of [c1] of [c2] for
conversion, [fle] for cumulativity, [u] to compare universe
instances (the first boolean tells if they belong to a constant),
[s] to compare sorts for for subtyping; Cast's, binders name and
Cases annotations are not taken into account *)
val compare_head_gen_leq : (bool -> Univ.Instance.t -> Univ.Instance.t -> bool) ->
(Sorts.t -> Sorts.t -> bool) ->
(constr -> constr -> bool) ->
(constr -> constr -> bool) ->
constr -> constr -> bool
(** {6 Hashconsing} *)
val hash : constr -> int
val case_info_hash : case_info -> int
(*********************************************************************)
val hcons : constr -> constr
(**************************************)
type values
|