1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
|
(* $Id$ *)
open Util
open Pp
open Term
open Names
open Environ
open Instantiate
open Univ
open Evd
let stats = ref false
let share = ref true
(* Profiling *)
let beta = ref 0
let delta = ref 0
let letin = ref 0
let evar = ref 0
let iota = ref 0
let prune = ref 0
let reset () =
beta := 0; delta := 0; letin := 0; evar := 0; iota := 0; prune := 0
let stop() =
mSGNL [< 'sTR"[Reds: beta=";'iNT !beta; 'sTR" delta="; 'iNT !delta;
'sTR" letin="; 'iNT !letin; 'sTR" evar="; 'iNT !evar;
'sTR" iota="; 'iNT !iota; 'sTR" prune="; 'iNT !prune; 'sTR"]" >]
(* [r_const=(true,cl)] means all constants but those in [cl] *)
(* [r_const=(false,cl)] means only those in [cl] *)
type reds = {
r_beta : bool;
r_const : bool * section_path list;
r_letin : bool;
r_evar : bool;
r_iota : bool }
let betadeltaiota_red = {
r_beta = true;
r_const = true,[];
r_letin = true;
r_evar = true;
r_iota = true }
let betaiota_red = {
r_beta = true;
r_const = false,[];
r_letin = false;
r_evar = false;
r_iota = true }
let beta_red = {
r_beta = true;
r_const = false,[];
r_letin = false;
r_evar = false;
r_iota = false }
let no_red = {
r_beta = false;
r_const = false,[];
r_letin = false;
r_evar = false;
r_iota = false }
let betaiotaletin_red = {
r_beta = true;
r_const = false,[];
r_letin = true;
r_evar = false;
r_iota = true }
let unfold_red sp = {
r_beta = true;
r_const = false,[sp];
r_letin = false;
r_evar = false;
r_iota = true }
(* Sets of reduction kinds.
Main rule: delta implies all consts (both global (= by
section_path) and local (= by Rel or Var)), all evars, and letin's.
Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of
a LetIn expression is Letin reduction *)
type red_kind =
BETA | DELTA | LETIN | EVAR | IOTA
| CONST of section_path list | CONSTBUT of section_path list
let rec red_add red = function
| BETA -> { red with r_beta = true }
| DELTA ->
if snd red.r_const <> [] then error "Conflict in the reduction flags";
{ red with r_const = true,[]; r_letin = true; r_evar = true }
| CONST cl ->
if fst red.r_const then error "Conflict in the reduction flags";
{ red with r_const = false, list_union cl (snd red.r_const) }
| CONSTBUT cl ->
if not (fst red.r_const) & snd red.r_const <> [] then
error "Conflict in the reduction flags";
{ red with r_const = true, list_union cl (snd red.r_const);
r_letin = true; r_evar = true }
| IOTA -> { red with r_iota = true }
| EVAR -> { red with r_evar = true }
| LETIN -> { red with r_letin = true }
let incr_cnt red cnt =
if red then begin
if !stats then incr cnt;
true
end else
false
let red_local_const red = fst red.r_const
(* to know if a redex is allowed, only a subset of red_kind is used ... *)
let red_set red = function
| BETA -> incr_cnt red.r_beta beta
| CONST [sp] ->
let (b,l) = red.r_const in
let c = List.mem sp l in
incr_cnt ((b & not c) or (c & not b)) delta
| LETIN -> incr_cnt red.r_letin letin
| EVAR -> incr_cnt red.r_letin evar
| IOTA -> incr_cnt red.r_iota iota
| DELTA -> fst red.r_const (* Used for Rel/Var defined in context *)
(* Not for internal use *)
| CONST _ | CONSTBUT _ -> failwith "not implemented"
(* specification of the reduction function *)
type red_mode = UNIFORM | SIMPL | WITHBACK
type flags = red_mode * reds
(* (UNIFORM,r) == r-reduce in any context
* (SIMPL,r) == bdi-reduce under cases or fix, r otherwise (like hnf does)
* (WITHBACK,r) == internal use: means we are under a case or in rec. arg. of
* fix
*)
(* Examples *)
let no_flag = (UNIFORM,no_red)
let beta = (UNIFORM,beta_red)
let betaiota = (UNIFORM,betaiota_red)
let betadeltaiota = (UNIFORM,betadeltaiota_red)
let hnf_flags = (SIMPL,betaiotaletin_red)
let unfold_flags sp = (UNIFORM, unfold_red sp)
let flags_under = function
| (SIMPL,r) -> (WITHBACK,r)
| fl -> fl
(* Reductions allowed in "normal" circumstances: reduce only what is
* specified by r *)
let red_top (_,r) rk = red_set r rk
(* Sometimes, we may want to perform a bdi reduction, to generate new redexes.
* Typically: in the Simpl reduction, terms in recursive position of a fixpoint
* are bdi-reduced, even if r is weaker.
*
* It is important to keep in mind that when we talk of "normal" or
* "head normal" forms, it always refer to the reduction specified by r,
* whatever the term context. *)
let red_under (md,r) rk =
match md with
| WITHBACK -> true
| _ -> red_set r rk
(* (bounded) explicit substitutions of type 'a *)
type 'a subs =
| ESID of int (* ESID(n) = %n END bounded identity *)
| CONS of 'a * 'a subs (* CONS(t,S) = (S.t) parallel substitution *)
| SHIFT of int * 'a subs (* SHIFT(n,S) = (^n o S) terms in S are relocated *)
(* with n vars *)
| LIFT of int * 'a subs (* LIFT(n,S) = (%n S) stands for ((^n o S).n...1) *)
(* operations of subs: collapses constructors when possible.
* Needn't be recursive if we always use these functions
*)
let subs_cons(x,s) = CONS(x,s)
let subs_liftn n = function
| ESID p -> ESID (p+n) (* bounded identity lifted extends by p *)
| LIFT (p,lenv) -> LIFT (p+n, lenv)
| lenv -> LIFT (n,lenv)
let subs_lift a = subs_liftn 1 a
let subs_shft = function
| (0, s) -> s
| (n, SHIFT (k,s1)) -> SHIFT (k+n, s1)
| (n, s) -> SHIFT (n,s)
(* Expands de Bruijn k in the explicit substitution subs
* lams accumulates de shifts to perform when retrieving the i-th value
* the rules used are the following:
*
* [id]k --> k
* [S.t]1 --> t
* [S.t]k --> [S](k-1) if k > 1
* [^n o S] k --> [^n]([S]k)
* [(%n S)] k --> k if k <= n
* [(%n S)] k --> [^n]([S](k-n))
*
* the result is (Inr (k+lams,p)) when the variable is just relocated
* where p is None if the variable points insider subs and Some(k) if the
* variable points k bindings beyond subs.
*)
let rec exp_rel lams k subs =
match (k,subs) with
| (1, CONS (def,_)) -> Inl(lams,def)
| (_, CONS (_,l)) -> exp_rel lams (pred k) l
| (_, LIFT (n,_)) when k<=n -> Inr(lams+k,None)
| (_, LIFT (n,l)) -> exp_rel (n+lams) (k-n) l
| (_, SHIFT (n,s)) -> exp_rel (n+lams) k s
| (_, ESID n) when k<=n -> Inr(lams+k,None)
| (_, ESID n) -> Inr(lams+k,None)
(* TO DEBUG
| (_, ESID n) -> Inr(lams+k,Some (k-n))
*)
let expand_rel k subs = exp_rel 0 k subs
(* Flags of reduction and cache of constants: 'a is a type that may be
* mapped to constr. 'a infos implements a cache for constants and
* abstractions, storing a representation (of type 'a) of the body of
* this constant or abstraction.
* * i_evc is the set of constraints for existential variables
* * i_tab is the cache table of the results
* * i_repr is the function to get the representation from the current
* state of the cache and the body of the constant. The result
* is stored in the table.
*
* ref_value_cache searchs in the tab, otherwise uses i_repr to
* compute the result and store it in the table. If the constant can't
* be unfolded, returns None, but does not store this failure. * This
* doesn't take the RESET into account. You mustn't keep such a table
* after a Reset. * This type is not exported. Only its two
* instantiations (cbv or lazy) are.
*)
type table_key =
| ConstBinding of constant
| EvarBinding of existential
| VarBinding of identifier
| FarRelBinding of int
type ('a, 'b) infos = {
i_flags : flags;
i_repr : ('a, 'b) infos -> int -> constr -> 'a;
i_env : env;
i_evc : 'b evar_map;
i_rels : int * (int * constr) list;
i_vars : (identifier * constr) list;
i_tab : (table_key, 'a) Hashtbl.t }
let ref_value_cache info ref =
try
Some (Hashtbl.find info.i_tab ref)
with Not_found ->
try
let n, body =
match ref with
| FarRelBinding n -> let (s,l) = info.i_rels in (n, List.assoc (s-n) l)
| VarBinding id -> 0, List.assoc id info.i_vars
| EvarBinding evc -> 0, existential_value info.i_evc evc
| ConstBinding cst -> 0, constant_value info.i_env cst
in
let v = info.i_repr info n body in
Hashtbl.add info.i_tab ref v;
Some v
with
| Not_found (* List.assoc *)
| NotInstantiatedEvar (* Evar *)
| NotEvaluableConst _ (* Const *)
-> None
let make_constr_ref n = function
| FarRelBinding _ -> mkRel n
| VarBinding id -> mkVar id
| EvarBinding evc -> mkEvar evc
| ConstBinding cst -> mkConst cst
let defined_vars flags env =
if red_local_const (snd flags) then
fold_var_context
(fun env (id,b,t) e ->
match b with
| None -> e
| Some body -> (id, body)::e)
env []
else []
let defined_rels flags env =
if red_local_const (snd flags) then
fold_rel_context
(fun env (id,b,t) (i,subs) ->
match b with
| None -> (i+1, subs)
| Some body -> (i+1, (i,body) :: subs))
env (0,[])
else (0,[])
let infos_under infos = { infos with i_flags = flags_under infos.i_flags }
(**** Call by value reduction ****)
(* The type of terms with closure. The meaning of the constructors and
* the invariants of this datatype are the following:
* VAL(k,c) represents the constr c with a delayed shift of k. c must be
* in normal form and neutral (i.e. not a lambda, a construct or a
* (co)fix, because they may produce redexes by applying them,
* or putting them in a case)
* LAM(x,a,b,S) is the term [S]([x:a]b). the substitution is propagated
* only when the abstraction is applied, and then we use the rule
* ([S]([x:a]b) c) --> [S.c]b
* This corresponds to the usual strategy of weak reduction
* FIXP(op,bd,S,args) is the fixpoint (Fix or Cofix) of bodies bd under
* the substitution S, and then applied to args. Here again,
* weak reduction.
* CONSTR(n,(sp,i),vars,args) is the n-th constructor of the i-th
* inductive type sp.
*
* Note that any term has not an equivalent in cbv_value: for example,
* a product (x:A)B must be in normal form because only VAL may
* represent it, and the argument of VAL is always in normal
* form. This remark precludes coding a head reduction with these
* functions. Anyway, does it make sense to head reduce with a
* call-by-value strategy ?
*)
type cbv_value =
| VAL of int * constr
| LAM of name * constr * constr * cbv_value subs
| FIXP of fixpoint * cbv_value subs * cbv_value list
| COFIXP of cofixpoint * cbv_value subs * cbv_value list
| CONSTR of int * (section_path * int) * cbv_value array * cbv_value list
(* les vars pourraient etre des constr,
cela permet de retarder les lift: utile ?? *)
(* relocation of a value; used when a value stored in a context is expanded
* in a larger context. e.g. [%k (S.t)](k+1) --> [^k]t (t is shifted of k)
*)
let rec shift_value n = function
| VAL (k,v) -> VAL ((k+n),v)
| LAM (x,a,b,s) -> LAM (x,a,b,subs_shft (n,s))
| FIXP (fix,s,args) ->
FIXP (fix,subs_shft (n,s), List.map (shift_value n) args)
| COFIXP (cofix,s,args) ->
COFIXP (cofix,subs_shft (n,s), List.map (shift_value n) args)
| CONSTR (i,spi,vars,args) ->
CONSTR (i, spi, Array.map (shift_value n) vars,
List.map (shift_value n) args)
(* Contracts a fixpoint: given a fixpoint and a substitution,
* returns the corresponding fixpoint body, and the substitution in which
* it should be evaluated: its first variables are the fixpoint bodies
* (S, (fix Fi {F0 := T0 .. Fn-1 := Tn-1}))
* -> (S. [S]F0 . [S]F1 ... . [S]Fn-1, Ti)
*)
let contract_fixp env ((reci,i),(_,_,bds as bodies)) =
let make_body j = FIXP(((reci,j),bodies), env, []) in
let n = Array.length bds in
let rec subst_bodies_from_i i subs =
if i=n then subs
else subst_bodies_from_i (i+1) (subs_cons (make_body i, subs))
in
subst_bodies_from_i 0 env, bds.(i)
let contract_cofixp env (i,(_,_,bds as bodies)) =
let make_body j = COFIXP((j,bodies), env, []) in
let n = Array.length bds in
let rec subst_bodies_from_i i subs =
if i=n then subs
else subst_bodies_from_i (i+1) (subs_cons (make_body i, subs))
in
subst_bodies_from_i 0 env, bds.(i)
(* type of terms with a hole. This hole can appear only under App or Case.
* TOP means the term is considered without context
* APP(l,stk) means the term is applied to l, and then we have the context st
* this corresponds to the application stack of the KAM.
* The members of l are values: we evaluate arguments before the function.
* CASE(t,br,pat,S,stk) means the term is in a case (which is himself in stk
* t is the type of the case and br are the branches, all of them under
* the subs S, pat is information on the patterns of the Case
* (Weak reduction: we propagate the sub only when the selected branch
* is determined)
*
* Important remark: the APPs should be collapsed:
* (APP (l,(APP ...))) forbidden
*)
type stack =
| TOP
| APP of cbv_value list * stack
| CASE of constr * constr array * case_info * cbv_value subs * stack
(* Adds an application list. Collapse APPs! *)
let stack_app appl stack =
match (appl, stack) with
| ([], _) -> stack
| (_, APP(args,stk)) -> APP(appl@args,stk)
| _ -> APP(appl, stack)
(* Tests if we are in a case (modulo some applications) *)
let under_case_stack = function
| (CASE _ | APP(_,CASE _)) -> true
| _ -> false
(* Tells if the reduction rk is allowed by flags under a given stack.
* The stack is useful when flags is (SIMPL,r) because in that case,
* we perform bdi-reduction under the Case, or r-reduction otherwise
*)
let red_allowed flags stack rk =
if under_case_stack stack then
red_under flags rk
else
red_top flags rk
let red_allowed_ref flags stack = function
| FarRelBinding _ | VarBinding _ -> red_allowed flags stack DELTA
| EvarBinding _ -> red_allowed flags stack EVAR
| ConstBinding (sp,_) -> red_allowed flags stack (CONST [sp])
(* Transfer application lists from a value to the stack
* useful because fixpoints may be totally applied in several times
*)
let strip_appl head stack =
match head with
| FIXP (fix,env,app) -> (FIXP(fix,env,[]), stack_app app stack)
| COFIXP (cofix,env,app) -> (COFIXP(cofix,env,[]), stack_app app stack)
| CONSTR (i,spi,vars,app) -> (CONSTR(i,spi,vars,[]), stack_app app stack)
| _ -> (head, stack)
(* Invariant: if the result of norm_head is CONSTR or (CO)FIXP, its last
* argument is [].
* Because we must put all the applied terms in the stack.
*)
let reduce_const_body redfun v stk =
if under_case_stack stk then strip_appl (redfun v) stk else strip_appl v stk
(* Tests if fixpoint reduction is possible. A reduction function is given as
argument *)
let rec check_app_constr redfun = function
| ([], _) -> false
| ((CONSTR _)::_, 0) -> true
| (t::_, 0) -> (* TODO: partager ce calcul *)
(match redfun t with
| CONSTR _ -> true
| _ -> false)
| (_::l, n) -> check_app_constr redfun (l,(pred n))
let fixp_reducible redfun flgs ((reci,i),_) stk =
if red_allowed flgs stk IOTA then
match stk with (* !!! for Acc_rec: reci.(i) = -2 *)
| APP(appl,_) -> reci.(i) >=0 & check_app_constr redfun (appl, reci.(i))
| _ -> false
else
false
let cofixp_reducible redfun flgs _ stk =
if red_allowed flgs stk IOTA then
match stk with
| (CASE _ | APP(_,CASE _)) -> true
| _ -> false
else
false
let mindsp_nparams env sp =
let mib = lookup_mind sp env in mib.Declarations.mind_nparams
(* The main recursive functions
*
* Go under applications and cases (pushed in the stack), expand head
* constants or substitued de Bruijn, and try to make appear a
* constructor, a lambda or a fixp in the head. If not, it is a value
* and is completely computed here. The head redexes are NOT reduced:
* the function returns the pair of a cbv_value and its stack. *
* Invariant: if the result of norm_head is CONSTR or (CO)FIXP, it last
* argument is []. Because we must put all the applied terms in the
* stack. *)
let rec norm_head info env t stack =
(* no reduction under binders *)
match kind_of_term t with
(* stack grows (remove casts) *)
| IsApp (head,args) -> (* Applied terms are normalized immediately;
they could be computed when getting out of the stack *)
let nargs = Array.map (cbv_stack_term info TOP env) args in
norm_head info env head (stack_app (Array.to_list nargs) stack)
| IsMutCase (ci,p,c,v) -> norm_head info env c (CASE(p,v,ci,env,stack))
| IsCast (ct,_) -> norm_head info env ct stack
(* constants, axioms
* the first pattern is CRUCIAL, n=0 happens very often:
* when reducing closed terms, n is always 0 *)
| IsRel i -> (match expand_rel i env with
| Inl (0,v) ->
reduce_const_body (cbv_norm_more info env) v stack
| Inl (n,v) ->
reduce_const_body
(cbv_norm_more info env) (shift_value n v) stack
| Inr (n,None) ->
(VAL(0, mkRel n), stack)
| Inr (n,Some p) ->
norm_head_ref n info env stack (FarRelBinding p))
| IsVar id -> norm_head_ref 0 info env stack (VarBinding id)
| IsConst (sp,vars) ->
let normt = (sp,Array.map (cbv_norm_term info env) vars) in
norm_head_ref 0 info env stack (ConstBinding normt)
| IsEvar (n,vars) ->
let normt = (n,Array.map (cbv_norm_term info env) vars) in
norm_head_ref 0 info env stack (EvarBinding normt)
| IsLetIn (x, b, t, c) ->
if red_allowed info.i_flags stack LETIN then
let b = cbv_stack_term info TOP env b in
norm_head info (subs_cons (b,env)) c stack
else
let normt =
mkLetIn (x, cbv_norm_term info env b,
cbv_norm_term info env t,
cbv_norm_term info (subs_lift env) c) in
(VAL(0,normt), stack) (* Considérer une coupure commutative ? *)
(* non-neutral cases *)
| IsLambda (x,a,b) -> (LAM(x,a,b,env), stack)
| IsFix fix -> (FIXP(fix,env,[]), stack)
| IsCoFix cofix -> (COFIXP(cofix,env,[]), stack)
| IsMutConstruct ((spi,i),vars) ->
(CONSTR(i,spi, Array.map (cbv_stack_term info TOP env) vars,[]), stack)
(* neutral cases *)
| (IsSort _ | IsMeta _ | IsXtra _ ) -> (VAL(0, t), stack)
| IsMutInd (sp,vars) ->
(VAL(0, mkMutInd (sp, Array.map (cbv_norm_term info env) vars)), stack)
| IsProd (x,t,c) ->
(VAL(0, mkProd (x, cbv_norm_term info env t,
cbv_norm_term info (subs_lift env) c)),
stack)
and norm_head_ref k info env stack normt =
if red_allowed_ref info.i_flags stack normt then
match ref_value_cache info normt with
| Some body ->
reduce_const_body (cbv_norm_more info env) (shift_value k body) stack
| None -> (VAL(0,make_constr_ref k normt), stack)
else (VAL(0,make_constr_ref k normt), stack)
(* cbv_stack_term performs weak reduction on constr t under the subs
* env, with context stack, i.e. ([env]t stack). First computes weak
* head normal form of t and checks if a redex appears with the stack.
* If so, recursive call to reach the real head normal form. If not,
* we build a value.
*)
and cbv_stack_term info stack env t =
match norm_head info env t stack with
(* a lambda meets an application -> BETA *)
| (LAM (x,a,b,env), APP (arg::args, stk))
when red_allowed info.i_flags stk BETA ->
let subs = subs_cons (arg,env) in
cbv_stack_term info (stack_app args stk) subs b
(* a Fix applied enough -> IOTA *)
| (FIXP(fix,env,_), stk)
when fixp_reducible (cbv_norm_more info env) info.i_flags fix stk ->
let (envf,redfix) = contract_fixp env fix in
cbv_stack_term info stk envf redfix
(* constructor guard satisfied or Cofix in a Case -> IOTA *)
| (COFIXP(cofix,env,_), stk)
when cofixp_reducible (cbv_norm_more info env) info.i_flags cofix stk->
let (envf,redfix) = contract_cofixp env cofix in
cbv_stack_term info stk envf redfix
(* constructor in a Case -> IOTA
(use red_under because we know there is a Case) *)
| (CONSTR(n,(sp,_),_,_), APP(args,CASE(_,br,_,env,stk)))
when red_under info.i_flags IOTA ->
let nparams = mindsp_nparams info.i_env sp in
let real_args = snd (list_chop nparams args) in
cbv_stack_term info (stack_app real_args stk) env br.(n-1)
(* constructor of arity 0 in a Case -> IOTA ( " " )*)
| (CONSTR(n,_,_,_), CASE(_,br,_,env,stk))
when red_under info.i_flags IOTA ->
cbv_stack_term info stk env br.(n-1)
(* may be reduced later by application *)
| (head, TOP) -> head
| (FIXP(fix,env,_), APP(appl,TOP)) -> FIXP(fix,env,appl)
| (COFIXP(cofix,env,_), APP(appl,TOP)) -> COFIXP(cofix,env,appl)
| (CONSTR(n,spi,vars,_), APP(appl,TOP)) -> CONSTR(n,spi,vars,appl)
(* definitely a value *)
| (head,stk) -> VAL(0,apply_stack info (cbv_norm_value info head) stk)
(* if we are in SIMPL mode, maybe v isn't reduced enough *)
and cbv_norm_more info env v =
match (v, info.i_flags) with
| (VAL(k,t), ((SIMPL|WITHBACK),_)) ->
cbv_stack_term (infos_under info) TOP (subs_shft (k,env)) t
| _ -> v
(* When we are sure t will never produce a redex with its stack, we
* normalize (even under binders) the applied terms and we build the
* final term
*)
and apply_stack info t = function
| TOP -> t
| APP (args,st) ->
apply_stack info (applistc t (List.map (cbv_norm_value info) args)) st
| CASE (ty,br,ci,env,st) ->
apply_stack info
(mkMutCase (ci, cbv_norm_term info env ty, t,
Array.map (cbv_norm_term info env) br))
st
(* performs the reduction on a constr, and returns a constr *)
and cbv_norm_term info env t =
(* reduction under binders *)
cbv_norm_value info (cbv_stack_term info TOP env t)
(* reduction of a cbv_value to a constr *)
and cbv_norm_value info = function (* reduction under binders *)
| VAL (n,v) -> lift n v
| LAM (x,a,b,env) ->
mkLambda (x, cbv_norm_term info env a,
cbv_norm_term info (subs_lift env) b)
| FIXP ((lij,(lty,lna,bds)),env,args) ->
applistc
(mkFix (lij,
(Array.map (cbv_norm_term info env) lty, lna,
Array.map (cbv_norm_term info
(subs_liftn (Array.length lty) env)) bds)))
(List.map (cbv_norm_value info) args)
| COFIXP ((j,(lty,lna,bds)),env,args) ->
applistc
(mkCoFix (j,
(Array.map (cbv_norm_term info env) lty, lna,
Array.map (cbv_norm_term info
(subs_liftn (Array.length lty) env)) bds)))
(List.map (cbv_norm_value info) args)
| CONSTR (n,spi,vars,args) ->
applistc
(mkMutConstruct ((spi,n), Array.map (cbv_norm_value info) vars))
(List.map (cbv_norm_value info) args)
type 'a cbv_infos = (cbv_value, 'a) infos
(* constant bodies are normalized at the first expansion *)
let create_cbv_infos flgs env sigma =
{ i_flags = flgs;
i_repr = (fun old_info n c -> cbv_stack_term old_info TOP (ESID (-n)) c);
i_env = env;
i_evc = sigma;
i_rels = defined_rels flgs env;
i_vars = defined_vars flgs env;
i_tab = Hashtbl.create 17 }
(* with profiling *)
let cbv_norm infos constr =
let repr_fun = cbv_stack_term infos TOP in
if !stats then begin
reset();
let r= cbv_norm_term infos (ESID 0) constr in
stop();
r
end else
cbv_norm_term infos (ESID 0) constr
(**** End of call by value ****)
(* Lazy reduction: the one used in kernel operations *)
(* type of shared terms. freeze and frterm are mutually recursive.
* Clone of the Generic.term structure, but completely mutable, and
* annotated with booleans (true when we noticed that the term is
* normal and neutral) FLIFT is a delayed shift; allows sharing
* between 2 lifted copies of a given term FFROZEN is a delayed
* substitution applied to a constr
*)
type freeze = {
mutable norm: bool;
mutable term: frterm }
and frterm =
| FRel of int
| FAtom of constr
| FCast of freeze * freeze
| FFlex of frreference * freeze array
| FInd of inductive_path * freeze array
| FConstruct of constructor_path * freeze array
| FApp of freeze * freeze array
| FFix of (int array * int) * (freeze array * name list * freeze array)
* constr array * freeze subs
| FCoFix of int * (freeze array * name list * freeze array)
* constr array * freeze subs
| FCases of case_info * freeze * freeze * freeze array
| FLambda of name * freeze * freeze * constr * freeze subs
| FProd of name * freeze * freeze * constr * freeze subs
| FLetIn of name * freeze * freeze * freeze * constr * freeze subs
| FLIFT of int * freeze
| FFROZEN of constr * freeze subs
and frreference =
| FConst of section_path
| FEvar of existential_key
| FVar of identifier
| FFarRel of int * int
(*
let typed_map f t = f (body_of_type t), level_of_type t
let typed_unmap f (t,s) = make_typed (f t) s
*)
(**)
let typed_map f t = f (body_of_type t)
let typed_unmap f t = make_typed_lazy (f t) (fun _ -> assert false)
(**)
let frterm_of v = v.term
let is_val v = v.norm
(* Copies v2 in v1 and returns v1. The only side effect is here! The
* invariant of the reduction functions is that the interpretation of
* v2 as a constr (e.g term_of_freeze below) is a reduct of the
* interpretation of v1.
*
* The implementation without side effect, but losing sharing,
* simply returns v2. *)
let freeze_assign v1 v2 =
if !share then begin
v1.norm <- v2.norm;
v1.term <- v2.term;
v1
end else
v2
(* lift a freeze and yields a frterm. No loss of sharing: the
* resulting term takes advantage of any reduction performed in v.
* i.e.: if (lift_frterm n v) yields w, reductions in w are reported
* in w.term (yes: w.term, not only in w) The lifts are collapsed,
* because we often insert lifts of 0. *)
let rec lift_frterm n v =
match v.term with
| FLIFT (k,f) -> lift_frterm (k+n) f
| FAtom _ as ft -> { norm = true; term = ft }
(* gene: closed terms *)
| _ -> { norm = v.norm; term = FLIFT (n,v) }
(* lift a freeze, keep sharing, but spare records when possible (case
* n=0 ... ) The difference with lift_frterm is that reductions in v
* are reported only in w, and not necessarily in w.term (with
* notations above). *)
let lift_freeze n v =
match (n, v.term) with
| (0, _) | (_, FAtom _ ) -> v (* identity lift or closed term *)
| _ -> lift_frterm n v
let freeze env t = { norm = false; term = FFROZEN (t,env) }
let freeze_vect env v = Array.map (freeze env) v
let freeze_list env l = List.map (freeze env) l
let freeze_rec env (tys,lna,bds) =
let env' = subs_liftn (Array.length bds) env in
(Array.map (freeze env) tys, lna, Array.map (freeze env') bds)
(* pourrait peut-etre remplacer freeze ?! (et alors FFROZEN
* deviendrait inutile) *)
let rec traverse_term env t =
match kind_of_term t with
| IsRel i -> (match expand_rel i env with
| Inl (lams,v) -> (lift_frterm lams v)
| Inr (k,None) -> { norm = true; term = FRel k }
| Inr (k,Some p) ->
{ norm = false; term = FFlex (FFarRel (k,p), [||]) })
| IsVar x -> { norm = false; term = FFlex (FVar x, [||]) }
| IsMeta _ | IsSort _ | IsXtra _ -> { norm = true; term = FAtom t }
| IsCast (a,b) ->
{ norm = false;
term = FCast (traverse_term env a, traverse_term env b)}
| IsApp (f,v) ->
{ norm = false;
term = FApp (traverse_term env f, Array.map (traverse_term env) v) }
| IsMutInd (sp,v) ->
{ norm = false; term = FInd (sp, Array.map (traverse_term env) v) }
| IsMutConstruct (sp,v) ->
{ norm = false; term = FConstruct (sp,Array.map (traverse_term env) v)}
| IsConst (sp,v) ->
{ norm = false;
term = FFlex (FConst sp, Array.map (traverse_term env) v) }
| IsEvar (sp,v) ->
{ norm = false;
term = FFlex (FEvar sp, Array.map (traverse_term env) v) }
| IsMutCase (ci,p,c,v) ->
{ norm = false;
term = FCases (ci, traverse_term env p, traverse_term env c,
Array.map (traverse_term env) v) }
| IsFix (op,(tys,lna,bds)) ->
let env' = subs_liftn (Array.length bds) env in
{ norm = false;
term = FFix (op, (Array.map (traverse_term env) tys, lna,
Array.map (traverse_term env') bds),
bds, env) }
| IsCoFix (op,(tys,lna,bds)) ->
let env' = subs_liftn (Array.length bds) env in
{ norm = false;
term = FCoFix (op, (Array.map (traverse_term env) tys, lna,
Array.map (traverse_term env') bds),
bds, env) }
| IsLambda (n,t,c) ->
{ norm = false;
term = FLambda (n, traverse_term env t,
traverse_term (subs_lift env) c,
c, env) }
| IsProd (n,t,c) ->
{ norm = false;
term = FProd (n, traverse_term env t,
traverse_term (subs_lift env) c,
c, env) }
| IsLetIn (n,b,t,c) ->
{ norm = false;
term = FLetIn (n, traverse_term env b, traverse_term env t,
traverse_term (subs_lift env) c,
c, env) }
(* Back to regular terms: remove all FFROZEN, keep casts (since this
* fun is not dedicated to the Calculus of Constructions).
*)
let rec lift_term_of_freeze lfts v =
match v.term with
| FRel i -> mkRel (reloc_rel i lfts)
| FFlex (FVar x, v) -> assert (v=[||]); mkVar x
| FFlex (FFarRel (i,p), v) -> assert (v=[||]); mkRel (reloc_rel i lfts)
| FAtom c -> c
| FCast (a,b) ->
mkCast (lift_term_of_freeze lfts a, lift_term_of_freeze lfts b)
| FFlex (FConst op,ve) ->
mkConst (op, Array.map (lift_term_of_freeze lfts) ve)
| FFlex (FEvar op,ve) ->
mkEvar (op, Array.map (lift_term_of_freeze lfts) ve)
| FInd (op,ve) ->
mkMutInd (op, Array.map (lift_term_of_freeze lfts) ve)
| FConstruct (op,ve) ->
mkMutConstruct (op, Array.map (lift_term_of_freeze lfts) ve)
| FCases (ci,p,c,ve) ->
mkMutCase (ci, lift_term_of_freeze lfts p,
lift_term_of_freeze lfts c,
Array.map (lift_term_of_freeze lfts) ve)
| FFix (op,(tys,lna,bds),_,_) ->
let lfts' = el_liftn (Array.length bds) lfts in
mkFix (op, (Array.map (lift_term_of_freeze lfts) tys, lna,
Array.map (lift_term_of_freeze lfts') bds))
| FCoFix (op,(tys,lna,bds),_,_) ->
let lfts' = el_liftn (Array.length bds) lfts in
mkCoFix (op, (Array.map (lift_term_of_freeze lfts) tys, lna,
Array.map (lift_term_of_freeze lfts') bds))
| FApp (f,ve) ->
mkApp (lift_term_of_freeze lfts f,
Array.map (lift_term_of_freeze lfts) ve)
| FLambda (n,t,c,_,_) ->
mkLambda (n, lift_term_of_freeze lfts t,
lift_term_of_freeze (el_lift lfts) c)
| FProd (n,t,c,_,_) ->
mkProd (n, lift_term_of_freeze lfts t,
lift_term_of_freeze (el_lift lfts) c)
| FLetIn (n,b,t,c,_,_) ->
mkLetIn (n, lift_term_of_freeze lfts b,
lift_term_of_freeze lfts t,
lift_term_of_freeze (el_lift lfts) c)
| FLIFT (k,a) -> lift_term_of_freeze (el_shft k lfts) a
| FFROZEN (t,env) ->
let unfv = freeze_assign v (traverse_term env t) in
lift_term_of_freeze lfts unfv
(* This function defines the correspondance between constr and freeze *)
let term_of_freeze v = lift_term_of_freeze ELID v
let applist_of_freeze appl = Array.to_list (Array.map term_of_freeze appl)
(* fstrong applies unfreeze_fun recursively on the (freeze) term and
* yields a term. Assumes that the unfreeze_fun never returns a
* FFROZEN term.
*)
let rec fstrong unfreeze_fun lfts v =
match (unfreeze_fun v).term with
| FRel i -> mkRel (reloc_rel i lfts)
| FFlex (FFarRel (i,p), v) -> assert (v=[||]); mkRel (reloc_rel i lfts)
| FFlex (FVar x, v) -> assert (v=[||]); mkVar x
| FAtom c -> c
| FCast (a,b) ->
mkCast (fstrong unfreeze_fun lfts a, fstrong unfreeze_fun lfts b)
| FFlex (FConst op,ve) ->
mkConst (op, Array.map (fstrong unfreeze_fun lfts) ve)
| FFlex (FEvar op,ve) ->
mkEvar (op, Array.map (fstrong unfreeze_fun lfts) ve)
| FInd (op,ve) ->
mkMutInd (op, Array.map (fstrong unfreeze_fun lfts) ve)
| FConstruct (op,ve) ->
mkMutConstruct (op, Array.map (fstrong unfreeze_fun lfts) ve)
| FCases (ci,p,c,ve) ->
mkMutCase (ci, fstrong unfreeze_fun lfts p,
fstrong unfreeze_fun lfts c,
Array.map (fstrong unfreeze_fun lfts) ve)
| FFix (op,(tys,lna,bds),_,_) ->
let lfts' = el_liftn (Array.length bds) lfts in
mkFix (op, (Array.map (fstrong unfreeze_fun lfts) tys, lna,
Array.map (fstrong unfreeze_fun lfts') bds))
| FCoFix (op,(tys,lna,bds),_,_) ->
let lfts' = el_liftn (Array.length bds) lfts in
mkCoFix (op, (Array.map (fstrong unfreeze_fun lfts) tys, lna,
Array.map (fstrong unfreeze_fun lfts') bds))
| FApp (f,ve) ->
mkApp (fstrong unfreeze_fun lfts f,
Array.map (fstrong unfreeze_fun lfts) ve)
| FLambda (n,t,c,_,_) ->
mkLambda (n, fstrong unfreeze_fun lfts t,
fstrong unfreeze_fun (el_lift lfts) c)
| FProd (n,t,c,_,_) ->
mkProd (n, fstrong unfreeze_fun lfts t,
fstrong unfreeze_fun (el_lift lfts) c)
| FLetIn (n,b,t,c,_,_) ->
mkLetIn (n, fstrong unfreeze_fun lfts b,
fstrong unfreeze_fun lfts t,
fstrong unfreeze_fun (el_lift lfts) c)
| FLIFT (k,a) -> fstrong unfreeze_fun (el_shft k lfts) a
| FFROZEN _ -> anomaly "Closure.fstrong"
(* Build a freeze, which represents the substitution of arg in t
* Used to constract a beta-redex:
* [^depth](FLamda(S,t)) arg -> [(^depth o S).arg]t
*)
let rec contract_subst depth t subs arg =
freeze (subs_cons (arg, subs_shft (depth,subs))) t
(* Calculus of Constructions *)
type fconstr = freeze
(* Remove head lifts, applications and casts *)
let rec strip_frterm n v stack =
match v.term with
| FLIFT (k,f) -> strip_frterm (k+n) f stack
| FApp (f,args) ->
strip_frterm n f ((Array.map (lift_freeze n) args)::stack)
| FCast (f,_) -> (strip_frterm n f stack)
| _ -> (n, v, Array.concat stack)
let strip_freeze v = strip_frterm 0 v []
(* Same as contract_fixp, but producing a freeze *)
(* does not deal with FLIFT *)
let contract_fix_vect fix =
let (thisbody, make_body, env, nfix) =
match fix with
| FFix ((reci,i),def,bds,env) ->
(bds.(i),
(fun j -> { norm = false; term = FFix ((reci,j),def,bds,env) }),
env, Array.length bds)
| FCoFix (i,def,bds,env) ->
(bds.(i),
(fun j -> { norm = false; term = FCoFix (j,def,bds,env) }),
env, Array.length bds)
| _ -> anomaly "Closure.contract_fix_vect: not a (co)fixpoint"
in
let rec subst_bodies_from_i i env =
if i = nfix then
freeze env thisbody
else
subst_bodies_from_i (i+1) (subs_cons (make_body i, env))
in
subst_bodies_from_i 0 env
(* CoFix reductions are context dependent. Therefore, they cannot be shared. *)
let copy_case ci p ft bl =
(* Is the copy of bl necessary ?? I'd guess no HH *)
{ norm = false; term = FCases (ci,p,ft,Array.copy bl) }
(* Check if the case argument enables iota-reduction *)
type case_status =
| CONSTRUCTOR of int * fconstr array
| COFIX of int * int * (fconstr array * name list * fconstr array) *
fconstr array * constr array * freeze subs
| IRREDUCTIBLE
let constr_or_cofix env v =
let (lft_hd, head, appl) = strip_freeze v in
match head.term with
| FConstruct (((indsp,_),i),_) ->
let args = snd (array_chop (mindsp_nparams env indsp) appl) in
CONSTRUCTOR (i, args)
| FCoFix (bnum, def, bds, env) -> COFIX (lft_hd,bnum,def,appl, bds, env)
| _ -> IRREDUCTIBLE
let fix_reducible env unf_fun n appl =
if n < Array.length appl & n >= 0 (* e.g for Acc_rec: n = -2 *) then
let v = unf_fun appl.(n) in
match constr_or_cofix env v with
| CONSTRUCTOR _ -> true
| _ -> false
else
false
(* unfreeze computes the weak head normal form of v (according to the
* flags in info) and updates the mutable term.
*)
let rec unfreeze info v =
freeze_assign v (whnf_frterm info v)
(* weak head normal form
* Sharing info: the physical location of the ouput of this function
* doesn't matter (only the values of its fields do).
*)
and whnf_frterm info ft =
if ft.norm then begin
incr prune; ft
end else
match ft.term with
| FFROZEN (t,env) -> whnf_term info env t
| FLIFT (k,f) ->
let uf = unfreeze info f in
{ norm = uf.norm; term = FLIFT(k, uf) }
| FCast (f,_) -> whnf_frterm info f (* remove outer casts *)
| FApp (f,appl) -> whnf_apply info f appl
| FFlex (FConst sp,vars) ->
if red_under info.i_flags (CONST [sp]) then
let cst = (sp, Array.map term_of_freeze vars) in
(match ref_value_cache info (ConstBinding cst) with
| Some def ->
let udef = unfreeze info def in
lift_frterm 0 udef
| None -> { norm = array_for_all is_val vars; term = ft.term })
else
ft
| FFlex (FEvar ev,vars) ->
if red_under info.i_flags EVAR then
let ev = (ev, Array.map term_of_freeze vars) in
(match ref_value_cache info (EvarBinding ev) with
| Some def ->
let udef = unfreeze info def in
lift_frterm 0 udef
| None -> { norm = array_for_all is_val vars; term = ft.term })
else
ft
| FFlex (FVar id, _) as t->
if red_under info.i_flags DELTA then
match ref_value_cache info (VarBinding id) with
| Some def ->
let udef = unfreeze info def in
lift_frterm 0 udef
| None -> { norm = true; term = t }
else ft
| FFlex (FFarRel (n,k),_) as t ->
if red_under info.i_flags DELTA then
match ref_value_cache info (FarRelBinding k) with
| Some def ->
let udef = unfreeze info def in
lift_frterm n udef
| None -> { norm = true; term = t }
else ft
| FCases (ci,p,co,bl) ->
if red_under info.i_flags IOTA then
let c = unfreeze (infos_under info) co in
(match constr_or_cofix info.i_env c with
| CONSTRUCTOR (n,real_args) when n <= Array.length bl ->
whnf_apply info bl.(n-1) real_args
| COFIX (lft_hd,bnum,def,appl,bds,env) ->
let cofix = contract_fix_vect (FCoFix (bnum,def,bds,env)) in
let red_cofix =
whnf_apply info (lift_freeze lft_hd cofix) appl in
whnf_frterm info (copy_case ci p red_cofix bl)
| _ ->
{ norm = is_val p & is_val co & array_for_all is_val bl;
term = ft.term })
else
ft
| FLetIn (na,b,fd,fc,d,subs) ->
let c = unfreeze info b in
if red_under info.i_flags LETIN then
contract_subst 0 d subs c
else
{ norm = false;
term = FLetIn (na,c,fd,fc,d,subs) }
| FRel _ | FAtom _ -> { norm = true; term = ft.term }
| FFix _ | FCoFix _ | FInd _ | FConstruct _ | FLambda _ | FProd _ -> ft
(* Weak head reduction: case of the application (head appl) *)
and whnf_apply info head appl =
let head = unfreeze info head in
if Array.length appl = 0 then
head
else
let (lft_hd,whd,args) = strip_frterm 0 head [appl] in
match whd.term with
| FLambda (_,_,_,t,subs) when red_under info.i_flags BETA ->
let vbody = contract_subst lft_hd t subs args.(0) in
whnf_apply info vbody (array_tl args)
| FFix ((reci,bnum), _, _, _) as fx
when red_under info.i_flags IOTA
& fix_reducible info.i_env
(unfreeze (infos_under info)) reci.(bnum) args ->
let fix = contract_fix_vect fx in
whnf_apply info (lift_freeze lft_hd fix) args
| _ ->
{ norm = (is_val head) & (array_for_all is_val appl);
term = FApp (head, appl) }
(* essayer whnf_frterm info (traverse_term env t) a la place?
* serait moins lazy: traverse_term ne supprime pas les Cast a la volee, etc.
*)
and whnf_term info env t =
match kind_of_term t with
| IsRel i ->
(match expand_rel i env with
| Inl (lams,v) ->
let uv = unfreeze info v in
lift_frterm lams uv
| Inr (n,None) ->
{ norm = true; term = FRel n }
| Inr (n,Some k) ->
whnf_frterm info
{ norm = false; term = FFlex (FFarRel (n,k), [||]) })
| IsVar x ->
whnf_frterm info { norm = false; term = FFlex (FVar x, [||]) }
| IsSort _ | IsXtra _ | IsMeta _ -> {norm = true; term = FAtom t }
| IsCast (c,_) -> whnf_term info env c (* remove outer casts *)
| IsApp (f,ve) ->
whnf_frterm info
{ norm = false; term = FApp (freeze env f, freeze_vect env ve)}
| IsConst (op,ve) ->
whnf_frterm info
{ norm = false; term = FFlex (FConst op, freeze_vect env ve) }
| IsEvar (op,ve) ->
whnf_frterm info
{ norm = false; term = FFlex (FEvar op, freeze_vect env ve) }
| IsMutCase (ci,p,c,ve) ->
whnf_frterm info
{ norm = false;
term = FCases (ci, freeze env p, freeze env c, freeze_vect env ve)}
| IsMutInd (op,v) ->
{ norm = (v=[||]); term = FInd (op, freeze_vect env v) }
| IsMutConstruct (op,v) ->
{ norm = (v=[||]); term = FConstruct (op, freeze_vect env v) }
| IsFix (op,(_,_,bds as def)) ->
{ norm = false; term = FFix (op, freeze_rec env def, bds, env) }
| IsCoFix (op,(_,_,bds as def)) ->
{ norm = false; term = FCoFix (op, freeze_rec env def, bds, env) }
| IsLambda (n,t,c) ->
{ norm = false;
term = FLambda (n, freeze env t, freeze (subs_lift env) c,
c, env) }
| IsProd (n,t,c) ->
{ norm = false;
term = FProd (n, freeze env t, freeze (subs_lift env) c,
c, env) }
| IsLetIn (n,b,t,c) ->
whnf_frterm info
{ norm = false;
term = FLetIn (n, freeze env b, freeze env t,
freeze (subs_lift env) c, c, env) }
(* parameterized norm *)
let norm_val info v =
if !stats then begin
reset();
let r = fstrong (unfreeze info) ELID v in
stop();
r
end else
fstrong (unfreeze info) ELID v
let whd_val info v =
let uv = unfreeze info v in
term_of_freeze uv
let inject = freeze (ESID 0)
let search_frozen_value info f vars = match f with
| FConst op ->
ref_value_cache info (ConstBinding (op,Array.map (norm_val info) vars))
| FEvar op ->
ref_value_cache info (EvarBinding (op,Array.map (norm_val info) vars))
| FVar id ->
ref_value_cache info (VarBinding id)
| FFarRel (n,p) ->
ref_value_cache info (FarRelBinding (n+p))
(* cache of constants: the body is computed only when needed. *)
type 'a clos_infos = (fconstr, 'a) infos
let create_clos_infos flgs env sigma =
{ i_flags = flgs;
i_repr = (fun old_info n c -> freeze (ESID (-n)) c);
i_env = env;
i_evc = sigma;
i_rels = defined_rels flgs env;
i_vars = defined_vars flgs env;
i_tab = Hashtbl.create 17 }
let clos_infos_env infos = infos.i_env
(* Head normal form. *)
let fhnf info v =
let uv = unfreeze info v in
strip_freeze uv
let fhnf_apply infos k head appl =
let v = whnf_apply infos (lift_freeze k head) appl in
strip_freeze v
|