1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
open Util
open Names
open Cbytecodes
open Cemitcodes
open Term
open Declarations
open Pre_env
(*i Compilation des variables + calcul des variables libres *)
(* Representation des environnements machines : *)
(*[t0|C0| ... |tc|Cc| ... |t(nbr-1)|C(nbr-1)| fv1 | fv1 | .... | fvn] *)
(* ^<----------offset---------> *)
type fv = fv_elem list
type vm_env = {size : int; fv_rev : fv}
(* size = n; fv_rev = [fvn; ... ;fv1] *)
type t = {
nb_stack : int; (* nbre de variables sur la pile *)
in_stack : int list; (* position dans la pile *)
nb_rec : int; (* nbre de fonctions mutuellement recursives =
nbr *)
pos_rec : int; (* position de la fonction courante = c *)
offset : int;
in_env : vm_env ref
}
let empty_fv = {size= 0; fv_rev = []}
let fv r = !(r.in_env)
(* [add_param n] rend la liste [sz+1;sz+2;...;sz+n] *)
let rec add_param n sz l =
if n = 0 then l else add_param (n - 1) sz (n+sz::l)
(* [push_param ] ajoute les parametres de fonction dans la pile *)
let push_param n sz r =
{ r with
nb_stack = r.nb_stack + n;
in_stack = add_param n sz r.in_stack }
(* [push_local e sz] ajoute une nouvelle variable dans la pile a la position *)
let push_local sz r =
{ r with
nb_stack = r.nb_stack + 1;
in_stack = (sz + 1) :: r.in_stack }
(* Table de relocation initiale *)
let empty () =
{ nb_stack = 0; in_stack = [];
nb_rec = 0;pos_rec = 0;
offset = 0; in_env = ref empty_fv }
let init_fun arity =
{ nb_stack = arity; in_stack = add_param arity 0 [];
nb_rec = 0; pos_rec = 0;
offset = 1; in_env = ref empty_fv }
let init_type ndef rfv =
{ nb_stack = 0; in_stack = [];
nb_rec = 0; pos_rec = 0;
offset = 2*(ndef-1)+1; in_env = rfv }
let init_fix ndef pos_rec arity rfv =
{ nb_stack = arity; in_stack = add_param arity 0 [];
nb_rec = ndef; pos_rec = pos_rec;
offset = 2 * (ndef - pos_rec - 1)+1; in_env = rfv}
let find_at el l =
let rec aux n = function
| [] -> raise Not_found
| hd :: tl -> if hd = el then n else aux (n+1) tl
in aux 1 l
let pos_named id r =
let env = !(r.in_env) in
let cid = FVnamed id in
try Kenvacc(r.offset + env.size - (find_at cid env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = cid:: env.fv_rev};
Kenvacc (r.offset + pos)
let pos_rel i r sz =
if i <= r.nb_stack then
Kacc(sz - (List.nth r.in_stack (i-1)))
else if i <= r.nb_stack + r.nb_rec
then Koffsetclosure (2 * (r.nb_rec + r.nb_stack - r.pos_rec - i))
else
let db = FVrel(i - r.nb_stack - r.nb_rec) in
let env = !(r.in_env) in
try Kenvacc(r.offset + env.size - (find_at db env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = db:: env.fv_rev};
Kenvacc(r.offset + pos)
(*i Examination of the continuation *)
(* Discard all instructions up to the next label.
This function is to be applied to the continuation before adding a
non-terminating instruction (branch, raise, return, appterm)
in front of it. *)
let rec discard_dead_code cont = cont
(*function
[] -> []
| (Klabel _ | Krestart ) :: _ as cont -> cont
| _ :: cont -> discard_dead_code cont
*)
(* Return a label to the beginning of the given continuation.
If the sequence starts with a branch, use the target of that branch
as the label, thus avoiding a jump to a jump. *)
let label_code = function
| Klabel lbl :: _ as cont -> (lbl, cont)
| cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont)
(* Return a branch to the continuation. That is, an instruction that,
when executed, branches to the continuation or performs what the
continuation performs. We avoid generating branches to returns. *)
let make_branch cont =
match cont with
| (Kreturn _ as return) :: cont' -> return, cont'
| Klabel lbl as b :: _ -> b, cont
| _ -> let b = Klabel(Label.create()) in b,b::cont
(* Check if we're in tailcall position *)
let rec is_tailcall = function
| Kreturn k :: _ -> Some k
| Klabel _ :: c -> is_tailcall c
| _ -> None
(* Extention of the continuation ****)
(* Add a Kpop n instruction in front of a continuation *)
let rec add_pop n = function
| Kpop m :: cont -> add_pop (n+m) cont
| Kreturn m:: cont -> Kreturn (n+m) ::cont
| cont -> if n = 0 then cont else Kpop n :: cont
let add_grab arity lbl cont =
if arity = 1 then Klabel lbl :: cont
else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont
(* Environnement global *****)
let global_env = ref empty_env
let set_global_env env = global_env := env
(* Code des fermetures ****)
let fun_code = ref []
let init_fun_code () = fun_code := []
(* Compilation des constructeurs et des inductifs *)
(* Inv : nparam + arity > 0 *)
let code_construct tag nparams arity cont =
let f_cont =
add_pop nparams
(if arity = 0 then
[Kconst (Const_b0 tag); Kreturn 0]
else [Kacc 0; Kpop 1; Kmakeblock(arity, tag); Kreturn 0])
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab (nparams+arity) lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
type block =
| Bconstr of constr
| Bstrconst of structured_constant
| Bmakeblock of int * block array
| Bconstruct_app of int * int * int * block array
(* tag , nparams, arity *)
let get_strcst = function
| Bstrconst sc -> sc
| _ -> raise Not_found
let rec str_const c =
match kind_of_term c with
| Sort s -> Bstrconst (Const_sorts s)
| Cast(c,_,_) -> str_const c
| App(f,args) ->
begin
match kind_of_term f with
| Construct((kn,j),i) ->
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if nparams + arity = Array.length args then
if arity = 0 then Bstrconst(Const_b0 num)
else
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
try
let sc_args = Array.map get_strcst b_args in
Bstrconst(Const_bn(num, sc_args))
with Not_found ->
Bmakeblock(num,b_args)
else
let b_args = Array.map str_const args in
Bconstruct_app(num, nparams, arity, b_args)
| _ -> Bconstr c
end
| Ind ind -> Bstrconst (Const_ind ind)
| Construct ((kn,j),i) ->
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if nparams + arity = 0 then Bstrconst(Const_b0 num)
else Bconstruct_app(num,nparams,arity,[||])
| _ -> Bconstr c
(* compilation des applications *)
let comp_args comp_expr reloc args sz cont =
let nargs_m_1 = Array.length args - 1 in
let c = ref (comp_expr reloc args.(0) (sz + nargs_m_1) cont) in
for i = 1 to nargs_m_1 do
c := comp_expr reloc args.(i) (sz + nargs_m_1 - i) (Kpush :: !c)
done;
!c
let comp_app comp_fun comp_arg reloc f args sz cont =
let nargs = Array.length args in
match is_tailcall cont with
| Some k ->
comp_args comp_arg reloc args sz
(Kpush ::
comp_fun reloc f (sz + nargs)
(Kappterm(nargs, k + nargs) :: (discard_dead_code cont)))
| None ->
if nargs < 4 then
comp_args comp_arg reloc args sz
(Kpush :: (comp_fun reloc f (sz+nargs) (Kapply nargs :: cont)))
else
let lbl,cont1 = label_code cont in
Kpush_retaddr lbl ::
(comp_args comp_arg reloc args (sz + 3)
(Kpush :: (comp_fun reloc f (sz+3+nargs) (Kapply nargs :: cont1))))
(* Compilation des variables libres *)
let compile_fv_elem reloc fv sz cont =
match fv with
| FVrel i -> pos_rel i reloc sz :: cont
| FVnamed id -> pos_named id reloc :: cont
(* compilation des constantes *)
let rec get_allias env kn =
let tps = (lookup_constant kn env).const_body_code in
match Cemitcodes.force tps with
| BCallias kn' -> get_allias env kn'
| _ -> kn
(* compilation des expressions *)
let rec compile_constr reloc c sz cont =
match kind_of_term c with
| Meta _ -> raise (Invalid_argument "Cbytegen.gen_lam : Meta")
| Evar _ -> raise (Invalid_argument "Cbytegen.gen_lam : Evar")
| Cast(c,_,_) -> compile_constr reloc c sz cont
| Rel i -> pos_rel i reloc sz :: cont
| Var id -> pos_named id reloc :: cont
| Const kn -> Kgetglobal (get_allias !global_env kn) :: cont
| Sort _ | Ind _ | Construct _ ->
compile_str_cst reloc (str_const c) sz cont
| LetIn(_,xb,_,body) ->
compile_constr reloc xb sz
(Kpush ::
(compile_constr (push_local sz reloc) body (sz+1) (add_pop 1 cont)))
| Prod(id,dom,codom) ->
let cont1 =
Kpush :: compile_constr reloc dom (sz+1) (Kmakeprod :: cont) in
compile_constr reloc (mkLambda(id,dom,codom)) sz cont1
| Lambda _ ->
let params, body = decompose_lam c in
let arity = List.length params in
let r_fun = init_fun arity in
let lbl_fun = Label.create() in
let cont_fun =
compile_constr r_fun body arity [Kreturn arity] in
fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)];
let fv = fv r_fun in
compile_fv reloc fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont)
| App(f,args) ->
begin
match kind_of_term f with
| Construct _ -> compile_str_cst reloc (str_const c) sz cont
| _ -> comp_app compile_constr compile_constr reloc f args sz cont
end
| Fix ((rec_args,init),(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let rfv = ref empty_fv in
let lbl_types = Array.create ndef Label.no in
let lbl_bodies = Array.create ndef Label.no in
(* Compilation des types *)
let rtype = init_type ndef rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr rtype type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compilation des corps *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let rbody = init_fix ndef i arity rfv in
let cont1 =
compile_constr rbody body arity [Kreturn arity] in
let lbl = Label.create () in
lbl_bodies.(i) <- lbl;
let fcode =
if arity = 1 then
Klabel lbl :: Kgrabrec 0 :: Krestart :: cont1
else
Krestart :: Klabel lbl :: Kgrabrec rec_args.(i) ::
Krestart :: Kgrab (arity - 1) :: cont1
in
fun_code := [Ksequence(fcode,!fun_code)]
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont)
| CoFix(init,(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let rfv = ref empty_fv in
let lbl_types = Array.create ndef Label.no in
let lbl_bodies = Array.create ndef Label.no in
(* Compilation des types *)
let rtype = init_type ndef rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr rtype type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compilation des corps *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let rbody = init_fix ndef i arity rfv in
let lbl = Label.create () in
let cont1 =
compile_constr rbody body arity [Kreturn(arity)] in
let cont2 =
if arity <= 1 then cont1 else Kgrab (arity - 1) :: cont1 in
let cont3 =
Krestart :: Klabel lbl :: Kcograb arity :: Krestart :: cont2 in
fun_code := [Ksequence(cont3,!fun_code)];
lbl_bodies.(i) <- lbl
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont)
| Case(ci,t,a,branchs) ->
let ind = ci.ci_ind in
let mib = lookup_mind (fst ind) !global_env in
let oib = mib.mind_packets.(snd ind) in
let tbl = oib.mind_reloc_tbl in
let lbl_consts = Array.create oib.mind_nb_constant Label.no in
let lbl_blocks = Array.create (oib.mind_nb_args+1) Label.no in
let branch1,cont = make_branch cont in
(* Compilation du type *)
let lbl_typ,fcode =
label_code (compile_constr reloc t sz [Kpop sz; Kstop])
in fun_code := [Ksequence(fcode,!fun_code)];
(* Compilation des branches *)
let lbl_sw = Label.create () in
let sz_b,branch,is_tailcall =
match branch1 with
| Kreturn k -> assert (k = sz); sz, branch1, true
| _ -> sz+3, Kjump, false
in
let annot = {ci = ci; rtbl = tbl; tailcall = is_tailcall} in
(* Compilation de la branche accumulate *)
let lbl_accu, code_accu =
label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch::cont)
in
lbl_blocks.(0) <- lbl_accu;
let c = ref code_accu in
(* Compilation des branches constructeurs *)
for i = 0 to Array.length tbl - 1 do
let tag, arity = tbl.(i) in
if arity = 0 then
let lbl_b,code_b =
label_code(compile_constr reloc branchs.(i) sz_b (branch :: !c)) in
lbl_consts.(tag) <- lbl_b;
c := code_b
else
let args, body = decompose_lam branchs.(i) in
let nargs = List.length args in
let lbl_b,code_b =
label_code(
if nargs = arity then
Kpushfield arity ::
compile_constr (push_param arity sz_b reloc)
body (sz_b+arity) (add_pop arity (branch :: !c))
else
let sz_appterm = if is_tailcall then sz_b + arity else arity in
Kpushfield arity ::
compile_constr reloc branchs.(i) (sz_b+arity)
(Kappterm(arity,sz_appterm) :: !c))
in
lbl_blocks.(tag) <- lbl_b;
c := code_b
done;
c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: !c;
let code_sw =
match branch1 with
| Klabel lbl -> Kpush_retaddr lbl :: !c
| _ -> !c
in
let cont_a = if mib.mind_finite then code_sw else Kforce :: code_sw in
compile_constr reloc a sz cont_a
and compile_fv reloc l sz cont =
match l with
| [] -> cont
| [fvn] -> compile_fv_elem reloc fvn sz cont
| fvn :: tl ->
compile_fv_elem reloc fvn sz
(Kpush :: compile_fv reloc tl (sz + 1) cont)
and compile_str_cst reloc sc sz cont =
match sc with
| Bconstr c -> compile_constr reloc c sz cont
| Bstrconst sc -> Kconst sc :: cont
| Bmakeblock(tag,args) ->
let nargs = Array.length args in
comp_args compile_str_cst reloc args sz (Kmakeblock(nargs,tag) :: cont)
| Bconstruct_app(tag,nparams,arity,args) ->
if Array.length args = 0 then code_construct tag nparams arity cont
else
comp_app
(fun _ _ _ cont -> code_construct tag nparams arity cont)
compile_str_cst reloc () args sz cont
let compile env c =
set_global_env env;
init_fun_code ();
Label.reset_label_counter ();
let reloc = empty () in
let init_code = compile_constr reloc c 0 [Kstop] in
let fv = List.rev (!(reloc.in_env).fv_rev) in
init_code,!fun_code, Array.of_list fv
let compile_constant_body env body opaque boxed =
if opaque then BCconstant
else match body with
| None -> BCconstant
| Some sb ->
let body = Declarations.force sb in
if boxed then
let res = compile env body in
let to_patch = to_memory res in
BCdefined(true, to_patch)
else
match kind_of_term body with
| Const kn' -> BCallias (get_allias env kn')
| _ ->
let res = compile env body in
let to_patch = to_memory res in
BCdefined (false, to_patch)
|