1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction
machine, Oct 2004 *)
(* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *)
open Util
open Names
open Cbytecodes
open Cemitcodes
open Term
open Declarations
open Pre_env
(* Compilation of variables + computing free variables *)
(* The virtual machine doesn't distinguish closures and their environment *)
(* Representation of function environments : *)
(* [clos_t | code | fv1 | fv2 | ... | fvn ] *)
(* ^ *)
(* The offset for accessing free variables is 1 (we must skip the code *)
(* pointer). *)
(* While compiling, free variables are stored in [in_env] in order *)
(* opposite to machine representation, so we can add new free variables *)
(* easily (i.e. without changing the position of previous variables) *)
(* Function arguments are on the stack in the same order as the *)
(* application : f arg1 ... argn *)
(* - the stack is then : *)
(* arg1 : ... argn : extra args : return addr : ... *)
(* In the function body [arg1] is represented by de Bruijn [n], and *)
(* [argn] by de Bruijn [1] *)
(* Representation of environements of mutual fixpoints : *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(* ^<----------offset---------> *)
(* type = [Ct1 | .... | Ctn] *)
(* Ci is the code pointer of the i-th body *)
(* At runtime, a fixpoint environment (which is the same as the fixpoint *)
(* itself) is a pointer to the field holding its code pointer. *)
(* In each fixpoint body, de Bruijn [nbr] represents the first fixpoint *)
(* and de Bruijn [1] the last one. *)
(* Access to these variables is performed by the [Koffsetclosure n] *)
(* instruction that shifts the environment pointer of [n] fields. *)
(* This allows representing mutual fixpoints in just one block. *)
(* [Ct1 | ... | Ctn] is an array holding code pointers of the fixpoint *)
(* types. They are used in conversion tests (which requires that *)
(* fixpoint types must be convertible). Their environment is the one of *)
(* the last fixpoint : *)
(* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *)
(* ^ *)
(* Representation of mutual cofix : *)
(* a1 = [A_t | accumulate | [Cfx_t | fcofix1 ] ] *)
(* ... *)
(* anbr = [A_t | accumulate | [Cfx_t | fcofixnbr ] ] *)
(* *)
(* fcofix1 = [clos_t | code1 | a1 |...| anbr | fv1 |...| fvn | type] *)
(* ^ *)
(* ... *)
(* fcofixnbr = [clos_t | codenbr | a1 |...| anbr | fv1 |...| fvn | type] *)
(* ^ *)
(* The [ai] blocks are functions that accumulate their arguments: *)
(* ai arg1 argp ---> *)
(* ai' = [A_t | accumulate | [Cfx_t | fcofixi] | arg1 | ... | argp ] *)
(* If such a block is matched against, we have to force evaluation, *)
(* function [fcofixi] is then applied to [ai'] [arg1] ... [argp] *)
(* Once evaluation is completed [ai'] is updated with the result: *)
(* ai' <-- *)
(* [A_t | accumulate | [Cfxe_t |fcofixi|result] | arg1 | ... | argp ] *)
(* This representation is nice because the application of the cofix is *)
(* evaluated only once (it simulates a lazy evaluation) *)
(* Moreover, when cofix don't have arguments, it is possible to create *)
(* a cycle, e.g.: *)
(* cofix one := cons 1 one *)
(* a1 = [A_t | accumulate | [Cfx_t|fcofix1] ] *)
(* fcofix1 = [clos_t | code | a1] *)
(* The result of evaluating [a1] is [cons_t | 1 | a1]. *)
(* When [a1] is updated : *)
(* a1 = [A_t | accumulate | [Cfxe_t | fcofix1 | [cons_t | 1 | a1]] ] *)
(* The cycle is created ... *)
(* *)
(* In Cfxe_t accumulators, we need to store [fcofixi] for testing *)
(* conversion of cofixpoints (which is intentional). *)
let empty_fv = { size= 0; fv_rev = [] }
let fv r = !(r.in_env)
let empty_comp_env ()=
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 0;
in_env = ref empty_fv;
}
(*i Creation functions for comp_env *)
let rec add_param n sz l =
if Int.equal n 0 then l else add_param (n - 1) sz (n+sz::l)
let comp_env_fun arity =
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = 0;
pos_rec = [];
offset = 1;
in_env = ref empty_fv
}
let comp_env_fix_type rfv =
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 1;
in_env = rfv
}
let comp_env_fix ndef curr_pos arity rfv =
let prec = ref [] in
for i = ndef downto 1 do
prec := Koffsetclosure (2 * (ndef - curr_pos - i)) :: !prec
done;
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = ndef;
pos_rec = !prec;
offset = 2 * (ndef - curr_pos - 1)+1;
in_env = rfv
}
let comp_env_cofix_type ndef rfv =
{ nb_stack = 0;
in_stack = [];
nb_rec = 0;
pos_rec = [];
offset = 1+ndef;
in_env = rfv
}
let comp_env_cofix ndef arity rfv =
let prec = ref [] in
for i = 1 to ndef do
prec := Kenvacc i :: !prec
done;
{ nb_stack = arity;
in_stack = add_param arity 0 [];
nb_rec = ndef;
pos_rec = !prec;
offset = ndef+1;
in_env = rfv
}
(* [push_param ] add function parameters on the stack *)
let push_param n sz r =
{ r with
nb_stack = r.nb_stack + n;
in_stack = add_param n sz r.in_stack }
(* [push_local sz r] add a new variable on the stack at position [sz] *)
let push_local sz r =
{ r with
nb_stack = r.nb_stack + 1;
in_stack = (sz + 1) :: r.in_stack }
(*i Compilation of variables *)
let find_at f l =
let rec aux n = function
| [] -> raise Not_found
| hd :: tl -> if f hd then n else aux (n + 1) tl
in aux 1 l
let pos_named id r =
let env = !(r.in_env) in
let cid = FVnamed id in
let f = function FVnamed id' -> Id.equal id id' | _ -> false in
try Kenvacc(r.offset + env.size - (find_at f env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = cid:: env.fv_rev};
Kenvacc (r.offset + pos)
let pos_rel i r sz =
if i <= r.nb_stack then
Kacc(sz - (List.nth r.in_stack (i-1)))
else
let i = i - r.nb_stack in
if i <= r.nb_rec then
try List.nth r.pos_rec (i-1)
with (Failure _|Invalid_argument _) -> assert false
else
let i = i - r.nb_rec in
let db = FVrel(i) in
let env = !(r.in_env) in
let f = function FVrel j -> Int.equal i j | _ -> false in
try Kenvacc(r.offset + env.size - (find_at f env.fv_rev))
with Not_found ->
let pos = env.size in
r.in_env := { size = pos+1; fv_rev = db:: env.fv_rev};
Kenvacc(r.offset + pos)
(*i Examination of the continuation *)
(* Discard all instructions up to the next label. *)
(* This function is to be applied to the continuation before adding a *)
(* non-terminating instruction (branch, raise, return, appterm) *)
(* in front of it. *)
let discard_dead_code cont = cont
(*function
[] -> []
| (Klabel _ | Krestart ) :: _ as cont -> cont
| _ :: cont -> discard_dead_code cont
*)
(* Return a label to the beginning of the given continuation. *)
(* If the sequence starts with a branch, use the target of that branch *)
(* as the label, thus avoiding a jump to a jump. *)
let label_code = function
| Klabel lbl :: _ as cont -> (lbl, cont)
| Kbranch lbl :: _ as cont -> (lbl, cont)
| cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont)
(* Return a branch to the continuation. That is, an instruction that,
when executed, branches to the continuation or performs what the
continuation performs. We avoid generating branches to returns. *)
(* spiwack: make_branch was only used once. Changed it back to the ZAM
one to match the appropriate semantics (old one avoided the
introduction of an unconditional branch operation, which seemed
appropriate for the 31-bit integers' code). As a memory, I leave
the former version in this comment.
let make_branch cont =
match cont with
| (Kreturn _ as return) :: cont' -> return, cont'
| Klabel lbl as b :: _ -> b, cont
| _ -> let b = Klabel(Label.create()) in b,b::cont
*)
let rec make_branch_2 lbl n cont =
function
Kreturn m :: _ -> (Kreturn (n + m), cont)
| Klabel _ :: c -> make_branch_2 lbl n cont c
| Kpop m :: c -> make_branch_2 lbl (n + m) cont c
| _ ->
match lbl with
Some lbl -> (Kbranch lbl, cont)
| None -> let lbl = Label.create() in (Kbranch lbl, Klabel lbl :: cont)
let make_branch cont =
match cont with
(Kbranch _ as branch) :: _ -> (branch, cont)
| (Kreturn _ as return) :: _ -> (return, cont)
| Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
| _ -> make_branch_2 (None) 0 cont cont
(* Check if we're in tailcall position *)
let rec is_tailcall = function
| Kreturn k :: _ -> Some k
| Klabel _ :: c -> is_tailcall c
| _ -> None
(* Extention of the continuation *)
(* Add a Kpop n instruction in front of a continuation *)
let rec add_pop n = function
| Kpop m :: cont -> add_pop (n+m) cont
| Kreturn m:: cont -> Kreturn (n+m) ::cont
| cont -> if Int.equal n 0 then cont else Kpop n :: cont
let add_grab arity lbl cont =
if Int.equal arity 1 then Klabel lbl :: cont
else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont
let add_grabrec rec_arg arity lbl cont =
if Int.equal arity 1 && rec_arg < arity then
Klabel lbl :: Kgrabrec 0 :: Krestart :: cont
else
Krestart :: Klabel lbl :: Kgrabrec rec_arg ::
Krestart :: Kgrab (arity - 1) :: cont
(* continuation of a cofix *)
let cont_cofix arity =
(* accu = res *)
(* stk = ai::args::ra::... *)
(* ai = [At|accumulate|[Cfx_t|fcofix]|args] *)
[ Kpush;
Kpush; (* stk = res::res::ai::args::ra::... *)
Kacc 2;
Kfield 1;
Kfield 0;
Kmakeblock(2, cofix_evaluated_tag);
Kpush; (* stk = [Cfxe_t|fcofix|res]::res::ai::args::ra::...*)
Kacc 2;
Ksetfield 1; (* ai = [At|accumulate|[Cfxe_t|fcofix|res]|args] *)
(* stk = res::ai::args::ra::... *)
Kacc 0; (* accu = res *)
Kreturn (arity+2) ]
(*i Global environment *)
let global_env = ref empty_env
let set_global_env env = global_env := env
(* Code of closures *)
let fun_code = ref []
let init_fun_code () = fun_code := []
(* Compilation of constructors and inductive types *)
(* Inv : nparam + arity > 0 *)
let code_construct tag nparams arity cont =
let f_cont =
add_pop nparams
(if Int.equal arity 0 then
[Kconst (Const_b0 tag); Kreturn 0]
else [Kacc 0; Kpop 1; Kmakeblock(arity, tag); Kreturn 0])
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab (nparams+arity) lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
let get_strcst = function
| Bstrconst sc -> sc
| _ -> raise Not_found
let rec str_const c =
match kind_of_term c with
| Sort s -> Bstrconst (Const_sorts s)
| Cast(c,_,_) -> str_const c
| App(f,args) ->
begin
match kind_of_term f with
| Construct(((kn,j),i),u) ->
begin
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if Int.equal (nparams + arity) (Array.length args) then
(* spiwack: *)
(* 1/ tries to compile the constructor in an optimal way,
it is supposed to work only if the arguments are
all fully constructed, fails with Cbytecodes.NotClosed.
it can also raise Not_found when there is no special
treatment for this constructor
for instance: tries to to compile an integer of the
form I31 D1 D2 ... D31 to [D1D2...D31] as
a processor number (a caml number actually) *)
try
try
Bstrconst (Retroknowledge.get_vm_constant_static_info
(!global_env).retroknowledge
f args)
with NotClosed ->
(* 2/ if the arguments are not all closed (this is
expectingly (and it is currently the case) the only
reason why this exception is raised) tries to
give a clever, run-time behavior to the constructor.
Raises Not_found if there is no special treatment
for this integer.
this is done in a lazy fashion, using the constructor
Bspecial because it needs to know the continuation
and such, which can't be done at this time.
for instance, for int31: if one of the digit is
not closed, it's not impossible that the number
gets fully instanciated at run-time, thus to ensure
uniqueness of the representation in the vm
it is necessary to try and build a caml integer
during the execution *)
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
f),
b_args)
with Not_found ->
(* 3/ if no special behavior is available, then the compiler
falls back to the normal behavior *)
if Int.equal arity 0 then Bstrconst(Const_b0 num)
else
let rargs = Array.sub args nparams arity in
let b_args = Array.map str_const rargs in
try
let sc_args = Array.map get_strcst b_args in
Bstrconst(Const_bn(num, sc_args))
with Not_found ->
Bmakeblock(num,b_args)
else
let b_args = Array.map str_const args in
(* spiwack: tries first to apply the run-time compilation
behavior of the constructor, as in 2/ above *)
try
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
f),
b_args)
with Not_found ->
Bconstruct_app(num, nparams, arity, b_args)
end
| _ -> Bconstr c
end
| Ind (ind,u) -> Bstrconst (Const_ind ind)
| Construct (((kn,j),i),u) ->
begin
(* spiwack: tries first to apply the run-time compilation
behavior of the constructor, as in 2/ above *)
try
Bspecial ((Retroknowledge.get_vm_constant_dynamic_info
(!global_env).retroknowledge
c),
[| |])
with Not_found ->
let oib = lookup_mind kn !global_env in
let oip = oib.mind_packets.(j) in
let num,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
if Int.equal (nparams + arity) 0 then Bstrconst(Const_b0 num)
else Bconstruct_app(num,nparams,arity,[||])
end
| _ -> Bconstr c
(* compiling application *)
let comp_args comp_expr reloc args sz cont =
let nargs_m_1 = Array.length args - 1 in
let c = ref (comp_expr reloc args.(0) (sz + nargs_m_1) cont) in
for i = 1 to nargs_m_1 do
c := comp_expr reloc args.(i) (sz + nargs_m_1 - i) (Kpush :: !c)
done;
!c
let comp_app comp_fun comp_arg reloc f args sz cont =
let nargs = Array.length args in
match is_tailcall cont with
| Some k ->
comp_args comp_arg reloc args sz
(Kpush ::
comp_fun reloc f (sz + nargs)
(Kappterm(nargs, k + nargs) :: (discard_dead_code cont)))
| None ->
if nargs < 4 then
comp_args comp_arg reloc args sz
(Kpush :: (comp_fun reloc f (sz+nargs) (Kapply nargs :: cont)))
else
let lbl,cont1 = label_code cont in
Kpush_retaddr lbl ::
(comp_args comp_arg reloc args (sz + 3)
(Kpush :: (comp_fun reloc f (sz+3+nargs) (Kapply nargs :: cont1))))
(* Compiling free variables *)
let compile_fv_elem reloc fv sz cont =
match fv with
| FVrel i -> pos_rel i reloc sz :: cont
| FVnamed id -> pos_named id reloc :: cont
let rec compile_fv reloc l sz cont =
match l with
| [] -> cont
| [fvn] -> compile_fv_elem reloc fvn sz cont
| fvn :: tl ->
compile_fv_elem reloc fvn sz
(Kpush :: compile_fv reloc tl (sz + 1) cont)
(* Compiling constants *)
let rec get_allias env kn =
let cb = lookup_constant kn env in
let tps = cb.const_body_code in
(match Cemitcodes.force tps with
| BCallias kn' -> get_allias env kn'
| _ -> kn)
(* Compiling expressions *)
let rec compile_constr reloc c sz cont =
match kind_of_term c with
| Meta _ -> invalid_arg "Cbytegen.compile_constr : Meta"
| Evar _ -> invalid_arg "Cbytegen.compile_constr : Evar"
| Proj (p,c) ->
(* compile_const reloc p [|c|] sz cont *)
let kn = Projection.constant p in
let cb = lookup_constant kn !global_env in
(* TODO: better representation of projections *)
let pb = Option.get cb.const_proj in
let args = Array.make pb.proj_npars mkProp in
compile_const reloc kn Univ.Instance.empty (Array.append args [|c|]) sz cont
| Cast(c,_,_) -> compile_constr reloc c sz cont
| Rel i -> pos_rel i reloc sz :: cont
| Var id -> pos_named id reloc :: cont
| Const (kn,u) -> compile_const reloc kn u [||] sz cont
| Sort _ | Ind _ | Construct _ ->
compile_str_cst reloc (str_const c) sz cont
| LetIn(_,xb,_,body) ->
compile_constr reloc xb sz
(Kpush ::
(compile_constr (push_local sz reloc) body (sz+1) (add_pop 1 cont)))
| Prod(id,dom,codom) ->
let cont1 =
Kpush :: compile_constr reloc dom (sz+1) (Kmakeprod :: cont) in
compile_constr reloc (mkLambda(id,dom,codom)) sz cont1
| Lambda _ ->
let params, body = decompose_lam c in
let arity = List.length params in
let r_fun = comp_env_fun arity in
let lbl_fun = Label.create() in
let cont_fun =
compile_constr r_fun body arity [Kreturn arity] in
fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)];
let fv = fv r_fun in
compile_fv reloc fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont)
| App(f,args) ->
begin
match kind_of_term f with
| Construct _ -> compile_str_cst reloc (str_const c) sz cont
| Const (kn,u) -> compile_const reloc kn u args sz cont
| _ -> comp_app compile_constr compile_constr reloc f args sz cont
end
| Fix ((rec_args,init),(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let rfv = ref empty_fv in
let lbl_types = Array.make ndef Label.no in
let lbl_bodies = Array.make ndef Label.no in
(* Compilation des types *)
let env_type = comp_env_fix_type rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr env_type type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compiling bodies *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let env_body = comp_env_fix ndef i arity rfv in
let cont1 =
compile_constr env_body body arity [Kreturn arity] in
let lbl = Label.create () in
lbl_bodies.(i) <- lbl;
let fcode = add_grabrec rec_args.(i) arity lbl cont1 in
fun_code := [Ksequence(fcode,!fun_code)]
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont)
| CoFix(init,(_,type_bodies,rec_bodies)) ->
let ndef = Array.length type_bodies in
let lbl_types = Array.make ndef Label.no in
let lbl_bodies = Array.make ndef Label.no in
(* Compiling types *)
let rfv = ref empty_fv in
let env_type = comp_env_cofix_type ndef rfv in
for i = 0 to ndef - 1 do
let lbl,fcode =
label_code
(compile_constr env_type type_bodies.(i) 0 [Kstop]) in
lbl_types.(i) <- lbl;
fun_code := [Ksequence(fcode,!fun_code)]
done;
(* Compiling bodies *)
for i = 0 to ndef - 1 do
let params,body = decompose_lam rec_bodies.(i) in
let arity = List.length params in
let env_body = comp_env_cofix ndef arity rfv in
let lbl = Label.create () in
let cont1 =
compile_constr env_body body (arity+1) (cont_cofix arity) in
let cont2 =
add_grab (arity+1) lbl cont1 in
lbl_bodies.(i) <- lbl;
fun_code := [Ksequence(cont2,!fun_code)];
done;
let fv = !rfv in
compile_fv reloc fv.fv_rev sz
(Kclosurecofix(fv.size, init, lbl_types, lbl_bodies) :: cont)
| Case(ci,t,a,branchs) ->
let ind = ci.ci_ind in
let mib = lookup_mind (fst ind) !global_env in
let oib = mib.mind_packets.(snd ind) in
let tbl = oib.mind_reloc_tbl in
let lbl_consts = Array.make oib.mind_nb_constant Label.no in
let lbl_blocks = Array.make (oib.mind_nb_args+1) Label.no in
let branch1,cont = make_branch cont in
(* Compiling return type *)
let lbl_typ,fcode =
label_code (compile_constr reloc t sz [Kpop sz; Kstop])
in fun_code := [Ksequence(fcode,!fun_code)];
(* Compiling branches *)
let lbl_sw = Label.create () in
let sz_b,branch,is_tailcall =
match branch1 with
| Kreturn k -> assert (Int.equal k sz); sz, branch1, true
| _ -> sz+3, Kjump, false
in
let annot = {ci = ci; rtbl = tbl; tailcall = is_tailcall} in
(* Compiling branch for accumulators *)
let lbl_accu, code_accu =
label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch::cont)
in
lbl_blocks.(0) <- lbl_accu;
let c = ref code_accu in
(* Compiling regular constructor branches *)
for i = 0 to Array.length tbl - 1 do
let tag, arity = tbl.(i) in
if Int.equal arity 0 then
let lbl_b,code_b =
label_code(compile_constr reloc branchs.(i) sz_b (branch :: !c)) in
lbl_consts.(tag) <- lbl_b;
c := code_b
else
let args, body = decompose_lam branchs.(i) in
let nargs = List.length args in
let lbl_b,code_b =
label_code(
if Int.equal nargs arity then
Kpushfields arity ::
compile_constr (push_param arity sz_b reloc)
body (sz_b+arity) (add_pop arity (branch :: !c))
else
let sz_appterm = if is_tailcall then sz_b + arity else arity in
Kpushfields arity ::
compile_constr reloc branchs.(i) (sz_b+arity)
(Kappterm(arity,sz_appterm) :: !c))
in
lbl_blocks.(tag) <- lbl_b;
c := code_b
done;
c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: !c;
let code_sw =
match branch1 with
(* spiwack : branch1 can't be a lbl anymore it's a Branch instead
| Klabel lbl -> Kpush_retaddr lbl :: !c *)
| Kbranch lbl -> Kpush_retaddr lbl :: !c
| _ -> !c
in
compile_constr reloc a sz
(try
let entry = mkInd ind in
Retroknowledge.get_vm_before_match_info (!global_env).retroknowledge
entry code_sw
with Not_found ->
code_sw)
and compile_str_cst reloc sc sz cont =
match sc with
| Bconstr c -> compile_constr reloc c sz cont
| Bstrconst sc -> Kconst sc :: cont
| Bmakeblock(tag,args) ->
let nargs = Array.length args in
comp_args compile_str_cst reloc args sz (Kmakeblock(nargs,tag) :: cont)
| Bconstruct_app(tag,nparams,arity,args) ->
if Int.equal (Array.length args) 0 then code_construct tag nparams arity cont
else
comp_app
(fun _ _ _ cont -> code_construct tag nparams arity cont)
compile_str_cst reloc () args sz cont
| Bspecial (comp_fx, args) -> comp_fx reloc args sz cont
(* spiwack : compilation of constants with their arguments.
Makes a special treatment with 31-bit integer addition *)
and compile_const =
fun reloc-> fun kn u -> fun args -> fun sz -> fun cont ->
let nargs = Array.length args in
(* spiwack: checks if there is a specific way to compile the constant
if there is not, Not_found is raised, and the function
falls back on its normal behavior *)
try
Retroknowledge.get_vm_compiling_info (!global_env).retroknowledge
(mkConstU (kn,u)) reloc args sz cont
with Not_found ->
if Int.equal nargs 0 then
Kgetglobal (get_allias !global_env kn) :: cont
else
comp_app (fun _ _ _ cont ->
Kgetglobal (get_allias !global_env kn) :: cont)
compile_constr reloc () args sz cont
let compile env c =
set_global_env env;
init_fun_code ();
Label.reset_label_counter ();
let reloc = empty_comp_env () in
let init_code = compile_constr reloc c 0 [Kstop] in
let fv = List.rev (!(reloc.in_env).fv_rev) in
(* draw_instr init_code;
draw_instr !fun_code;
Format.print_string "fv = ";
List.iter (fun v ->
match v with
| FVnamed id -> Format.print_string ((Id.to_string id)^"; ")
| FVrel i -> Format.print_string ((string_of_int i)^"; ")) fv; Format
.print_string "\n";
Format.print_flush(); *)
init_code,!fun_code, Array.of_list fv
let compile_constant_body env = function
| Undef _ | OpaqueDef _ -> BCconstant
| Def sb ->
let body = Mod_subst.force_constr sb in
match kind_of_term body with
| Const kn' ->
(* we use the canonical name of the constant*)
let con= constant_of_kn (canonical_con (Univ.out_punivs kn')) in
BCallias (get_allias env con)
| _ ->
let res = compile env body in
let to_patch = to_memory res in
BCdefined to_patch
(* Shortcut of the previous function used during module strengthening *)
let compile_alias kn = BCallias (constant_of_kn (canonical_con kn))
(* spiwack: additional function which allow different part of compilation of the
31-bit integers *)
let make_areconst n else_lbl cont =
if n <=0 then
cont
else
Kareconst (n, else_lbl)::cont
(* try to compile int31 as a const_b0. Succeed if all the arguments are closed
fails otherwise by raising NotClosed*)
let compile_structured_int31 fc args =
if not fc then raise Not_found else
Const_b0
(Array.fold_left
(fun temp_i -> fun t -> match kind_of_term t with
| Construct ((_,d),_) -> 2*temp_i+d-1
| _ -> raise NotClosed)
0 args
)
(* this function is used for the compilation of the constructor of
the int31, it is used when it appears not fully applied, or
applied to at least one non-closed digit *)
let dynamic_int31_compilation fc reloc args sz cont =
if not fc then raise Not_found else
let nargs = Array.length args in
if Int.equal nargs 31 then
let (escape,labeled_cont) = make_branch cont in
let else_lbl = Label.create() in
comp_args compile_str_cst reloc args sz
( Kisconst else_lbl::Kareconst(30,else_lbl)::Kcompint31::escape::Klabel else_lbl::Kmakeblock(31, 1)::labeled_cont)
else
let code_construct cont = (* spiwack: variant of the global code_construct
which handles dynamic compilation of
integers *)
let f_cont =
let else_lbl = Label.create () in
[Kacc 0; Kpop 1; Kisconst else_lbl; Kareconst(30,else_lbl);
Kcompint31; Kreturn 0; Klabel else_lbl; Kmakeblock(31, 1); Kreturn 0]
in
let lbl = Label.create() in
fun_code := [Ksequence (add_grab 31 lbl f_cont,!fun_code)];
Kclosure(lbl,0) :: cont
in
if Int.equal nargs 0 then
code_construct cont
else
comp_app (fun _ _ _ cont -> code_construct cont)
compile_str_cst reloc () args sz cont
(*(* template compilation for 2ary operation, it probably possible
to make a generic such function with arity abstracted *)
let op2_compilation op =
let code_construct normal cont = (*kn cont =*)
let f_cont =
let else_lbl = Label.create () in
Kareconst(2, else_lbl):: Kacc 0:: Kpop 1::
op:: Kreturn 0:: Klabel else_lbl::
(* works as comp_app with nargs = 2 and tailcall cont [Kreturn 0]*)
(*Kgetglobal (get_allias !global_env kn):: *)
normal::
Kappterm(2, 2):: [] (* = discard_dead_code [Kreturn 0] *)
in
let lbl = Label.create () in
fun_code := [Ksequence (add_grab 2 lbl f_cont, !fun_code)];
Kclosure(lbl, 0)::cont
in
fun normal fc _ reloc args sz cont ->
if not fc then raise Not_found else
let nargs = Array.length args in
if nargs=2 then (*if it is a fully applied addition*)
let (escape, labeled_cont) = make_branch cont in
let else_lbl = Label.create () in
comp_args compile_constr reloc args sz
(Kisconst else_lbl::(make_areconst 1 else_lbl
(*Kaddint31::escape::Klabel else_lbl::Kpush::*)
(op::escape::Klabel else_lbl::Kpush::
(* works as comp_app with nargs = 2 and non-tailcall cont*)
(*Kgetglobal (get_allias !global_env kn):: *)
normal::
Kapply 2::labeled_cont)))
else if nargs=0 then
code_construct normal cont
else
comp_app (fun _ _ _ cont -> code_construct normal cont)
compile_constr reloc () args sz cont *)
(*template for n-ary operation, invariant: n>=1,
the operations does the following :
1/ checks if all the arguments are constants (i.e. non-block values)
2/ if they are, uses the "op" instruction to execute
3/ if at least one is not, branches to the normal behavior:
Kgetglobal (get_allias !global_env kn) *)
let op_compilation n op =
let code_construct kn cont =
let f_cont =
let else_lbl = Label.create () in
Kareconst(n, else_lbl):: Kacc 0:: Kpop 1::
op:: Kreturn 0:: Klabel else_lbl::
(* works as comp_app with nargs = n and tailcall cont [Kreturn 0]*)
Kgetglobal (get_allias !global_env kn)::
Kappterm(n, n):: [] (* = discard_dead_code [Kreturn 0] *)
in
let lbl = Label.create () in
fun_code := [Ksequence (add_grab n lbl f_cont, !fun_code)];
Kclosure(lbl, 0)::cont
in
fun kn fc reloc args sz cont ->
if not fc then raise Not_found else
let nargs = Array.length args in
if Int.equal nargs n then (*if it is a fully applied addition*)
let (escape, labeled_cont) = make_branch cont in
let else_lbl = Label.create () in
comp_args compile_constr reloc args sz
(Kisconst else_lbl::(make_areconst (n-1) else_lbl
(*Kaddint31::escape::Klabel else_lbl::Kpush::*)
(op::escape::Klabel else_lbl::Kpush::
(* works as comp_app with nargs = n and non-tailcall cont*)
Kgetglobal (get_allias !global_env kn)::
Kapply n::labeled_cont)))
else if Int.equal nargs 0 then
code_construct kn cont
else
comp_app (fun _ _ _ cont -> code_construct kn cont)
compile_constr reloc () args sz cont
let int31_escape_before_match fc cont =
if not fc then
raise Not_found
else
let escape_lbl, labeled_cont = label_code cont in
(Kisconst escape_lbl)::Kdecompint31::labeled_cont
|