blob: 0d328531160543b0a49e1a0aa7a10b3b57872a27 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Informal mathematical status of declarations *)
type discharge = DoDischarge | NoDischarge
type locality = Discharge | Local | Global
type binding_kind = Explicit | Implicit
type polymorphic = bool
type private_flag = bool
type cumulative_inductive_flag = bool
type theorem_kind =
| Theorem
| Lemma
| Fact
| Remark
| Property
| Proposition
| Corollary
type definition_object_kind =
| Definition
| Coercion
| SubClass
| CanonicalStructure
| Example
| Fixpoint
| CoFixpoint
| Scheme
| StructureComponent
| IdentityCoercion
| Instance
| Method
| Let
type assumption_object_kind = Definitional | Logical | Conjectural
(* [assumption_kind]
| Local | Global
------------------------------------
Definitional | Variable | Parameter
Logical | Hypothesis | Axiom
*)
type assumption_kind = locality * polymorphic * assumption_object_kind
type definition_kind = locality * polymorphic * definition_object_kind
(** Kinds used in proofs *)
type goal_object_kind =
| DefinitionBody of definition_object_kind
| Proof of theorem_kind
type goal_kind = locality * polymorphic * goal_object_kind
(** Kinds used in library *)
type logical_kind =
| IsAssumption of assumption_object_kind
| IsDefinition of definition_object_kind
| IsProof of theorem_kind
(** Recursive power of type declarations *)
type recursivity_kind = Declarations.recursivity_kind =
| Finite (** = inductive *)
[@ocaml.deprecated "Please use [Declarations.Finite"]
| CoFinite (** = coinductive *)
[@ocaml.deprecated "Please use [Declarations.CoFinite"]
| BiFinite (** = non-recursive, like in "Record" definitions *)
[@ocaml.deprecated "Please use [Declarations.BiFinite"]
[@@ocaml.deprecated "Please use [Declarations.recursivity_kind"]
|