1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Libnames
open Misctypes
open Decl_kinds
(** {6 Concrete syntax for terms } *)
(** [constr_expr] is the abstract syntax tree produced by the parser *)
type notation = string
type explicitation =
| ExplByPos of int * Id.t option (* a reference to the n-th product starting from left *)
| ExplByName of Id.t
type binder_kind =
| Default of binding_kind
| Generalized of binding_kind * binding_kind * bool
(** Inner binding, outer bindings, typeclass-specific flag
for implicit generalization of superclasses *)
type abstraction_kind = AbsLambda | AbsPi
type proj_flag = int option (** [Some n] = proj of the n-th visible argument *)
(** Representation of integer literals that appear in Coq scripts.
We now use raw strings of digits in base 10 (big-endian), and a separate
sign flag. Note that this representation is not unique, due to possible
multiple leading zeros, and -0 = +0 *)
type sign = bool
type raw_natural_number = string
type prim_token =
| Numeral of raw_natural_number * sign
| String of string
type instance_expr = Misctypes.glob_level list
type cases_pattern_expr_r =
| CPatAlias of cases_pattern_expr * Id.t
| CPatCstr of reference
* cases_pattern_expr list option * cases_pattern_expr list
(** [CPatCstr (_, c, Some l1, l2)] represents (@c l1) l2 *)
| CPatAtom of reference option
| CPatOr of cases_pattern_expr list
| CPatNotation of notation * cases_pattern_notation_substitution
* cases_pattern_expr list (** CPatNotation (_, n, l1 ,l2) represents
(notation n applied with substitution l1)
applied to arguments l2 *)
| CPatPrim of prim_token
| CPatRecord of (reference * cases_pattern_expr) list
| CPatDelimiters of string * cases_pattern_expr
| CPatCast of cases_pattern_expr * constr_expr
and cases_pattern_expr = cases_pattern_expr_r CAst.t
and cases_pattern_notation_substitution =
cases_pattern_expr list * (** for constr subterms *)
cases_pattern_expr list list (** for recursive notations *)
and constr_expr_r =
| CRef of reference * instance_expr option
| CFix of Id.t Loc.located * fix_expr list
| CCoFix of Id.t Loc.located * cofix_expr list
| CProdN of binder_expr list * constr_expr
| CLambdaN of binder_expr list * constr_expr
| CLetIn of Name.t Loc.located * constr_expr * constr_expr option * constr_expr
| CAppExpl of (proj_flag * reference * instance_expr option) * constr_expr list
| CApp of (proj_flag * constr_expr) *
(constr_expr * explicitation Loc.located option) list
| CRecord of (reference * constr_expr) list
(* representation of the "let" and "match" constructs *)
| CCases of case_style (* determines whether this value represents "let" or "match" construct *)
* constr_expr option (* return-clause *)
* case_expr list
* branch_expr list (* branches *)
| CLetTuple of Name.t Loc.located list * (Name.t Loc.located option * constr_expr option) *
constr_expr * constr_expr
| CIf of constr_expr * (Name.t Loc.located option * constr_expr option)
* constr_expr * constr_expr
| CHole of Evar_kinds.t option * intro_pattern_naming_expr * Genarg.raw_generic_argument option
| CPatVar of patvar
| CEvar of Glob_term.existential_name * (Id.t * constr_expr) list
| CSort of glob_sort
| CCast of constr_expr * constr_expr cast_type
| CNotation of notation * constr_notation_substitution
| CGeneralization of binding_kind * abstraction_kind option * constr_expr
| CPrim of prim_token
| CDelimiters of string * constr_expr
and constr_expr = constr_expr_r CAst.t
and case_expr = constr_expr (* expression that is being matched *)
* Name.t Loc.located option (* as-clause *)
* cases_pattern_expr option (* in-clause *)
and branch_expr =
(cases_pattern_expr list Loc.located list * constr_expr) Loc.located
and binder_expr =
Name.t Loc.located list * binder_kind * constr_expr
and fix_expr =
Id.t Loc.located * (Id.t Loc.located option * recursion_order_expr) *
local_binder_expr list * constr_expr * constr_expr
and cofix_expr =
Id.t Loc.located * local_binder_expr list * constr_expr * constr_expr
and recursion_order_expr =
| CStructRec
| CWfRec of constr_expr
| CMeasureRec of constr_expr * constr_expr option (** measure, relation *)
(** Anonymous defs allowed ?? *)
and local_binder_expr =
| CLocalAssum of Name.t Loc.located list * binder_kind * constr_expr
| CLocalDef of Name.t Loc.located * constr_expr * constr_expr option
| CLocalPattern of (cases_pattern_expr * constr_expr option) Loc.located
and constr_notation_substitution =
constr_expr list * (** for constr subterms *)
constr_expr list list * (** for recursive notations *)
local_binder_expr list list (** for binders subexpressions *)
type typeclass_constraint = (Name.t Loc.located * Id.t Loc.located list option) * binding_kind * constr_expr
and typeclass_context = typeclass_constraint list
type constr_pattern_expr = constr_expr
(** Concrete syntax for modules and module types *)
type with_declaration_ast =
| CWith_Module of Id.t list Loc.located * qualid Loc.located
| CWith_Definition of Id.t list Loc.located * constr_expr
type module_ast_r =
| CMident of qualid
| CMapply of module_ast * module_ast
| CMwith of module_ast * with_declaration_ast
and module_ast = module_ast_r CAst.t
|