1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
(*i*)
open Pp
open Util
open Names
open Nameops
open Libnames
open Rawterm
open Term
open Mod_subst
(*i*)
(**********************************************************************)
(* This is the subtype of rawconstr allowed in syntactic extensions *)
(* For AList: first constr is iterator, second is terminator;
first id is where each argument of the list has to be substituted
in iterator and snd id is alternative name just for printing;
boolean is associativity *)
type aconstr =
(* Part common to rawconstr and cases_pattern *)
| ARef of global_reference
| AVar of identifier
| AApp of aconstr * aconstr list
| AList of identifier * identifier * aconstr * aconstr * bool
(* Part only in rawconstr *)
| ALambda of name * aconstr * aconstr
| AProd of name * aconstr * aconstr
| ALetIn of name * aconstr * aconstr
| ACases of case_style * aconstr option *
(aconstr * (name * (inductive * int * name list) option)) list *
(cases_pattern list * aconstr) list
| ALetTuple of name list * (name * aconstr option) * aconstr * aconstr
| AIf of aconstr * (name * aconstr option) * aconstr * aconstr
| ARec of fix_kind * identifier array *
(name * aconstr option * aconstr) list array * aconstr array *
aconstr array
| ASort of rawsort
| AHole of Evd.hole_kind
| APatVar of patvar
| ACast of aconstr * aconstr cast_type
(**********************************************************************)
(* Re-interpret a notation as a rawconstr, taking care of binders *)
let rec cases_pattern_fold_map loc g e = function
| PatVar (_,na) ->
let e',na' = name_fold_map g e na in e', PatVar (loc,na')
| PatCstr (_,cstr,patl,na) ->
let e',na' = name_fold_map g e na in
let e',patl' = list_fold_map (cases_pattern_fold_map loc g) e patl in
e', PatCstr (loc,cstr,patl',na')
let rec subst_rawvars l = function
| RVar (_,id) as r -> (try List.assoc id l with Not_found -> r)
| r -> map_rawconstr (subst_rawvars l) r (* assume: id is not binding *)
let ldots_var = id_of_string ".."
let rawconstr_of_aconstr_with_binders loc g f e = function
| AVar id -> RVar (loc,id)
| AApp (a,args) -> RApp (loc,f e a, List.map (f e) args)
| AList (x,y,iter,tail,swap) ->
let t = f e tail in let it = f e iter in
let innerl = (ldots_var,t)::(if swap then [] else [x,RVar(loc,y)]) in
let inner = RApp (loc,RVar (loc,ldots_var),[subst_rawvars innerl it]) in
let outerl = (ldots_var,inner)::(if swap then [x,RVar(loc,y)] else []) in
subst_rawvars outerl it
| ALambda (na,ty,c) ->
let e,na = name_fold_map g e na in RLambda (loc,na,Explicit,f e ty,f e c)
| AProd (na,ty,c) ->
let e,na = name_fold_map g e na in RProd (loc,na,Explicit,f e ty,f e c)
| ALetIn (na,b,c) ->
let e,na = name_fold_map g e na in RLetIn (loc,na,f e b,f e c)
| ACases (sty,rtntypopt,tml,eqnl) ->
let e',tml' = List.fold_right (fun (tm,(na,t)) (e',tml') ->
let e',t' = match t with
| None -> e',None
| Some (ind,npar,nal) ->
let e',nal' = List.fold_right (fun na (e',nal) ->
let e',na' = name_fold_map g e' na in e',na'::nal) nal (e',[]) in
e',Some (loc,ind,npar,nal') in
let e',na' = name_fold_map g e' na in
(e',(f e tm,(na',t'))::tml')) tml (e,[]) in
let fold (idl,e) id = let (e,id) = g e id in ((id::idl,e),id) in
let eqnl' = List.map (fun (patl,rhs) ->
let ((idl,e),patl) =
list_fold_map (cases_pattern_fold_map loc fold) ([],e) patl in
(loc,idl,patl,f e rhs)) eqnl in
RCases (loc,sty,Option.map (f e') rtntypopt,tml',eqnl')
| ALetTuple (nal,(na,po),b,c) ->
let e,nal = list_fold_map (name_fold_map g) e nal in
let e,na = name_fold_map g e na in
RLetTuple (loc,nal,(na,Option.map (f e) po),f e b,f e c)
| AIf (c,(na,po),b1,b2) ->
let e,na = name_fold_map g e na in
RIf (loc,f e c,(na,Option.map (f e) po),f e b1,f e b2)
| ARec (fk,idl,dll,tl,bl) ->
let e,idl = array_fold_map g e idl in
let e,dll = array_fold_map (list_fold_map (fun e (na,oc,b) ->
let e,na = name_fold_map g e na in
(e,(na,Explicit,Option.map (f e) oc,f e b)))) e dll in
RRec (loc,fk,idl,dll,Array.map (f e) tl,Array.map (f e) bl)
| ACast (c,k) -> RCast (loc,f e c,
match k with
| CastConv (k,t) -> CastConv (k,f e t)
| CastCoerce -> CastCoerce)
| ASort x -> RSort (loc,x)
| AHole x -> RHole (loc,x)
| APatVar n -> RPatVar (loc,(false,n))
| ARef x -> RRef (loc,x)
let rec rawconstr_of_aconstr loc x =
let rec aux () x =
rawconstr_of_aconstr_with_binders loc (fun () id -> ((),id)) aux () x
in aux () x
(****************************************************************************)
(* Translating a rawconstr into a notation, interpreting recursive patterns *)
let add_name r = function
| Anonymous -> ()
| Name id -> r := id :: !r
let has_ldots =
List.exists
(function RApp (_,RVar(_,v),_) when v = ldots_var -> true | _ -> false)
let compare_rawconstr f t1 t2 = match t1,t2 with
| RRef (_,r1), RRef (_,r2) -> r1 = r2
| RVar (_,v1), RVar (_,v2) -> v1 = v2
| RApp (_,f1,l1), RApp (_,f2,l2) -> f f1 f2 & List.for_all2 f l1 l2
| RLambda (_,na1,bk1,ty1,c1), RLambda (_,na2,bk2,ty2,c2) when na1 = na2 && bk1 = bk2 ->
f ty1 ty2 & f c1 c2
| RProd (_,na1,bk1,ty1,c1), RProd (_,na2,bk2,ty2,c2) when na1 = na2 && bk1 = bk2 ->
f ty1 ty2 & f c1 c2
| RHole _, RHole _ -> true
| RSort (_,s1), RSort (_,s2) -> s1 = s2
| (RLetIn _ | RCases _ | RRec _ | RDynamic _
| RPatVar _ | REvar _ | RLetTuple _ | RIf _ | RCast _),_
| _,(RLetIn _ | RCases _ | RRec _ | RDynamic _
| RPatVar _ | REvar _ | RLetTuple _ | RIf _ | RCast _)
-> error "Unsupported construction in recursive notations"
| (RRef _ | RVar _ | RApp _ | RLambda _ | RProd _ | RHole _ | RSort _), _
-> false
let rec eq_rawconstr t1 t2 = compare_rawconstr eq_rawconstr t1 t2
let discriminate_patterns foundvars nl l1 l2 =
let diff = ref None in
let rec aux n c1 c2 = match c1,c2 with
| RVar (_,v1), RVar (_,v2) when v1<>v2 ->
if !diff = None then (diff := Some (v1,v2,(n>=nl)); true)
else
!diff = Some (v1,v2,(n>=nl)) or !diff = Some (v2,v1,(n<nl))
or (error
"Both ends of the recursive pattern differ in more than one place")
| _ -> compare_rawconstr (aux (n+1)) c1 c2 in
let l = list_map2_i aux 0 l1 l2 in
if not (List.for_all ((=) true) l) then
error "Both ends of the recursive pattern differ";
match !diff with
| None -> error "Both ends of the recursive pattern are the same"
| Some (x,y,_ as discr) ->
List.iter (fun id ->
if List.mem id !foundvars
then error "Variables used in the recursive part of a pattern are not allowed to occur outside of the recursive part";
foundvars := id::!foundvars) [x;y];
discr
let aconstr_and_vars_of_rawconstr a =
let found = ref [] in
let rec aux = function
| RVar (_,id) -> found := id::!found; AVar id
| RApp (_,f,args) when has_ldots args -> make_aconstr_list f args
| RApp (_,RVar (_,f),[RApp (_,t,[c]);d]) when f = ldots_var ->
(* Special case for alternative (recursive) notation of application *)
let x,y,lassoc = discriminate_patterns found 0 [c] [d] in
found := ldots_var :: !found; assert lassoc;
AList (x,y,AApp (AVar ldots_var,[AVar x]),aux t,lassoc)
| RApp (_,g,args) -> AApp (aux g, List.map aux args)
| RLambda (_,na,bk,ty,c) -> add_name found na; ALambda (na,aux ty,aux c)
| RProd (_,na,bk,ty,c) -> add_name found na; AProd (na,aux ty,aux c)
| RLetIn (_,na,b,c) -> add_name found na; ALetIn (na,aux b,aux c)
| RCases (_,sty,rtntypopt,tml,eqnl) ->
let f (_,idl,pat,rhs) = found := idl@(!found); (pat,aux rhs) in
ACases (sty,Option.map aux rtntypopt,
List.map (fun (tm,(na,x)) ->
add_name found na;
Option.iter
(fun (_,_,_,nl) -> List.iter (add_name found) nl) x;
(aux tm,(na,Option.map (fun (_,ind,n,nal) -> (ind,n,nal)) x))) tml,
List.map f eqnl)
| RLetTuple (loc,nal,(na,po),b,c) ->
add_name found na;
List.iter (add_name found) nal;
ALetTuple (nal,(na,Option.map aux po),aux b,aux c)
| RIf (loc,c,(na,po),b1,b2) ->
add_name found na;
AIf (aux c,(na,Option.map aux po),aux b1,aux b2)
| RRec (_,fk,idl,dll,tl,bl) ->
Array.iter (fun id -> found := id::!found) idl;
let dll = Array.map (List.map (fun (na,bk,oc,b) ->
if bk <> Explicit then
error "Binders marked as implicit not allowed in notations";
add_name found na; (na,Option.map aux oc,aux b))) dll in
ARec (fk,idl,dll,Array.map aux tl,Array.map aux bl)
| RCast (_,c,k) -> ACast (aux c,
match k with CastConv (k,t) -> CastConv (k,aux t)
| CastCoerce -> CastCoerce)
| RSort (_,s) -> ASort s
| RHole (_,w) -> AHole w
| RRef (_,r) -> ARef r
| RPatVar (_,(_,n)) -> APatVar n
| RDynamic _ | REvar _ ->
error "Existential variables not allowed in notations"
(* Recognizing recursive notations *)
and terminator_of_pat f1 ll1 lr1 = function
| RApp (loc,f2,l2) ->
if not (eq_rawconstr f1 f2) then error
"Cannot recognize the same head to both ends of the recursive pattern";
let nl = List.length ll1 in
let nr = List.length lr1 in
if List.length l2 <> nl + nr + 1 then
error "Both ends of the recursive pattern have different lengths";
let ll2,l2' = list_chop nl l2 in
let t = List.hd l2' and lr2 = List.tl l2' in
let x,y,order = discriminate_patterns found nl (ll1@lr1) (ll2@lr2) in
let iter =
if order then RApp (loc,f2,ll2@RVar (loc,ldots_var)::lr2)
else RApp (loc,f1,ll1@RVar (loc,ldots_var)::lr1) in
(if order then y else x),(if order then x else y), aux iter, aux t, order
| _ -> error "One end of the recursive pattern is not an application"
and make_aconstr_list f args =
let rec find_patterns acc = function
| RApp(_,RVar (_,a),[c]) :: l when a = ldots_var ->
(* We've found the recursive part *)
let x,y,iter,term,lassoc = terminator_of_pat f (List.rev acc) l c in
AList (x,y,iter,term,lassoc)
| a::l -> find_patterns (a::acc) l
| [] -> error "Ill-formed recursive notation"
in find_patterns [] args
in
let t = aux a in
(* Side effect *)
t, !found
let aconstr_of_rawconstr vars a =
let a,foundvars = aconstr_and_vars_of_rawconstr a in
let check_type x =
if not (List.mem x foundvars) then
error ((string_of_id x)^" is unbound in the right-hand-side") in
List.iter check_type vars;
a
(* Substitution of kernel names, avoiding a list of bound identifiers *)
let aconstr_of_constr avoiding t =
aconstr_of_rawconstr [] (Detyping.detype false avoiding [] t)
let rec subst_pat subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_kn subst kn
and cpl' = list_smartmap (subst_pat subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_aconstr subst bound raw =
match raw with
| ARef ref ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
aconstr_of_constr bound t
| AVar _ -> raw
| AApp (r,rl) ->
let r' = subst_aconstr subst bound r
and rl' = list_smartmap (subst_aconstr subst bound) rl in
if r' == r && rl' == rl then raw else
AApp(r',rl')
| AList (id1,id2,r1,r2,b) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
AList (id1,id2,r1',r2',b)
| ALambda (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ALambda (n,r1',r2')
| AProd (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
AProd (n,r1',r2')
| ALetIn (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ALetIn (n,r1',r2')
| ACases (sty,rtntypopt,rl,branches) ->
let rtntypopt' = Option.smartmap (subst_aconstr subst bound) rtntypopt
and rl' = list_smartmap
(fun (a,(n,signopt) as x) ->
let a' = subst_aconstr subst bound a in
let signopt' = Option.map (fun ((indkn,i),n,nal as z) ->
let indkn' = subst_kn subst indkn in
if indkn == indkn' then z else ((indkn',i),n,nal)) signopt in
if a' == a && signopt' == signopt then x else (a',(n,signopt')))
rl
and branches' = list_smartmap
(fun (cpl,r as branch) ->
let cpl' = list_smartmap (subst_pat subst) cpl
and r' = subst_aconstr subst bound r in
if cpl' == cpl && r' == r then branch else
(cpl',r'))
branches
in
if rtntypopt' == rtntypopt && rtntypopt == rtntypopt' &
rl' == rl && branches' == branches then raw else
ACases (sty,rtntypopt',rl',branches')
| ALetTuple (nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_aconstr subst bound) po
and b' = subst_aconstr subst bound b
and c' = subst_aconstr subst bound c in
if po' == po && b' == b && c' == c then raw else
ALetTuple (nal,(na,po'),b',c')
| AIf (c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_aconstr subst bound) po
and b1' = subst_aconstr subst bound b1
and b2' = subst_aconstr subst bound b2
and c' = subst_aconstr subst bound c in
if po' == po && b1' == b1 && b2' == b2 && c' == c then raw else
AIf (c',(na,po'),b1',b2')
| ARec (fk,idl,dll,tl,bl) ->
let dll' =
array_smartmap (list_smartmap (fun (na,oc,b as x) ->
let oc' = Option.smartmap (subst_aconstr subst bound) oc in
let b' = subst_aconstr subst bound b in
if oc' == oc && b' == b then x else (na,oc',b'))) dll in
let tl' = array_smartmap (subst_aconstr subst bound) tl in
let bl' = array_smartmap (subst_aconstr subst bound) bl in
if dll' == dll && tl' == tl && bl' == bl then raw else
ARec (fk,idl,dll',tl',bl')
| APatVar _ | ASort _ -> raw
| AHole (Evd.ImplicitArg (ref,i)) ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
AHole (Evd.InternalHole)
| AHole (Evd.BinderType _ | Evd.QuestionMark _ | Evd.CasesType
| Evd.InternalHole | Evd.TomatchTypeParameter _ | Evd.GoalEvar
| Evd.ImpossibleCase) -> raw
| ACast (r1,k) ->
match k with
CastConv (k, r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ACast (r1',CastConv (k,r2'))
| CastCoerce ->
let r1' = subst_aconstr subst bound r1 in
if r1' == r1 then raw else
ACast (r1',CastCoerce)
let subst_interpretation subst (metas,pat) =
(metas,subst_aconstr subst (List.map fst metas) pat)
let encode_list_value l = RApp (dummy_loc,RVar (dummy_loc,ldots_var),l)
(* Pattern-matching rawconstr and aconstr *)
let abstract_return_type_context pi mklam tml rtno =
Option.map (fun rtn ->
let nal =
List.flatten (List.map (fun (_,(na,t)) ->
match t with Some x -> (pi x)@[na] | None -> [na]) tml) in
List.fold_right mklam nal rtn)
rtno
let abstract_return_type_context_rawconstr =
abstract_return_type_context (fun (_,_,_,nal) -> nal)
(fun na c -> RLambda(dummy_loc,na,Explicit,RHole(dummy_loc,Evd.InternalHole),c))
let abstract_return_type_context_aconstr =
abstract_return_type_context pi3
(fun na c -> ALambda(na,AHole Evd.InternalHole,c))
let rec adjust_scopes = function
| _,[] -> []
| [],a::args -> (None,a) :: adjust_scopes ([],args)
| sc::scopes,a::args -> (sc,a) :: adjust_scopes (scopes,args)
exception No_match
let rec alpha_var id1 id2 = function
| (i1,i2)::_ when i1=id1 -> i2 = id2
| (i1,i2)::_ when i2=id2 -> i1 = id1
| _::idl -> alpha_var id1 id2 idl
| [] -> id1 = id2
let alpha_eq_val (x,y) = x = y
let bind_env alp sigma var v =
try
let vvar = List.assoc var sigma in
if alpha_eq_val (v,vvar) then sigma
else raise No_match
with Not_found ->
(* Check that no capture of binding variables occur *)
if List.exists (fun (id,_) ->occur_rawconstr id v) alp then raise No_match;
(* TODO: handle the case of multiple occs in different scopes *)
(var,v)::sigma
let match_fix_kind fk1 fk2 =
match (fk1,fk2) with
| RCoFix n1, RCoFix n2 -> n1 = n2
| RFix (nl1,n1), RFix (nl2,n2) ->
n1 = n2 &&
array_for_all2 (fun (n1,_) (n2,_) -> n2 = None || n1 = n2) nl1 nl2
| _ -> false
let match_opt f sigma t1 t2 = match (t1,t2) with
| None, None -> sigma
| Some t1, Some t2 -> f sigma t1 t2
| _ -> raise No_match
let match_names metas (alp,sigma) na1 na2 = match (na1,na2) with
| (Name id1,Name id2) when List.mem id2 metas ->
alp, bind_env alp sigma id2 (RVar (dummy_loc,id1))
| (Name id1,Name id2) -> (id1,id2)::alp,sigma
| (Anonymous,Anonymous) -> alp,sigma
| _ -> raise No_match
let rec match_cases_pattern metas acc pat1 pat2 =
match (pat1,pat2) with
| PatVar (_,na1), PatVar (_,na2) -> match_names metas acc na1 na2
| PatCstr (_,c1,patl1,na1), PatCstr (_,c2,patl2,na2)
when c1 = c2 & List.length patl1 = List.length patl2 ->
List.fold_left2 (match_cases_pattern metas)
(match_names metas acc na1 na2) patl1 patl2
| _ -> raise No_match
let rec match_ alp metas sigma a1 a2 = match (a1,a2) with
| r1, AVar id2 when List.mem id2 metas -> bind_env alp sigma id2 r1
| RVar (_,id1), AVar id2 when alpha_var id1 id2 alp -> sigma
| RRef (_,r1), ARef r2 when r1 = r2 -> sigma
| RPatVar (_,(_,n1)), APatVar n2 when n1=n2 -> sigma
| RApp (loc,f1,l1), AApp (f2,l2) ->
let n1 = List.length l1 and n2 = List.length l2 in
let f1,l1,f2,l2 =
if n1 < n2 then
let l21,l22 = list_chop (n2-n1) l2 in f1,l1, AApp (f2,l21), l22
else if n1 > n2 then
let l11,l12 = list_chop (n1-n2) l1 in RApp (loc,f1,l11),l12, f2,l2
else f1,l1, f2, l2 in
List.fold_left2 (match_ alp metas) (match_ alp metas sigma f1 f2) l1 l2
| RApp (_,f1,l1), AList (x,_,(AApp (f2,l2) as iter),termin,lassoc)
when List.length l1 = List.length l2 ->
match_alist alp metas sigma (f1::l1) (f2::l2) x iter termin lassoc
| RLambda (_,na1,_,t1,b1), ALambda (na2,t2,b2) ->
match_binders alp metas na1 na2 (match_ alp metas sigma t1 t2) b1 b2
| RProd (_,na1,_,t1,b1), AProd (na2,t2,b2) ->
match_binders alp metas na1 na2 (match_ alp metas sigma t1 t2) b1 b2
| RLetIn (_,na1,t1,b1), ALetIn (na2,t2,b2) ->
match_binders alp metas na1 na2 (match_ alp metas sigma t1 t2) b1 b2
| RCases (_,sty1,rtno1,tml1,eqnl1), ACases (sty2,rtno2,tml2,eqnl2)
when sty1 = sty2
& List.length tml1 = List.length tml2
& List.length eqnl1 = List.length eqnl2 ->
let rtno1' = abstract_return_type_context_rawconstr tml1 rtno1 in
let rtno2' = abstract_return_type_context_aconstr tml2 rtno2 in
let sigma = Option.fold_left2 (match_ alp metas) sigma rtno1' rtno2' in
let sigma = List.fold_left2
(fun s (tm1,_) (tm2,_) -> match_ alp metas s tm1 tm2) sigma tml1 tml2 in
List.fold_left2 (match_equations alp metas) sigma eqnl1 eqnl2
| RLetTuple (_,nal1,(na1,to1),b1,c1), ALetTuple (nal2,(na2,to2),b2,c2)
when List.length nal1 = List.length nal2 ->
let sigma = match_opt (match_binders alp metas na1 na2) sigma to1 to2 in
let sigma = match_ alp metas sigma b1 b2 in
let (alp,sigma) =
List.fold_left2 (match_names metas) (alp,sigma) nal1 nal2 in
match_ alp metas sigma c1 c2
| RIf (_,a1,(na1,to1),b1,c1), AIf (a2,(na2,to2),b2,c2) ->
let sigma = match_opt (match_binders alp metas na1 na2) sigma to1 to2 in
List.fold_left2 (match_ alp metas) sigma [a1;b1;c1] [a2;b2;c2]
| RRec (_,fk1,idl1,dll1,tl1,bl1), ARec (fk2,idl2,dll2,tl2,bl2)
when match_fix_kind fk1 fk2 & Array.length idl1 = Array.length idl2 &
array_for_all2 (fun l1 l2 -> List.length l1 = List.length l2) dll1 dll2
->
let alp,sigma = array_fold_left2
(List.fold_left2 (fun (alp,sigma) (na1,_,oc1,b1) (na2,oc2,b2) ->
let sigma =
match_ alp metas (match_opt (match_ alp metas) sigma oc1 oc2) b1 b2
in match_names metas (alp,sigma) na1 na2)) (alp,sigma) dll1 dll2 in
let sigma = array_fold_left2 (match_ alp metas) sigma tl1 tl2 in
let alp,sigma = array_fold_right2 (fun id1 id2 alsig ->
match_names metas alsig (Name id1) (Name id2)) idl1 idl2 (alp,sigma) in
array_fold_left2 (match_ alp metas) sigma bl1 bl2
| RCast(_,c1, CastConv(_,t1)), ACast(c2, CastConv (_,t2)) ->
match_ alp metas (match_ alp metas sigma c1 c2) t1 t2
| RCast(_,c1, CastCoerce), ACast(c2, CastCoerce) ->
match_ alp metas sigma c1 c2
| RSort (_,s1), ASort s2 when s1 = s2 -> sigma
| RPatVar _, AHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
| a, AHole _ -> sigma
| (RDynamic _ | RRec _ | REvar _), _
| _,_ -> raise No_match
and match_alist alp metas sigma l1 l2 x iter termin lassoc =
(* match the iterator at least once *)
let sigma = List.fold_left2 (match_ alp (ldots_var::metas)) sigma l1 l2 in
(* Recover the recursive position *)
let rest = List.assoc ldots_var sigma in
(* Recover the first element *)
let t1 = List.assoc x sigma in
let sigma = List.remove_assoc x (List.remove_assoc ldots_var sigma) in
(* try to find the remaining elements or the terminator *)
let rec match_alist_tail alp metas sigma acc rest =
try
let sigma = match_ alp (ldots_var::metas) sigma rest iter in
let rest = List.assoc ldots_var sigma in
let t = List.assoc x sigma in
let sigma = List.remove_assoc x (List.remove_assoc ldots_var sigma) in
match_alist_tail alp metas sigma (t::acc) rest
with No_match ->
List.rev acc, match_ alp metas sigma rest termin in
let tl,sigma = match_alist_tail alp metas sigma [t1] rest in
(x,encode_list_value (if lassoc then List.rev tl else tl))::sigma
and match_binders alp metas na1 na2 sigma b1 b2 =
let (alp,sigma) = match_names metas (alp,sigma) na1 na2 in
match_ alp metas sigma b1 b2
and match_equations alp metas sigma (_,_,patl1,rhs1) (patl2,rhs2) =
(* patl1 and patl2 have the same length because they respectively
correspond to some tml1 and tml2 that have the same length *)
let (alp,sigma) =
List.fold_left2 (match_cases_pattern metas) (alp,sigma) patl1 patl2 in
match_ alp metas sigma rhs1 rhs2
type scope_name = string
type tmp_scope_name = scope_name
type interpretation =
(identifier * (tmp_scope_name option * scope_name list)) list * aconstr
let match_aconstr c (metas_scl,pat) =
let subst = match_ [] (List.map fst metas_scl) [] c pat in
(* Reorder canonically the substitution *)
let find x subst =
try List.assoc x subst
with Not_found ->
(* Happens for binders bound to Anonymous *)
(* Find a better way to propagate Anonymous... *)
RVar (dummy_loc,x) in
List.map (fun (x,scl) -> (find x subst,scl)) metas_scl
(**********************************************************************)
(*s Concrete syntax for terms *)
type notation = string
type explicitation = ExplByPos of int * identifier option | ExplByName of identifier
type binder_kind = Default of binding_kind | TypeClass of binding_kind * binding_kind
type proj_flag = int option (* [Some n] = proj of the n-th visible argument *)
type prim_token = Numeral of Bigint.bigint | String of string
type cases_pattern_expr =
| CPatAlias of loc * cases_pattern_expr * identifier
| CPatCstr of loc * reference * cases_pattern_expr list
| CPatAtom of loc * reference option
| CPatOr of loc * cases_pattern_expr list
| CPatNotation of loc * notation * cases_pattern_expr list
| CPatPrim of loc * prim_token
| CPatDelimiters of loc * string * cases_pattern_expr
type constr_expr =
| CRef of reference
| CFix of loc * identifier located * fixpoint_expr list
| CCoFix of loc * identifier located * cofixpoint_expr list
| CArrow of loc * constr_expr * constr_expr
| CProdN of loc * (name located list * binder_kind * constr_expr) list * constr_expr
| CLambdaN of loc * (name located list * binder_kind * constr_expr) list * constr_expr
| CLetIn of loc * name located * constr_expr * constr_expr
| CAppExpl of loc * (proj_flag * reference) * constr_expr list
| CApp of loc * (proj_flag * constr_expr) *
(constr_expr * explicitation located option) list
| CCases of loc * case_style * constr_expr option *
(constr_expr * (name option * constr_expr option)) list *
(loc * cases_pattern_expr list located list * constr_expr) list
| CLetTuple of loc * name list * (name option * constr_expr option) *
constr_expr * constr_expr
| CIf of loc * constr_expr * (name option * constr_expr option)
* constr_expr * constr_expr
| CHole of loc * Evd.hole_kind option
| CPatVar of loc * (bool * patvar)
| CEvar of loc * existential_key * constr_expr list option
| CSort of loc * rawsort
| CCast of loc * constr_expr * constr_expr cast_type
| CNotation of loc * notation * constr_expr list
| CPrim of loc * prim_token
| CDelimiters of loc * string * constr_expr
| CDynamic of loc * Dyn.t
and fixpoint_expr =
identifier located * (identifier located option * recursion_order_expr) * local_binder list * constr_expr * constr_expr
and local_binder =
| LocalRawDef of name located * constr_expr
| LocalRawAssum of name located list * binder_kind * constr_expr
and typeclass_constraint = name located * binding_kind * constr_expr
and typeclass_context = typeclass_constraint list
and cofixpoint_expr =
identifier located * local_binder list * constr_expr * constr_expr
and recursion_order_expr =
| CStructRec
| CWfRec of constr_expr
| CMeasureRec of constr_expr
(***********************)
(* For binders parsing *)
let default_binder_kind = Default Explicit
let rec local_binders_length = function
| [] -> 0
| LocalRawDef _::bl -> 1 + local_binders_length bl
| LocalRawAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
let rec local_assums_length = function
| [] -> 0
| LocalRawDef _::bl -> local_binders_length bl
| LocalRawAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
let names_of_local_assums bl =
List.flatten (List.map (function LocalRawAssum(l,_,_)->l|_->[]) bl)
let names_of_local_binders bl =
List.flatten (List.map (function LocalRawAssum(l,_,_)->l|LocalRawDef(l,_)->[l]) bl)
(**********************************************************************)
(* Functions on constr_expr *)
let constr_loc = function
| CRef (Ident (loc,_)) -> loc
| CRef (Qualid (loc,_)) -> loc
| CFix (loc,_,_) -> loc
| CCoFix (loc,_,_) -> loc
| CArrow (loc,_,_) -> loc
| CProdN (loc,_,_) -> loc
| CLambdaN (loc,_,_) -> loc
| CLetIn (loc,_,_,_) -> loc
| CAppExpl (loc,_,_) -> loc
| CApp (loc,_,_) -> loc
| CCases (loc,_,_,_,_) -> loc
| CLetTuple (loc,_,_,_,_) -> loc
| CIf (loc,_,_,_,_) -> loc
| CHole (loc, _) -> loc
| CPatVar (loc,_) -> loc
| CEvar (loc,_,_) -> loc
| CSort (loc,_) -> loc
| CCast (loc,_,_) -> loc
| CNotation (loc,_,_) -> loc
| CPrim (loc,_) -> loc
| CDelimiters (loc,_,_) -> loc
| CDynamic _ -> dummy_loc
let cases_pattern_expr_loc = function
| CPatAlias (loc,_,_) -> loc
| CPatCstr (loc,_,_) -> loc
| CPatAtom (loc,_) -> loc
| CPatOr (loc,_) -> loc
| CPatNotation (loc,_,_) -> loc
| CPatPrim (loc,_) -> loc
| CPatDelimiters (loc,_,_) -> loc
let occur_var_constr_ref id = function
| Ident (loc,id') -> id = id'
| Qualid _ -> false
let ids_of_cases_indtype =
let add_var ids = function CRef (Ident (_,id)) -> id::ids | _ -> ids in
let rec vars_of = function
(* We deal only with the regular cases *)
| CApp (_,_,l) -> List.fold_left add_var [] (List.map fst l)
| CNotation (_,_,l)
(* assume the ntn is applicative and does not instantiate the head !! *)
| CAppExpl (_,_,l) -> List.fold_left add_var [] l
| CDelimiters(_,_,c) -> vars_of c
| _ -> [] in
vars_of
let ids_of_cases_tomatch tms =
List.fold_right
(fun (_,(ona,indnal)) l ->
Option.fold_right (fun t -> (@) (ids_of_cases_indtype t))
indnal (Option.fold_right name_cons ona l))
tms []
let is_constructor id =
try ignore (Nametab.extended_locate (make_short_qualid id)); true
with Not_found -> true
let rec cases_pattern_fold_names f a = function
| CPatAlias (_,pat,id) -> f id a
| CPatCstr (_,_,patl) | CPatOr (_,patl) | CPatNotation (_,_,patl) ->
List.fold_left (cases_pattern_fold_names f) a patl
| CPatDelimiters (_,_,pat) -> cases_pattern_fold_names f a pat
| CPatAtom (_,Some (Ident (_,id))) when not (is_constructor id) -> f id a
| CPatPrim _ | CPatAtom _ -> a
let ids_of_pattern_list =
List.fold_left
(located_fold_left
(List.fold_left (cases_pattern_fold_names Idset.add)))
Idset.empty
let rec fold_constr_expr_binders g f n acc b = function
| (nal,bk,t)::l ->
let nal = snd (List.split nal) in
let n' = List.fold_right (name_fold g) nal n in
f n (fold_constr_expr_binders g f n' acc b l) t
| [] ->
f n acc b
let rec fold_local_binders g f n acc b = function
| LocalRawAssum (nal,bk,t)::l ->
let nal = snd (List.split nal) in
let n' = List.fold_right (name_fold g) nal n in
f n (fold_local_binders g f n' acc b l) t
| LocalRawDef ((_,na),t)::l ->
f n (fold_local_binders g f (name_fold g na n) acc b l) t
| _ ->
f n acc b
let fold_constr_expr_with_binders g f n acc = function
| CArrow (loc,a,b) -> f n (f n acc a) b
| CAppExpl (loc,(_,_),l) -> List.fold_left (f n) acc l
| CApp (loc,(_,t),l) -> List.fold_left (f n) (f n acc t) (List.map fst l)
| CProdN (_,l,b) | CLambdaN (_,l,b) -> fold_constr_expr_binders g f n acc b l
| CLetIn (_,na,a,b) -> fold_constr_expr_binders g f n acc b [[na],default_binder_kind,a]
| CCast (loc,a,CastConv(_,b)) -> f n (f n acc a) b
| CCast (loc,a,CastCoerce) -> f n acc a
| CNotation (_,_,l) -> List.fold_left (f n) acc l
| CDelimiters (loc,_,a) -> f n acc a
| CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CDynamic _ | CRef _ ->
acc
| CCases (loc,sty,rtnpo,al,bl) ->
let ids = ids_of_cases_tomatch al in
let acc = Option.fold_left (f (List.fold_right g ids n)) acc rtnpo in
let acc = List.fold_left (f n) acc (List.map fst al) in
List.fold_right (fun (loc,patl,rhs) acc ->
let ids = ids_of_pattern_list patl in
f (Idset.fold g ids n) acc rhs) bl acc
| CLetTuple (loc,nal,(ona,po),b,c) ->
let n' = List.fold_right (name_fold g) nal n in
f (Option.fold_right (name_fold g) ona n') (f n acc b) c
| CIf (_,c,(ona,po),b1,b2) ->
let acc = f n (f n (f n acc b1) b2) c in
Option.fold_left (f (Option.fold_right (name_fold g) ona n)) acc po
| CFix (loc,_,l) ->
let n' = List.fold_right (fun ((_,id),_,_,_,_) -> g id) l n in
List.fold_right (fun (_,(_,o),lb,t,c) acc ->
fold_local_binders g f n'
(fold_local_binders g f n acc t lb) c lb) l acc
| CCoFix (loc,_,_) ->
Pp.warning "Capture check in multiple binders not done"; acc
let free_vars_of_constr_expr c =
let rec aux bdvars l = function
| CRef (Ident (_,id)) -> if List.mem id bdvars then l else Idset.add id l
| c -> fold_constr_expr_with_binders (fun a l -> a::l) aux bdvars l c
in aux [] Idset.empty c
let occur_var_constr_expr id c = Idset.mem id (free_vars_of_constr_expr c)
let mkIdentC id = CRef (Ident (dummy_loc, id))
let mkRefC r = CRef r
let mkAppC (f,l) = CApp (dummy_loc, (None,f), List.map (fun x -> (x,None)) l)
let mkCastC (a,k) = CCast (dummy_loc,a,k)
let mkLambdaC (idl,bk,a,b) = CLambdaN (dummy_loc,[idl,bk,a],b)
let mkLetInC (id,a,b) = CLetIn (dummy_loc,id,a,b)
let mkProdC (idl,bk,a,b) = CProdN (dummy_loc,[idl,bk,a],b)
let rec mkCProdN loc bll c =
match bll with
| LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
CProdN (loc,[idl,bk,t],mkCProdN (join_loc loc1 loc) bll c)
| LocalRawDef ((loc1,_) as id,b) :: bll ->
CLetIn (loc,id,b,mkCProdN (join_loc loc1 loc) bll c)
| [] -> c
| LocalRawAssum ([],_,_) :: bll -> mkCProdN loc bll c
let rec mkCLambdaN loc bll c =
match bll with
| LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
CLambdaN (loc,[idl,bk,t],mkCLambdaN (join_loc loc1 loc) bll c)
| LocalRawDef ((loc1,_) as id,b) :: bll ->
CLetIn (loc,id,b,mkCLambdaN (join_loc loc1 loc) bll c)
| [] -> c
| LocalRawAssum ([],_,_) :: bll -> mkCLambdaN loc bll c
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,bk,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],bk,t,b)) idl
(abstract_constr_expr c bl)
let rec prod_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,prod_constr_expr c bl)
| LocalRawAssum (idl,bk,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],bk,t,b)) idl
(prod_constr_expr c bl)
let coerce_to_id = function
| CRef (Ident (loc,id)) -> (loc,id)
| a -> user_err_loc
(constr_loc a,"coerce_to_id",
str "This expression should be a simple identifier")
(* Used in correctness and interface *)
let map_binder g e nal = List.fold_right (fun (_,na) -> name_fold g na) nal e
let map_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let h (e,bl) (nal,bk,t) = (map_binder g e nal,(nal,bk,f e t)::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_local_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let h (e,bl) = function
LocalRawAssum(nal,k,ty) ->
(map_binder g e nal, LocalRawAssum(nal,k,f e ty)::bl)
| LocalRawDef((loc,na),ty) ->
(name_fold g na e, LocalRawDef((loc,na),f e ty)::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_constr_expr_with_binders g f e = function
| CArrow (loc,a,b) -> CArrow (loc,f e a,f e b)
| CAppExpl (loc,r,l) -> CAppExpl (loc,r,List.map (f e) l)
| CApp (loc,(p,a),l) ->
CApp (loc,(p,f e a),List.map (fun (a,i) -> (f e a,i)) l)
| CProdN (loc,bl,b) ->
let (e,bl) = map_binders f g e bl in CProdN (loc,bl,f e b)
| CLambdaN (loc,bl,b) ->
let (e,bl) = map_binders f g e bl in CLambdaN (loc,bl,f e b)
| CLetIn (loc,na,a,b) -> CLetIn (loc,na,f e a,f (name_fold g (snd na) e) b)
| CCast (loc,a,CastConv (k,b)) -> CCast (loc,f e a,CastConv(k, f e b))
| CCast (loc,a,CastCoerce) -> CCast (loc,f e a,CastCoerce)
| CNotation (loc,n,l) -> CNotation (loc,n,List.map (f e) l)
| CDelimiters (loc,s,a) -> CDelimiters (loc,s,f e a)
| CHole _ | CEvar _ | CPatVar _ | CSort _
| CPrim _ | CDynamic _ | CRef _ as x -> x
| CCases (loc,sty,rtnpo,a,bl) ->
(* TODO: apply g on the binding variables in pat... *)
let bl = List.map (fun (loc,pat,rhs) -> (loc,pat,f e rhs)) bl in
let ids = ids_of_cases_tomatch a in
let po = Option.map (f (List.fold_right g ids e)) rtnpo in
CCases (loc, sty, po, List.map (fun (tm,x) -> (f e tm,x)) a,bl)
| CLetTuple (loc,nal,(ona,po),b,c) ->
let e' = List.fold_right (name_fold g) nal e in
let e'' = Option.fold_right (name_fold g) ona e in
CLetTuple (loc,nal,(ona,Option.map (f e'') po),f e b,f e' c)
| CIf (loc,c,(ona,po),b1,b2) ->
let e' = Option.fold_right (name_fold g) ona e in
CIf (loc,f e c,(ona,Option.map (f e') po),f e b1,f e b2)
| CFix (loc,id,dl) ->
CFix (loc,id,List.map (fun (id,n,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
(* Note: fix names should be inserted before the arguments... *)
let e'' = List.fold_left (fun e ((_,id),_,_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,n,bl',t',d')) dl)
| CCoFix (loc,id,dl) ->
CCoFix (loc,id,List.map (fun (id,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
let e'' = List.fold_left (fun e ((_,id),_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,bl',t',d')) dl)
(* Used in constrintern *)
let rec replace_vars_constr_expr l = function
| CRef (Ident (loc,id)) as x ->
(try CRef (Ident (loc,List.assoc id l)) with Not_found -> x)
| c -> map_constr_expr_with_binders List.remove_assoc
replace_vars_constr_expr l c
(**********************************************************************)
(* Concrete syntax for modules and modules types *)
type with_declaration_ast =
| CWith_Module of identifier list located * qualid located
| CWith_Definition of identifier list located * constr_expr
type module_ast =
| CMEident of qualid located
| CMEapply of module_ast * module_ast
type module_type_ast =
| CMTEident of qualid located
| CMTEapply of module_type_ast * module_ast
| CMTEwith of module_type_ast * with_declaration_ast
type include_ast =
| CIMTE of module_type_ast
| CIME of module_ast
let loc_of_notation f loc args ntn =
if args=[] or ntn.[0] <> '_' then fst (Util.unloc loc)
else snd (Util.unloc (f (List.hd args)))
let ntn_loc = loc_of_notation constr_loc
let patntn_loc = loc_of_notation cases_pattern_expr_loc
|