aboutsummaryrefslogtreecommitdiffhomepage
path: root/interp/topconstr.ml
blob: 5b1d2813b444ef1c604c543c83d75ece4fd0eb8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

(*i*)
open Pp
open Util
open Names
open Nameops
open Libnames
open Rawterm
open Term
(*i*)

(**********************************************************************)
(* This is the subtype of rawconstr allowed in syntactic extensions *)

type aconstr =
  | ARef of global_reference
  | AVar of identifier
  | AApp of aconstr * aconstr list
  | ALambda of name * aconstr * aconstr
  | AProd of name * aconstr * aconstr
  | ALetIn of name * aconstr * aconstr
  | ACases of aconstr option * aconstr list *
      (identifier list * cases_pattern list * aconstr) list
  | AOrderedCase of case_style * aconstr option * aconstr * aconstr array
  | ASort of rawsort
  | AHole of hole_kind
  | APatVar of patvar
  | ACast of aconstr * aconstr
  
let name_app f e = function
  | Name id -> let (id, e) = f id e in (Name id, e)
  | Anonymous -> Anonymous, e

let map_aconstr_with_binders_loc loc g f e = function
  | AVar id -> RVar (loc,id)
  | AApp (a,args) -> RApp (loc,f e a, List.map (f e) args)
  | ALambda (na,ty,c) ->
      let na,e = name_app g e na in RLambda (loc,na,f e ty,f e c)
  | AProd (na,ty,c) ->
      let na,e = name_app g e na in RProd (loc,na,f e ty,f e c)
  | ALetIn (na,b,c) ->
      let na,e = name_app g e na in RLetIn (loc,na,f e b,f e c)
  | ACases (tyopt,tml,eqnl) ->
      let fold id (idl,e) = let (id,e) = g id e in (id::idl,e) in
      let eqnl = List.map (fun (idl,pat,rhs) ->
        let (idl,e) = List.fold_right fold idl ([],e) in (loc,idl,pat,f e rhs)) eqnl in
      RCases (loc,option_app (f e) tyopt,List.map (f e) tml,eqnl)
  | AOrderedCase (b,tyopt,tm,bv) ->
      ROrderedCase (loc,b,option_app (f e) tyopt,f e tm,Array.map (f e) bv)
  | ACast (c,t) -> RCast (loc,f e c,f e t)
  | ASort x -> RSort (loc,x)
  | AHole x  -> RHole (loc,x)
  | APatVar n -> RPatVar (loc,(false,n))
  | ARef x -> RRef (loc,x)

let rec subst_pat subst pat = 
  match pat with
  | PatVar _ -> pat
  | PatCstr (loc,((kn,i),j),cpl,n) -> 
      let kn' = subst_kn subst kn 
      and cpl' = list_smartmap (subst_pat subst) cpl in
        if kn' == kn && cpl' == cpl then pat else
          PatCstr (loc,((kn',i),j),cpl',n)

let rec subst_aconstr subst raw =
  match raw with
  | ARef ref -> 
      let ref' = subst_global subst ref in 
	if ref' == ref then raw else
	  ARef ref'

  | AVar _ -> raw

  | AApp (r,rl) -> 
      let r' = subst_aconstr subst r 
      and rl' = list_smartmap (subst_aconstr subst) rl in
	if r' == r && rl' == rl then raw else
	  AApp(r',rl')

  | ALambda (n,r1,r2) -> 
      let r1' = subst_aconstr subst r1 and r2' = subst_aconstr subst r2 in
	if r1' == r1 && r2' == r2 then raw else
	  ALambda (n,r1',r2')

  | AProd (n,r1,r2) -> 
      let r1' = subst_aconstr subst r1 and r2' = subst_aconstr subst r2 in
	if r1' == r1 && r2' == r2 then raw else
	  AProd (n,r1',r2')

  | ALetIn (n,r1,r2) -> 
      let r1' = subst_aconstr subst r1 and r2' = subst_aconstr subst r2 in
	if r1' == r1 && r2' == r2 then raw else
	  ALetIn (n,r1',r2')

  | ACases (ro,rl,branches) -> 
      let ro' = option_smartmap (subst_aconstr subst) ro 
      and rl' = list_smartmap (subst_aconstr subst) rl
      and branches' = list_smartmap 
                        (fun (idl,cpl,r as branch) ->
                           let cpl' = list_smartmap (subst_pat subst) cpl
                           and r' = subst_aconstr subst r in
                             if cpl' == cpl && r' == r then branch else
                               (idl,cpl',r'))
                        branches
      in
        if ro' == ro && rl' == rl && branches' == branches then raw else
          ACases (ro',rl',branches')

  | AOrderedCase (b,ro,r,ra) -> 
      let ro' = option_smartmap (subst_aconstr subst) ro
      and r' = subst_aconstr subst r 
      and ra' = array_smartmap (subst_aconstr subst) ra in
	if ro' == ro && r' == r && ra' == ra then raw else
	  AOrderedCase (b,ro',r',ra')

  | APatVar _ | ASort _ -> raw

  | AHole (ImplicitArg (ref,i)) ->
      let ref' = subst_global subst ref in 
	if ref' == ref then raw else
	  AHole (ImplicitArg (ref',i))
  | AHole ( (BinderType _ | QuestionMark | CasesType |
      InternalHole | TomatchTypeParameter _)) -> raw

  | ACast (r1,r2) -> 
      let r1' = subst_aconstr subst r1 and r2' = subst_aconstr subst r2 in
	if r1' == r1 && r2' == r2 then raw else
	  ACast (r1',r2')

let add_name r = function
  | Anonymous -> ()
  | Name id -> r := id :: !r

let aconstr_of_rawconstr vars a =
  let found = ref [] in
  let bound_binders = ref [] in
  let rec aux = function
  | RVar (_,id) -> 
      if not (List.mem id !bound_binders) then found := id::!found;
      AVar id
  | RApp (_,g,args) -> AApp (aux g, List.map aux args)
  | RLambda (_,na,ty,c) -> add_name bound_binders na; ALambda (na,aux ty,aux c)
  | RProd (_,na,ty,c) -> add_name bound_binders na; AProd (na,aux ty,aux c)
  | RLetIn (_,na,b,c) -> add_name bound_binders na; ALetIn (na,aux b,aux c)
  | RCases (_,tyopt,tml,eqnl) ->
      let f (_,idl,pat,rhs) =
        bound_binders := idl@(!bound_binders);
        (idl,pat,aux rhs) in
      ACases (option_app aux tyopt,List.map aux tml, List.map f eqnl)
  | ROrderedCase (_,b,tyopt,tm,bv) ->
      AOrderedCase (b,option_app aux tyopt,aux tm, Array.map aux bv)
  | RCast (_,c,t) -> ACast (aux c,aux t)
  | RSort (_,s) -> ASort s
  | RHole (_,w) -> AHole w
  | RRef (_,r) -> ARef r
  | RPatVar (_,(_,n)) -> APatVar n
  | RDynamic _ | RRec _ | REvar _ ->
      error "Fixpoints, cofixpoints, existential variables and pattern-matching  not \
allowed in abbreviatable expressions"
  in
  let a = aux a in
  let check_type x =
    if not (List.mem x !found or List.mem x !bound_binders) then
      error ((string_of_id x)^" is unbound in the right-hand-side") in
  List.iter check_type vars;
  a

(* Pattern-matching rawconstr and aconstr *)

let rec adjust_scopes = function
  | _,[] -> []
  | [],a::args -> (None,a) :: adjust_scopes ([],args)
  | sc::scopes,a::args -> (sc,a) :: adjust_scopes (scopes,args)

exception No_match

let rec alpha_var id1 id2 = function
  | (i1,i2)::_ when i1=id1 -> i2 = id2
  | (i1,i2)::_ when i2=id2 -> i1 = id1
  | _::idl -> alpha_var id1 id2 idl
  | [] -> id1 = id2

let alpha_eq_val (x,y) = x = y

(*
let bind_env sc sigma var v =
  try
    let vvar,_ = List.assoc var sigma in
    if alpha_eq_val (v,vvar) then sigma
    else raise No_match
  with Not_found ->
    (* TODO: handle the case of multiple occs in different scopes *)
    (var,(v,sc))::sigma

let rec match_ sc alp metas sigma a1 a2 = match (a1,a2) with
  | r1, AVar id2 when List.mem id2 metas -> bind_env sc sigma id2 r1
  | RVar (_,id1), AVar id2 when alpha_var id1 id2 alp -> sigma
  | RRef (_,r1), ARef r2 when r1 = r2 -> sigma
  | RPatVar (_,(_,n1)), APatVar n2 when n1=n2 -> sigma
  | RApp (_,f1,l1), AApp (f2,l2) when List.length l1 = List.length l2 ->
      let sigma = match_ sc alp metas sigma f1 f2 in
      let l1 = match f1 with
	| RRef (_,ref) -> adjust_scopes (Symbols.find_arguments_scope ref,l1)
	| _ -> List.map (fun a -> (None,a)) l1 in
      List.fold_left2 (fun sigma (sc,a) b -> match_ sc alp metas sigma a b) sigma l1 l2
  | RLambda (_,na1,t1,b1), ALambda (na2,t2,b2) ->
     match_binders sc alp metas (match_type alp metas sigma t1 t2) b1 b2 na1 na2
  | RProd (_,na1,t1,b1), AProd (na2,t2,b2) ->
     match_binders (Some Symbols.type_scope) alp metas (match_type alp metas sigma t1 t2) b1 b2 na1 na2
  | RLetIn (_,na1,t1,b1), AProd (na2,t2,b2) ->
     match_binders sc alp metas (match_ sc alp metas sigma t1 t2) b1 b2 na1 na2
  | RCases (_,po1,tml1,eqnl1), ACases (po2,tml2,eqnl2) ->
     let sigma = option_fold_left2 (match_type alp metas) sigma po1 po2 in
     let sigma = List.fold_left2 (match_ sc alp metas) sigma tml1 tml2 in
     List.fold_left2 (match_equations sc alp metas) sigma eqnl1 eqnl2
  | ROrderedCase (_,st,po1,c1,bl1), AOrderedCase (st2,po2,c2,bl2) ->
     let sigma = option_fold_left2 (match_type alp metas) sigma po1 po2 in
     array_fold_left2 (match_ sc alp metas)
       (match_ sc alp metas sigma c1 c2) bl1 bl2
  | RCast(_,c1,t1), ACast(c2,t2) ->
      match_type alp metas (match_ sc alp metas sigma c1 c2) t1 t2
  | RSort (_,s1), ASort s2 when s1 = s2 -> sigma
  | RPatVar _, AHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
  | a, AHole _ when not(Options.do_translate()) -> sigma
  | RHole _, AHole _ -> sigma
  | (RDynamic _ | RRec _ | REvar _), _ 
  | _,_ -> raise No_match

and match_type x = match_ (Some Symbols.type_scope) x

and match_binders sc alp metas sigma b1 b2 na1 na2 = match (na1,na2) with
  | (na1,Name id2) when List.mem id2 metas ->
      let sigma =
	name_fold
	  (fun id sigma -> bind_env None sigma id2 (RVar (dummy_loc,id))) na1 sigma
      in 
      match_ sc alp metas sigma b1 b2
  | (na1,na2) -> 
      let alp =
        name_fold
	  (fun id1 -> name_fold (fun id2 alp -> (id1,id2)::alp) na2) na1 alp in
      match_ sc alp metas sigma b1 b2

and match_equations sc alp metas sigma (_,idl1,pat1,rhs1) (idl2,pat2,rhs2) =
  if idl1 = idl2 & pat1 = pat2 (* Useful to reason up to alpha ?? *) then
    match_ sc alp metas sigma rhs1 rhs2
  else raise No_match

*)

let bind_env sigma var v =
  try
    let vvar = List.assoc var sigma in
    if alpha_eq_val (v,vvar) then sigma
    else raise No_match
  with Not_found ->
    (* TODO: handle the case of multiple occs in different scopes *)
    (var,v)::sigma

let rec match_ alp metas sigma a1 a2 = match (a1,a2) with
  | r1, AVar id2 when List.mem id2 metas -> bind_env sigma id2 r1
  | RVar (_,id1), AVar id2 when alpha_var id1 id2 alp -> sigma
  | RRef (_,r1), ARef r2 when r1 = r2 -> sigma
  | RPatVar (_,(_,n1)), APatVar n2 when n1=n2 -> sigma
  | RApp (_,f1,l1), AApp (f2,l2) when List.length l1 = List.length l2 ->
      List.fold_left2 (match_ alp metas) (match_ alp metas sigma f1 f2) l1 l2
  | RLambda (_,na1,t1,b1), ALambda (na2,t2,b2) ->
     match_binders alp metas (match_ alp metas sigma t1 t2) b1 b2 na1 na2
  | RProd (_,na1,t1,b1), AProd (na2,t2,b2) ->
     match_binders alp metas (match_ alp metas sigma t1 t2) b1 b2 na1 na2
  | RLetIn (_,na1,t1,b1), AProd (na2,t2,b2) ->
     match_binders alp metas (match_ alp metas sigma t1 t2) b1 b2 na1 na2
  | RCases (_,po1,tml1,eqnl1), ACases (po2,tml2,eqnl2) ->
     let sigma = option_fold_left2 (match_ alp metas) sigma po1 po2 in
     let sigma = List.fold_left2 (match_ alp metas) sigma tml1 tml2 in
     List.fold_left2 (match_equations alp metas) sigma eqnl1 eqnl2
  | ROrderedCase (_,st,po1,c1,bl1), AOrderedCase (st2,po2,c2,bl2) ->
     let sigma = option_fold_left2 (match_ alp metas) sigma po1 po2 in
     array_fold_left2 (match_ alp metas) (match_ alp metas sigma c1 c2) bl1 bl2
  | RCast(_,c1,t1), ACast(c2,t2) ->
      match_ alp metas (match_ alp metas sigma c1 c2) t1 t2
  | RSort (_,s1), ASort s2 when s1 = s2 -> sigma
  | RPatVar _, AHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
  | a, AHole _ when not(Options.do_translate()) -> sigma
  | RHole _, AHole _ -> sigma
  | (RDynamic _ | RRec _ | REvar _), _ 
  | _,_ -> raise No_match

and match_binders alp metas sigma b1 b2 na1 na2 = match (na1,na2) with
  | (na1,Name id2) when List.mem id2 metas ->
      let sigma =
	name_fold
	  (fun id sigma -> bind_env sigma id2 (RVar (dummy_loc,id))) na1 sigma
      in 
      match_ alp metas sigma b1 b2
  | (na1,na2) -> 
      let alp =
        name_fold
	  (fun id1 -> name_fold (fun id2 alp -> (id1,id2)::alp) na2) na1 alp in
      match_ alp metas sigma b1 b2

and match_equations alp metas sigma (_,idl1,pat1,rhs1) (idl2,pat2,rhs2) =
  if idl1 = idl2 & pat1 = pat2 (* Useful to reason up to alpha ?? *) then
    match_ alp metas sigma rhs1 rhs2
  else raise No_match

type scope_name = string

type interpretation = 
    (identifier * (scope_name option * scope_name list)) list * aconstr

(*
let match_aconstr sc c (metas_scl,pat) =
  let subst = match_ sc [] (List.map fst metas_scl) [] c pat in
  (* Reorder canonically the substitution *)
  let find x subst =
    try List.assoc x subst
    with Not_found ->
      (* Happens for binders bound to Anonymous *)
      (* Find a better way to propagate Anonymous... *)
      RVar (dummy_loc,x),None in
  List.map (fun (x,scl) -> let (a,sc) = find x subst in (a,sc,scl)) metas_scl
*)

let match_aconstr c (metas_scl,pat) =
  let subst = match_ [] (List.map fst metas_scl) [] c pat in
  (* Reorder canonically the substitution *)
  let find x subst =
    try List.assoc x subst
    with Not_found ->
      (* Happens for binders bound to Anonymous *)
      (* Find a better way to propagate Anonymous... *)
      RVar (dummy_loc,x) in
  List.map (fun (x,scl) -> (find x subst,scl)) metas_scl

(**********************************************************************)
(*s Concrete syntax for terms *)

type notation = string

type explicitation = int

type proj_flag = bool (* [true] = is projection *)

type cases_pattern_expr =
  | CPatAlias of loc * cases_pattern_expr * identifier
  | CPatCstr of loc * reference * cases_pattern_expr list
  | CPatAtom of loc * reference option
  | CPatNumeral of loc * Bignat.bigint
  | CPatDelimiters of loc * string * cases_pattern_expr

type constr_expr =
  | CRef of reference
  | CFix of loc * identifier located * fixpoint_expr list
  | CCoFix of loc * identifier located * cofixpoint_expr list
  | CArrow of loc * constr_expr * constr_expr
  | CProdN of loc * (name located list * constr_expr) list * constr_expr
  | CLambdaN of loc * (name located list * constr_expr) list * constr_expr
  | CLetIn of loc * name located * constr_expr * constr_expr
  | CAppExpl of loc * (proj_flag * reference) * constr_expr list
  | CApp of loc * (proj_flag * constr_expr) * 
      (constr_expr * explicitation option) list
  | CCases of loc * constr_expr option * constr_expr list *
      (loc * cases_pattern_expr list * constr_expr) list
  | COrderedCase of loc * case_style * constr_expr option * constr_expr
      * constr_expr list
  | CHole of loc
  | CPatVar of loc * (bool * patvar)
  | CEvar of loc * existential_key
  | CSort of loc * rawsort
  | CCast of loc * constr_expr * constr_expr
  | CNotation of loc * notation * constr_expr list
  | CNumeral of loc * Bignat.bigint
  | CDelimiters of loc * string * constr_expr
  | CDynamic of loc * Dyn.t

and fixpoint_expr = identifier * int * constr_expr * constr_expr

and cofixpoint_expr = identifier * constr_expr * constr_expr

(***********************)
(* For binders parsing *)

type local_binder =
  | LocalRawDef of name located * constr_expr
  | LocalRawAssum of name located list * constr_expr

(**********************************************************************)
(* Functions on constr_expr *)

let constr_loc = function
  | CRef (Ident (loc,_)) -> loc
  | CRef (Qualid (loc,_)) -> loc
  | CFix (loc,_,_) -> loc
  | CCoFix (loc,_,_) -> loc
  | CArrow (loc,_,_) -> loc
  | CProdN (loc,_,_) -> loc
  | CLambdaN (loc,_,_) -> loc
  | CLetIn (loc,_,_,_) -> loc
  | CAppExpl (loc,_,_) -> loc
  | CApp (loc,_,_) -> loc
  | CCases (loc,_,_,_) -> loc
  | COrderedCase (loc,_,_,_,_) -> loc
  | CHole loc -> loc
  | CPatVar (loc,_) -> loc
  | CEvar (loc,_) -> loc
  | CSort (loc,_) -> loc
  | CCast (loc,_,_) -> loc
  | CNotation (loc,_,_) -> loc
  | CNumeral (loc,_) -> loc
  | CDelimiters (loc,_,_) -> loc
  | CDynamic _ -> dummy_loc

let cases_pattern_loc = function
  | CPatAlias (loc,_,_) -> loc
  | CPatCstr (loc,_,_) -> loc
  | CPatAtom (loc,_) -> loc
  | CPatNumeral (loc,_) -> loc
  | CPatDelimiters (loc,_,_) -> loc

let occur_var_constr_ref id = function
  | Ident (loc,id') -> id = id'
  | Qualid _ -> false

let rec occur_var_constr_expr id = function
  | CRef r -> occur_var_constr_ref id r
  | CArrow (loc,a,b) -> occur_var_constr_expr id a or occur_var_constr_expr id b
  | CAppExpl (loc,(_,r),l) ->
      occur_var_constr_ref id r or List.exists (occur_var_constr_expr id) l
  | CApp (loc,(_,f),l) ->
      occur_var_constr_expr id f or
      List.exists (fun (a,_) -> occur_var_constr_expr id a) l
  | CProdN (_,l,b) -> occur_var_binders id b l
  | CLambdaN (_,l,b) -> occur_var_binders id b l
  | CLetIn (_,na,a,b) -> occur_var_binders id b [[na],a]
  | CCast (loc,a,b) -> occur_var_constr_expr id a or occur_var_constr_expr id b
  | CNotation (_,_,l) -> List.exists (occur_var_constr_expr id) l
  | CDelimiters (loc,_,a) -> occur_var_constr_expr id a
  | CHole _ | CEvar _ | CPatVar _ | CSort _ | CNumeral _ | CDynamic _ -> false
  | CCases (loc,_,_,_) 
  | COrderedCase (loc,_,_,_,_) 
  | CFix (loc,_,_) 
  | CCoFix (loc,_,_) -> 
      Pp.warning "Capture check in multiple binders not done"; false

and occur_var_binders id b = function
  | (idl,a)::l -> 
      occur_var_constr_expr id a or
      (not (List.mem (Name id) (snd (List.split idl)))
      & occur_var_binders id b l)
  | [] -> occur_var_constr_expr id b

let mkIdentC id  = CRef (Ident (dummy_loc, id))
let mkRefC r     = CRef r
let mkAppC (f,l) = CApp (dummy_loc, (false,f), List.map (fun x -> (x,None)) l)
let mkCastC (a,b)  = CCast (dummy_loc,a,b)
let mkLambdaC (idl,a,b) = CLambdaN (dummy_loc,[idl,a],b)
let mkLetInC (id,a,b)   = CLetIn (dummy_loc,id,a,b)
let mkProdC (idl,a,b)   = CProdN (dummy_loc,[idl,a],b)

(* Used in correctness and interface *)

let map_binders f g e bl =
  (* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
  let h (nal,t) (e,bl) =
    (List.fold_right (fun (_,na) -> name_fold g na) nal e,(nal,f e t)::bl) in
  List.fold_right h bl (e,[])

let map_constr_expr_with_binders f g e = function
  | CArrow (loc,a,b) -> CArrow (loc,f e a,f e b)
  | CAppExpl (loc,r,l) -> CAppExpl (loc,r,List.map (f e) l) 
  | CApp (loc,(p,a),l) -> 
      CApp (loc,(p,f e a),List.map (fun (a,i) -> (f e a,i)) l)
  | CProdN (loc,bl,b) ->
      let (e,bl) = map_binders f g e bl in CProdN (loc,bl,f e b)
  | CLambdaN (loc,bl,b) ->
      let (e,bl) = map_binders f g e bl in CLambdaN (loc,bl,f e b)
  | CLetIn (loc,na,a,b) -> CLetIn (loc,na,f e a,f (name_fold g (snd na) e) b)
  | CCast (loc,a,b) -> CCast (loc,f e a,f e b)
  | CNotation (loc,n,l) -> CNotation (loc,n,List.map (f e) l)
  | CDelimiters (loc,s,a) -> CDelimiters (loc,s,f e a)
  | CHole _ | CEvar _ | CPatVar _ | CSort _ 
  | CNumeral _ | CDynamic _ | CRef _ as x -> x
  | CCases (loc,po,a,bl) ->
      (* TODO: apply g on the binding variables in pat... *)
      let bl = List.map (fun (loc,pat,rhs) -> (loc,pat,f e rhs)) bl in
      CCases (loc,option_app (f e) po,List.map (f e) a,bl)
  | COrderedCase (loc,s,po,a,bl) ->
      COrderedCase (loc,s,option_app (f e) po,f e a,List.map (f e) bl)
  | CFix (loc,id,dl) ->
      CFix (loc,id,List.map (fun (id,n,t,d) -> (id,n,f e t,f e d)) dl)
  | CCoFix (loc,id,dl) ->
      CCoFix (loc,id,List.map (fun (id,t,d) -> (id,f e t,f e d)) dl)

(* Used in constrintern *)
let rec replace_vars_constr_expr l = function
  | CRef (Ident (loc,id)) as x ->
      (try CRef (Ident (loc,List.assoc id l)) with Not_found -> x)
  | c -> map_constr_expr_with_binders replace_vars_constr_expr 
      (fun id l -> List.remove_assoc id l) l c

(**********************************************************************)
(* Concrete syntax for modules and modules types *)

type with_declaration_ast = 
  | CWith_Module of identifier * qualid located
  | CWith_Definition of identifier * constr_expr

type module_type_ast = 
  | CMTEident of qualid located
  | CMTEwith of module_type_ast * with_declaration_ast

type module_ast = 
  | CMEident of qualid located
  | CMEapply of module_ast * module_ast