1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Nameops
open Globnames
open Decl_kinds
open Misctypes
open Glob_term
open Glob_ops
open Mod_subst
open Notation_term
(**********************************************************************)
(* Utilities *)
let on_true_do b f c = if b then (f c; b) else b
let compare_glob_constr f add t1 t2 = match t1,t2 with
| GRef (_,r1,_), GRef (_,r2,_) -> eq_gr r1 r2
| GVar (_,v1), GVar (_,v2) -> on_true_do (Id.equal v1 v2) add (Name v1)
| GApp (_,f1,l1), GApp (_,f2,l2) -> f f1 f2 && List.for_all2eq f l1 l2
| GLambda (_,na1,bk1,ty1,c1), GLambda (_,na2,bk2,ty2,c2)
when Name.equal na1 na2 && Constrexpr_ops.binding_kind_eq bk1 bk2 ->
on_true_do (f ty1 ty2 && f c1 c2) add na1
| GProd (_,na1,bk1,ty1,c1), GProd (_,na2,bk2,ty2,c2)
when Name.equal na1 na2 && Constrexpr_ops.binding_kind_eq bk1 bk2 ->
on_true_do (f ty1 ty2 && f c1 c2) add na1
| GHole _, GHole _ -> true
| GSort (_,s1), GSort (_,s2) -> Miscops.glob_sort_eq s1 s2
| GLetIn (_,na1,b1,c1), GLetIn (_,na2,b2,c2) when Name.equal na1 na2 ->
on_true_do (f b1 b2 && f c1 c2) add na1
| (GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _),_
| _,(GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _)
-> error "Unsupported construction in recursive notations."
| (GRef _ | GVar _ | GApp _ | GLambda _ | GProd _
| GHole _ | GSort _ | GLetIn _), _
-> false
let rec eq_notation_constr (vars1,vars2 as vars) t1 t2 = match t1, t2 with
| NRef gr1, NRef gr2 -> eq_gr gr1 gr2
| NVar id1, NVar id2 -> Int.equal (List.index Id.equal id1 vars1) (List.index Id.equal id2 vars2)
| NApp (t1, a1), NApp (t2, a2) ->
(eq_notation_constr vars) t1 t2 && List.equal (eq_notation_constr vars) a1 a2
| NHole (_, _, _), NHole (_, _, _) -> true (** FIXME? *)
| NList (i1, j1, t1, u1, b1), NList (i2, j2, t2, u2, b2) ->
Id.equal i1 i2 && Id.equal j1 j2 && (eq_notation_constr vars) t1 t2 &&
(eq_notation_constr vars) u1 u2 && b1 == b2
| NLambda (na1, t1, u1), NLambda (na2, t2, u2) ->
Name.equal na1 na2 && (eq_notation_constr vars) t1 t2 && (eq_notation_constr vars) u1 u2
| NProd (na1, t1, u1), NProd (na2, t2, u2) ->
Name.equal na1 na2 && (eq_notation_constr vars) t1 t2 && (eq_notation_constr vars) u1 u2
| NBinderList (i1, j1, t1, u1), NBinderList (i2, j2, t2, u2) ->
Id.equal i1 i2 && Id.equal j1 j2 && (eq_notation_constr vars) t1 t2 &&
(eq_notation_constr vars) u1 u2
| NLetIn (na1, t1, u1), NLetIn (na2, t2, u2) ->
Name.equal na1 na2 && (eq_notation_constr vars) t1 t2 && (eq_notation_constr vars) u1 u2
| NCases (_, o1, r1, p1), NCases (_, o2, r2, p2) -> (** FIXME? *)
let eqpat (p1, t1) (p2, t2) =
List.equal cases_pattern_eq p1 p2 &&
(eq_notation_constr vars) t1 t2
in
let eqf (t1, (na1, o1)) (t2, (na2, o2)) =
let eq (i1, n1) (i2, n2) = eq_ind i1 i2 && List.equal Name.equal n1 n2 in
(eq_notation_constr vars) t1 t2 && Name.equal na1 na2 && Option.equal eq o1 o2
in
Option.equal (eq_notation_constr vars) o1 o2 &&
List.equal eqf r1 r2 &&
List.equal eqpat p1 p2
| NLetTuple (nas1, (na1, o1), t1, u1), NLetTuple (nas2, (na2, o2), t2, u2) ->
List.equal Name.equal nas1 nas2 &&
Name.equal na1 na2 &&
Option.equal (eq_notation_constr vars) o1 o2 &&
(eq_notation_constr vars) t1 t2 &&
(eq_notation_constr vars) u1 u2
| NIf (t1, (na1, o1), u1, r1), NIf (t2, (na2, o2), u2, r2) ->
(eq_notation_constr vars) t1 t2 &&
Name.equal na1 na2 &&
Option.equal (eq_notation_constr vars) o1 o2 &&
(eq_notation_constr vars) u1 u2 &&
(eq_notation_constr vars) r1 r2
| NRec (_, ids1, ts1, us1, rs1), NRec (_, ids2, ts2, us2, rs2) -> (** FIXME? *)
let eq (na1, o1, t1) (na2, o2, t2) =
Name.equal na1 na2 &&
Option.equal (eq_notation_constr vars) o1 o2 &&
(eq_notation_constr vars) t1 t2
in
Array.equal Id.equal ids1 ids2 &&
Array.equal (List.equal eq) ts1 ts2 &&
Array.equal (eq_notation_constr vars) us1 us2 &&
Array.equal (eq_notation_constr vars) rs1 rs2
| NSort s1, NSort s2 ->
Miscops.glob_sort_eq s1 s2
| NCast (t1, c1), NCast (t2, c2) ->
(eq_notation_constr vars) t1 t2 && cast_type_eq (eq_notation_constr vars) c1 c2
| (NRef _ | NVar _ | NApp _ | NHole _ | NList _ | NLambda _ | NProd _
| NBinderList _ | NLetIn _ | NCases _ | NLetTuple _ | NIf _
| NRec _ | NSort _ | NCast _), _ -> false
(**********************************************************************)
(* Re-interpret a notation as a glob_constr, taking care of binders *)
let name_to_ident = function
| Anonymous -> CErrors.error "This expression should be a simple identifier."
| Name id -> id
let to_id g e id = let e,na = g e (Name id) in e,name_to_ident na
let rec cases_pattern_fold_map loc g e = function
| PatVar (_,na) ->
let e',na' = g e na in e', PatVar (loc,na')
| PatCstr (_,cstr,patl,na) ->
let e',na' = g e na in
let e',patl' = List.fold_map (cases_pattern_fold_map loc g) e patl in
e', PatCstr (loc,cstr,patl',na')
let subst_binder_type_vars l = function
| Evar_kinds.BinderType (Name id) ->
let id =
try match Id.List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
Evar_kinds.BinderType (Name id)
| e -> e
let rec subst_glob_vars l = function
| GVar (_,id) as r -> (try Id.List.assoc id l with Not_found -> r)
| GProd (loc,Name id,bk,t,c) ->
let id =
try match Id.List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GProd (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| GLambda (loc,Name id,bk,t,c) ->
let id =
try match Id.List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GLambda (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| GHole (loc,x,naming,arg) -> GHole (loc,subst_binder_type_vars l x,naming,arg)
| r -> map_glob_constr (subst_glob_vars l) r (* assume: id is not binding *)
let ldots_var = Id.of_string ".."
let glob_constr_of_notation_constr_with_binders loc g f e = function
| NVar id -> GVar (loc,id)
| NApp (a,args) -> GApp (loc,f e a, List.map (f e) args)
| NList (x,y,iter,tail,swap) ->
let t = f e tail in let it = f e iter in
let innerl = (ldots_var,t)::(if swap then [] else [x,GVar(loc,y)]) in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = (ldots_var,inner)::(if swap then [x,GVar(loc,y)] else []) in
subst_glob_vars outerl it
| NBinderList (x,y,iter,tail) ->
let t = f e tail in let it = f e iter in
let innerl = [(ldots_var,t);(x,GVar(loc,y))] in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = [(ldots_var,inner)] in
subst_glob_vars outerl it
| NLambda (na,ty,c) ->
let e',na = g e na in GLambda (loc,na,Explicit,f e ty,f e' c)
| NProd (na,ty,c) ->
let e',na = g e na in GProd (loc,na,Explicit,f e ty,f e' c)
| NLetIn (na,b,c) ->
let e',na = g e na in GLetIn (loc,na,f e b,f e' c)
| NCases (sty,rtntypopt,tml,eqnl) ->
let e',tml' = List.fold_right (fun (tm,(na,t)) (e',tml') ->
let e',t' = match t with
| None -> e',None
| Some (ind,nal) ->
let e',nal' = List.fold_right (fun na (e',nal) ->
let e',na' = g e' na in e',na'::nal) nal (e',[]) in
e',Some (loc,ind,nal') in
let e',na' = g e' na in
(e',(f e tm,(na',t'))::tml')) tml (e,[]) in
let fold (idl,e) na = let (e,na) = g e na in ((name_cons na idl,e),na) in
let eqnl' = List.map (fun (patl,rhs) ->
let ((idl,e),patl) =
List.fold_map (cases_pattern_fold_map loc fold) ([],e) patl in
(loc,idl,patl,f e rhs)) eqnl in
GCases (loc,sty,Option.map (f e') rtntypopt,tml',eqnl')
| NLetTuple (nal,(na,po),b,c) ->
let e',nal = List.fold_map g e nal in
let e'',na = g e na in
GLetTuple (loc,nal,(na,Option.map (f e'') po),f e b,f e' c)
| NIf (c,(na,po),b1,b2) ->
let e',na = g e na in
GIf (loc,f e c,(na,Option.map (f e') po),f e b1,f e b2)
| NRec (fk,idl,dll,tl,bl) ->
let e,dll = Array.fold_map (List.fold_map (fun e (na,oc,b) ->
let e,na = g e na in
(e,(na,Explicit,Option.map (f e) oc,f e b)))) e dll in
let e',idl = Array.fold_map (to_id g) e idl in
GRec (loc,fk,idl,dll,Array.map (f e) tl,Array.map (f e') bl)
| NCast (c,k) -> GCast (loc,f e c,Miscops.map_cast_type (f e) k)
| NSort x -> GSort (loc,x)
| NHole (x, naming, arg) -> GHole (loc, x, naming, arg)
| NRef x -> GRef (loc,x,None)
let glob_constr_of_notation_constr loc x =
let rec aux () x =
glob_constr_of_notation_constr_with_binders loc (fun () id -> ((),id)) aux () x
in aux () x
(******************************************************************************)
(* Translating a glob_constr into a notation, interpreting recursive patterns *)
let add_id r id = r := (id :: pi1 !r, pi2 !r, pi3 !r)
let add_name r = function Anonymous -> () | Name id -> add_id r id
let split_at_recursive_part c =
let sub = ref None in
let rec aux = function
| GApp (loc0,GVar(loc,v),c::l) when Id.equal v ldots_var ->
begin match !sub with
| None ->
let () = sub := Some c in
begin match l with
| [] -> GVar (loc, ldots_var)
| _ :: _ -> GApp (loc0, GVar (loc, ldots_var), l)
end
| Some _ ->
(* Not narrowed enough to find only one recursive part *)
raise Not_found
end
| c -> map_glob_constr aux c in
let outer_iterator = aux c in
match !sub with
| None -> (* No recursive pattern found *) raise Not_found
| Some c ->
match outer_iterator with
| GVar (_,v) when Id.equal v ldots_var -> (* Not enough context *) raise Not_found
| _ -> outer_iterator, c
let subtract_loc loc1 loc2 = Loc.make_loc (fst (Loc.unloc loc1),fst (Loc.unloc loc2)-1)
let check_is_hole id = function GHole _ -> () | t ->
user_err_loc (loc_of_glob_constr t,"",
strbrk "In recursive notation with binders, " ++ pr_id id ++
strbrk " is expected to come without type.")
let pair_equal eq1 eq2 (a,b) (a',b') = eq1 a a' && eq2 b b'
let compare_recursive_parts found f f' (iterator,subc) =
let diff = ref None in
let terminator = ref None in
let rec aux c1 c2 = match c1,c2 with
| GVar(_,v), term when Id.equal v ldots_var ->
(* We found the pattern *)
assert (match !terminator with None -> true | Some _ -> false);
terminator := Some term;
true
| GApp (_,GVar(_,v),l1), GApp (_,term,l2) when Id.equal v ldots_var ->
(* We found the pattern, but there are extra arguments *)
(* (this allows e.g. alternative (recursive) notation of application) *)
assert (match !terminator with None -> true | Some _ -> false);
terminator := Some term;
List.for_all2eq aux l1 l2
| GVar (_,x), GVar (_,y) when not (Id.equal x y) ->
(* We found the position where it differs *)
let lassoc = match !terminator with None -> false | Some _ -> true in
let x,y = if lassoc then y,x else x,y in
begin match !diff with
| None ->
let () = diff := Some (x, y, Some lassoc) in
true
| Some _ -> false
end
| GLambda (_,Name x,_,t_x,c), GLambda (_,Name y,_,t_y,term)
| GProd (_,Name x,_,t_x,c), GProd (_,Name y,_,t_y,term) ->
(* We found a binding position where it differs *)
check_is_hole x t_x;
check_is_hole y t_y;
begin match !diff with
| None ->
let () = diff := Some (x, y, None) in
aux c term
| Some _ -> false
end
| _ ->
compare_glob_constr aux (add_name found) c1 c2 in
if aux iterator subc then
match !diff with
| None ->
let loc1 = loc_of_glob_constr iterator in
let loc2 = loc_of_glob_constr (Option.get !terminator) in
(* Here, we would need a loc made of several parts ... *)
user_err_loc (subtract_loc loc1 loc2,"",
str "Both ends of the recursive pattern are the same.")
| Some (x,y,Some lassoc) ->
let newfound,x,y,lassoc =
if List.mem_f (pair_equal Id.equal Id.equal) (x,y) (pi2 !found) ||
List.mem_f (pair_equal Id.equal Id.equal) (x,y) (pi3 !found)
then
!found,x,y,lassoc
else if List.mem_f (pair_equal Id.equal Id.equal) (y,x) (pi2 !found) ||
List.mem_f (pair_equal Id.equal Id.equal) (y,x) (pi3 !found)
then
!found,y,x,not lassoc
else
(pi1 !found, (x,y) :: pi2 !found, pi3 !found),x,y,lassoc in
let iterator =
f' (if lassoc then iterator
else subst_glob_vars [x,GVar(Loc.ghost,y)] iterator) in
(* found have been collected by compare_constr *)
found := newfound;
NList (x,y,iterator,f (Option.get !terminator),lassoc)
| Some (x,y,None) ->
let newfound = (pi1 !found, pi2 !found, (x,y) :: pi3 !found) in
let iterator = f' (subst_glob_vars [x,GVar(Loc.ghost,y)] iterator) in
(* found have been collected by compare_constr *)
found := newfound;
NBinderList (x,y,iterator,f (Option.get !terminator))
else
raise Not_found
let notation_constr_and_vars_of_glob_constr a =
let found = ref ([],[],[]) in
let has_ltac = ref false in
let rec aux c =
let keepfound = !found in
(* n^2 complexity but small and done only once per notation *)
try compare_recursive_parts found aux aux' (split_at_recursive_part c)
with Not_found ->
found := keepfound;
match c with
| GApp (_,GVar (loc,f),[c]) when Id.equal f ldots_var ->
(* Fall on the second part of the recursive pattern w/o having
found the first part *)
user_err_loc (loc,"",
str "Cannot find where the recursive pattern starts.")
| c ->
aux' c
and aux' = function
| GVar (_,id) -> add_id found id; NVar id
| GApp (_,g,args) -> NApp (aux g, List.map aux args)
| GLambda (_,na,bk,ty,c) -> add_name found na; NLambda (na,aux ty,aux c)
| GProd (_,na,bk,ty,c) -> add_name found na; NProd (na,aux ty,aux c)
| GLetIn (_,na,b,c) -> add_name found na; NLetIn (na,aux b,aux c)
| GCases (_,sty,rtntypopt,tml,eqnl) ->
let f (_,idl,pat,rhs) = List.iter (add_id found) idl; (pat,aux rhs) in
NCases (sty,Option.map aux rtntypopt,
List.map (fun (tm,(na,x)) ->
add_name found na;
Option.iter
(fun (_,_,nl) -> List.iter (add_name found) nl) x;
(aux tm,(na,Option.map (fun (_,ind,nal) -> (ind,nal)) x))) tml,
List.map f eqnl)
| GLetTuple (loc,nal,(na,po),b,c) ->
add_name found na;
List.iter (add_name found) nal;
NLetTuple (nal,(na,Option.map aux po),aux b,aux c)
| GIf (loc,c,(na,po),b1,b2) ->
add_name found na;
NIf (aux c,(na,Option.map aux po),aux b1,aux b2)
| GRec (_,fk,idl,dll,tl,bl) ->
Array.iter (add_id found) idl;
let dll = Array.map (List.map (fun (na,bk,oc,b) ->
if bk != Explicit then
error "Binders marked as implicit not allowed in notations.";
add_name found na; (na,Option.map aux oc,aux b))) dll in
NRec (fk,idl,dll,Array.map aux tl,Array.map aux bl)
| GCast (_,c,k) -> NCast (aux c,Miscops.map_cast_type aux k)
| GSort (_,s) -> NSort s
| GHole (_,w,naming,arg) ->
if arg != None then has_ltac := true;
NHole (w, naming, arg)
| GRef (_,r,_) -> NRef r
| GEvar _ | GPatVar _ ->
error "Existential variables not allowed in notations."
in
let t = aux a in
(* Side effect *)
t, !found, !has_ltac
let check_variables_and_reversibility nenv (found,foundrec,foundrecbinding) =
let injective = ref true in
let recvars = nenv.ninterp_rec_vars in
let fold _ y accu = Id.Set.add y accu in
let useless_vars = Id.Map.fold fold recvars Id.Set.empty in
let filter y _ = not (Id.Set.mem y useless_vars) in
let vars = Id.Map.filter filter nenv.ninterp_var_type in
let check_recvar x =
if Id.List.mem x found then
errorlabstrm "" (pr_id x ++
strbrk " should only be used in the recursive part of a pattern.") in
let check (x, y) = check_recvar x; check_recvar y in
let () = List.iter check foundrec in
let () = List.iter check foundrecbinding in
let check_bound x =
if not (Id.List.mem x found) then
if Id.List.mem_assoc x foundrec ||
Id.List.mem_assoc x foundrecbinding ||
Id.List.mem_assoc_sym x foundrec ||
Id.List.mem_assoc_sym x foundrecbinding
then
error
(Id.to_string x ^
" should not be bound in a recursive pattern of the right-hand side.")
else injective := false
in
let check_pair s x y where =
if not (List.mem_f (pair_equal Id.equal Id.equal) (x,y) where) then
errorlabstrm "" (strbrk "in the right-hand side, " ++ pr_id x ++
str " and " ++ pr_id y ++ strbrk " should appear in " ++ str s ++
str " position as part of a recursive pattern.") in
let check_type x typ =
match typ with
| NtnInternTypeConstr ->
begin
try check_pair "term" x (Id.Map.find x recvars) foundrec
with Not_found -> check_bound x
end
| NtnInternTypeBinder ->
begin
try check_pair "binding" x (Id.Map.find x recvars) foundrecbinding
with Not_found -> check_bound x
end
| NtnInternTypeIdent -> check_bound x in
Id.Map.iter check_type vars;
!injective
let notation_constr_of_glob_constr nenv a =
let a, found, has_ltac = notation_constr_and_vars_of_glob_constr a in
let injective = check_variables_and_reversibility nenv found in
a, not has_ltac && injective
(**********************************************************************)
(* Substitution of kernel names, avoiding a list of bound identifiers *)
let notation_constr_of_constr avoiding t =
let t = Detyping.detype false avoiding (Global.env()) Evd.empty t in
let nenv = {
ninterp_var_type = Id.Map.empty;
ninterp_rec_vars = Id.Map.empty;
} in
notation_constr_of_glob_constr nenv t
let rec subst_pat subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_mind subst kn
and cpl' = List.smartmap (subst_pat subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_notation_constr subst bound raw =
match raw with
| NRef ref ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
fst (notation_constr_of_constr bound t)
| NVar _ -> raw
| NApp (r,rl) ->
let r' = subst_notation_constr subst bound r
and rl' = List.smartmap (subst_notation_constr subst bound) rl in
if r' == r && rl' == rl then raw else
NApp(r',rl')
| NList (id1,id2,r1,r2,b) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NList (id1,id2,r1',r2',b)
| NLambda (n,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NLambda (n,r1',r2')
| NProd (n,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NProd (n,r1',r2')
| NBinderList (id1,id2,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NBinderList (id1,id2,r1',r2')
| NLetIn (n,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NLetIn (n,r1',r2')
| NCases (sty,rtntypopt,rl,branches) ->
let rtntypopt' = Option.smartmap (subst_notation_constr subst bound) rtntypopt
and rl' = List.smartmap
(fun (a,(n,signopt) as x) ->
let a' = subst_notation_constr subst bound a in
let signopt' = Option.map (fun ((indkn,i),nal as z) ->
let indkn' = subst_mind subst indkn in
if indkn == indkn' then z else ((indkn',i),nal)) signopt in
if a' == a && signopt' == signopt then x else (a',(n,signopt')))
rl
and branches' = List.smartmap
(fun (cpl,r as branch) ->
let cpl' = List.smartmap (subst_pat subst) cpl
and r' = subst_notation_constr subst bound r in
if cpl' == cpl && r' == r then branch else
(cpl',r'))
branches
in
if rtntypopt' == rtntypopt && rtntypopt == rtntypopt' &&
rl' == rl && branches' == branches then raw else
NCases (sty,rtntypopt',rl',branches')
| NLetTuple (nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_notation_constr subst bound) po
and b' = subst_notation_constr subst bound b
and c' = subst_notation_constr subst bound c in
if po' == po && b' == b && c' == c then raw else
NLetTuple (nal,(na,po'),b',c')
| NIf (c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_notation_constr subst bound) po
and b1' = subst_notation_constr subst bound b1
and b2' = subst_notation_constr subst bound b2
and c' = subst_notation_constr subst bound c in
if po' == po && b1' == b1 && b2' == b2 && c' == c then raw else
NIf (c',(na,po'),b1',b2')
| NRec (fk,idl,dll,tl,bl) ->
let dll' =
Array.smartmap (List.smartmap (fun (na,oc,b as x) ->
let oc' = Option.smartmap (subst_notation_constr subst bound) oc in
let b' = subst_notation_constr subst bound b in
if oc' == oc && b' == b then x else (na,oc',b'))) dll in
let tl' = Array.smartmap (subst_notation_constr subst bound) tl in
let bl' = Array.smartmap (subst_notation_constr subst bound) bl in
if dll' == dll && tl' == tl && bl' == bl then raw else
NRec (fk,idl,dll',tl',bl')
| NSort _ -> raw
| NHole (knd, naming, solve) ->
let nknd = match knd with
| Evar_kinds.ImplicitArg (ref, i, b) ->
let nref, _ = subst_global subst ref in
if nref == ref then knd else Evar_kinds.ImplicitArg (nref, i, b)
| _ -> knd
in
let nsolve = Option.smartmap (Genintern.generic_substitute subst) solve in
if nsolve == solve && nknd == knd then raw
else NHole (nknd, naming, nsolve)
| NCast (r1,k) ->
let r1' = subst_notation_constr subst bound r1 in
let k' = Miscops.smartmap_cast_type (subst_notation_constr subst bound) k in
if r1' == r1 && k' == k then raw else NCast(r1',k')
let subst_interpretation subst (metas,pat) =
let bound = List.map fst metas in
(metas,subst_notation_constr subst bound pat)
(**********************************************************************)
(* Pattern-matching a [glob_constr] against a [notation_constr] *)
let abstract_return_type_context pi mklam tml rtno =
Option.map (fun rtn ->
let nal =
List.flatten (List.map (fun (_,(na,t)) ->
match t with Some x -> (pi x)@[na] | None -> [na]) tml) in
List.fold_right mklam nal rtn)
rtno
let abstract_return_type_context_glob_constr =
abstract_return_type_context (fun (_,_,nal) -> nal)
(fun na c ->
GLambda(Loc.ghost,na,Explicit,GHole(Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None),c))
let abstract_return_type_context_notation_constr =
abstract_return_type_context snd
(fun na c -> NLambda(na,NHole (Evar_kinds.InternalHole, Misctypes.IntroAnonymous, None),c))
let is_term_meta id metas =
try match Id.List.assoc id metas with _,(NtnTypeConstr | NtnTypeConstrList) -> true | _ -> false
with Not_found -> false
let is_onlybinding_meta id metas =
try match Id.List.assoc id metas with _,NtnTypeOnlyBinder -> true | _ -> false
with Not_found -> false
let is_bindinglist_meta id metas =
try match Id.List.assoc id metas with _,NtnTypeBinderList -> true | _ -> false
with Not_found -> false
exception No_match
let rec alpha_var id1 id2 = function
| (i1,i2)::_ when Id.equal i1 id1 -> Id.equal i2 id2
| (i1,i2)::_ when Id.equal i2 id2 -> Id.equal i1 id1
| _::idl -> alpha_var id1 id2 idl
| [] -> Id.equal id1 id2
let alpha_rename alpmetas v =
if alpmetas == [] then v
else try rename_glob_vars alpmetas v with UnsoundRenaming -> raise No_match
let add_env (alp,alpmetas) (terms,onlybinders,termlists,binderlists) var v =
(* Check that no capture of binding variables occur *)
(* [alp] is used when matching a pattern "fun x => ... x ... ?var ... x ..."
with an actual term "fun z => ... z ..." when "x" is not bound in the
notation, as in "Notation "'twice_upto' y" := (fun x => x + x + y)". Then
we keep (z,x) in alp, and we have to check that what the [v] which is bound
to [var] does not contain z *)
if not (Id.equal ldots_var var) &&
List.exists (fun (id,_) -> occur_glob_constr id v) alp then raise No_match;
(* [alpmetas] is used when matching a pattern "fun x => ... x ... ?var ... x ..."
with an actual term "fun z => ... z ..." when "x" is bound in the
notation and the name "x" cannot be changed to "z", e.g. because
used at another occurrence, as in "Notation "'lam' y , P & Q" :=
((fun y => P),(fun y => Q))". Then, we keep (z,y) in alpmetas, and we
have to check that "fun z => ... z ..." denotes the same term as
"fun x => ... x ... ?var ... x" up to alpha-conversion when [var]
is instantiated by [v];
Currently, we fail, but, eventually, [x] in [v] could be replaced by [x],
and, in match_, when finding "x" in subterm, failing because of a capture,
and, in match_, when finding "z" in subterm, replacing it with "x",
and, in an even further step, being even more robust, independent of the order, so
that e.g. the notation for ex2 works on "x y |- ex2 (fun x => y=x) (fun y => x=y)"
by giving, say, "exists2 x0, y=x0 & x=x0", but this would typically require the
glob_constr_eq in bind_term_env to be postponed in match_notation_constr, and the
choice of exact variable be done there; but again, this would be a non-trivial
refinement *)
let v = alpha_rename alpmetas v in
(* TODO: handle the case of multiple occs in different scopes *)
((var,v)::terms,onlybinders,termlists,binderlists)
let add_termlist_env (alp,alpmetas) (terms,onlybinders,termlists,binderlists) var vl =
if List.exists (fun (id,_) -> List.exists (occur_glob_constr id) vl) alp then raise No_match;
let vl = List.map (alpha_rename alpmetas) vl in
(terms,onlybinders,(var,vl)::termlists,binderlists)
let add_binding_env alp (terms,onlybinders,termlists,binderlists) var v =
(* TODO: handle the case of multiple occs in different scopes *)
(terms,(var,v)::onlybinders,termlists,binderlists)
let add_bindinglist_env (terms,onlybinders,termlists,binderlists) x bl =
(terms,onlybinders,termlists,(x,bl)::binderlists)
let rec pat_binder_of_term = function
| GVar (loc, id) -> PatVar (loc, Name id)
| GApp (loc, GRef (_,ConstructRef cstr,_), l) ->
let nparams = Inductiveops.inductive_nparams (fst cstr) in
let _,l = List.chop nparams l in
PatCstr (loc, cstr, List.map pat_binder_of_term l, Anonymous)
| _ -> raise No_match
let bind_term_env alp (terms,onlybinders,termlists,binderlists as sigma) var v =
try
let v' = Id.List.assoc var terms in
match v, v' with
| GHole _, _ -> sigma
| _, GHole _ ->
let sigma = Id.List.remove_assoc var terms,onlybinders,termlists,binderlists in
add_env alp sigma var v
| _, _ ->
if glob_constr_eq (alpha_rename (snd alp) v) v' then sigma
else raise No_match
with Not_found -> add_env alp sigma var v
let bind_termlist_env alp (terms,onlybinders,termlists,binderlists as sigma) var vl =
try
let vl' = Id.List.assoc var termlists in
let unify_term v v' =
match v, v' with
| GHole _, _ -> v'
| _, GHole _ -> v
| _, _ -> if glob_constr_eq (alpha_rename (snd alp) v) v' then v' else raise No_match in
let rec unify vl vl' =
match vl, vl' with
| [], [] -> []
| v :: vl, v' :: vl' -> unify_term v v' :: unify vl vl'
| _ -> raise No_match in
let vl = unify vl vl' in
let sigma = (terms,onlybinders,Id.List.remove_assoc var termlists,binderlists) in
add_termlist_env alp sigma var vl
with Not_found -> add_termlist_env alp sigma var vl
let bind_term_as_binding_env alp (terms,onlybinders,termlists,binderlists as sigma) var id =
try
match Id.List.assoc var terms with
| GVar (_,id') ->
(if not (Id.equal id id') then (fst alp,(id,id')::snd alp) else alp),
sigma
| _ -> anomaly (str "A term which can be a binder has to be a variable")
with Not_found ->
(* The matching against a term allowing to find the instance has not been found yet *)
(* If it will be a different name, we shall unfortunately fail *)
(* TODO: look at the consequences for alp *)
alp, add_env alp sigma var (GVar (Loc.ghost,id))
let bind_binding_as_term_env alp (terms,onlybinders,termlists,binderlists as sigma) var id =
try
let v' = Id.List.assoc var onlybinders in
match v' with
| Anonymous ->
(* Should not occur, since the term has to be bound upwards *)
let sigma = (terms,Id.List.remove_assoc var onlybinders,termlists,binderlists) in
add_binding_env alp sigma var (Name id)
| Name id' ->
if Id.equal (rename_var (snd alp) id) id' then sigma else raise No_match
with Not_found -> add_binding_env alp sigma var (Name id)
let bind_binding_env alp (terms,onlybinders,termlists,binderlists as sigma) var v =
try
let v' = Id.List.assoc var onlybinders in
match v, v' with
| Anonymous, _ -> alp, sigma
| _, Anonymous ->
let sigma = (terms,Id.List.remove_assoc var onlybinders,termlists,binderlists) in
alp, add_binding_env alp sigma var v
| Name id1, Name id2 ->
if Id.equal id1 id2 then alp,sigma
else (fst alp,(id1,id2)::snd alp),sigma
with Not_found -> alp, add_binding_env alp sigma var v
let rec map_cases_pattern_name_left f = function
| PatVar (loc,na) -> PatVar (loc,f na)
| PatCstr (loc,c,l,na) -> PatCstr (loc,c,List.map_left (map_cases_pattern_name_left f) l,f na)
let rec fold_cases_pattern_eq f x p p' = match p, p' with
| PatVar (loc,na), PatVar (_,na') -> let x,na = f x na na' in x, PatVar (loc,na)
| PatCstr (loc,c,l,na), PatCstr (_,c',l',na') when eq_constructor c c' ->
let x,l = fold_cases_pattern_list_eq f x l l' in
let x,na = f x na na' in
x, PatCstr (loc,c,l,na)
| _ -> failwith "Not equal"
and fold_cases_pattern_list_eq f x pl pl' = match pl, pl' with
| [], [] -> x, []
| p::pl, p'::pl' ->
let x, p = fold_cases_pattern_eq f x p p' in
let x, pl = fold_cases_pattern_list_eq f x pl pl' in
x, p :: pl
| _ -> assert false
let rec cases_pattern_eq p1 p2 = match p1, p2 with
| PatVar (_, na1), PatVar (_, na2) -> Name.equal na1 na2
| PatCstr (_, c1, pl1, na1), PatCstr (_, c2, pl2, na2) ->
eq_constructor c1 c2 && List.equal cases_pattern_eq pl1 pl2 &&
Name.equal na1 na2
| _ -> false
let bind_bindinglist_env alp (terms,onlybinders,termlists,binderlists as sigma) var bl =
let bl = List.rev bl in
try
let bl' = Id.List.assoc var binderlists in
let unify_name alp na na' =
match na, na' with
| Anonymous, na' -> alp, na'
| na, Anonymous -> alp, na
| Name id, Name id' ->
if Id.equal id id' then alp, na'
else (fst alp,(id,id')::snd alp), na' in
let unify_pat alp p p' =
try fold_cases_pattern_eq unify_name alp p p' with Failure _ -> raise No_match in
let unify_term alp v v' =
match v, v' with
| GHole _, _ -> v'
| _, GHole _ -> v
| _, _ -> if glob_constr_eq (alpha_rename (snd alp) v) v' then v else raise No_match in
let unify_binding_kind bk bk' = if bk == bk' then bk' else raise No_match in
let unify_binder alp b b' =
match b, b' with
| (Inl na, bk, None, t), (Inl na', bk', None, t') (* assum *) ->
let alp, na = unify_name alp na na' in
alp, (Inl na, unify_binding_kind bk bk', None, unify_term alp t t')
| (Inl na, bk, Some c, t), (Inl na', bk', Some c', t') (* let *) ->
let alp, na = unify_name alp na na' in
alp, (Inl na, unify_binding_kind bk bk', Some (unify_term alp c c'), unify_term alp t t')
| (Inr p, bk, None, t), (Inr p', bk', None, t') (* pattern *) ->
let alp, p = unify_pat alp p p' in
alp, (Inr p, unify_binding_kind bk bk', None, unify_term alp t t')
| _ -> raise No_match in
let rec unify alp bl bl' =
match bl, bl' with
| [], [] -> alp, []
| b :: bl, b' :: bl' ->
let alp,b = unify_binder alp b b' in
let alp,bl = unify alp bl bl' in
alp, b :: bl
| _ -> raise No_match in
let alp, bl = unify alp bl bl' in
let sigma = (terms,Id.List.remove_assoc var onlybinders,termlists,binderlists) in
alp, add_bindinglist_env sigma var bl
with Not_found ->
alp, add_bindinglist_env sigma var bl
let bind_bindinglist_as_term_env alp (terms,onlybinders,termlists,binderlists) var cl =
try
let bl' = Id.List.assoc var binderlists in
let unify_id id na' =
match na' with
| Anonymous -> Name (rename_var (snd alp) id)
| Name id' ->
if Id.equal (rename_var (snd alp) id) id' then na' else raise No_match in
let unify_pat p p' =
if cases_pattern_eq (map_cases_pattern_name_left (name_app (rename_var (snd alp))) p) p' then p'
else raise No_match in
let unify_term_binder c b' =
match c, b' with
| GVar (_, id), (Inl na', bk', None, t') (* assum *) ->
(Inl (unify_id id na'), bk', None, t')
| c, (Inr p', bk', None, t') (* pattern *) ->
let p = pat_binder_of_term c in
(Inr (unify_pat p p'), bk', None, t')
| _ -> raise No_match in
let rec unify cl bl' =
match cl, bl' with
| [], [] -> []
| c :: cl, (Inl _, _, Some _,t) :: bl' -> unify cl bl'
| c :: cl, b' :: bl' -> unify_term_binder c b' :: unify cl bl'
| _ -> raise No_match in
let bl = unify cl bl' in
let sigma = (terms,onlybinders,termlists,Id.List.remove_assoc var binderlists) in
add_bindinglist_env sigma var bl
with Not_found ->
anomaly (str "There should be a binder list bindings this list of terms")
let match_fix_kind fk1 fk2 =
match (fk1,fk2) with
| GCoFix n1, GCoFix n2 -> Int.equal n1 n2
| GFix (nl1,n1), GFix (nl2,n2) ->
let test (n1, _) (n2, _) = match n1, n2 with
| _, None -> true
| Some id1, Some id2 -> Int.equal id1 id2
| _ -> false
in
Int.equal n1 n2 &&
Array.for_all2 test nl1 nl2
| _ -> false
let match_opt f sigma t1 t2 = match (t1,t2) with
| None, None -> sigma
| Some t1, Some t2 -> f sigma t1 t2
| _ -> raise No_match
let match_names metas (alp,sigma) na1 na2 = match (na1,na2) with
| (na1,Name id2) when is_onlybinding_meta id2 metas ->
bind_binding_env alp sigma id2 na1
| (Name id1,Name id2) when is_term_meta id2 metas ->
(* We let the non-binding occurrence define the rhs and hence reason up to *)
(* alpha-conversion for the given occurrence of the name (see #4592)) *)
bind_term_as_binding_env alp sigma id2 id1
| (Anonymous,Name id2) when is_term_meta id2 metas ->
(* We let the non-binding occurrence define the rhs *)
alp, sigma
| (Name id1,Name id2) -> ((id1,id2)::fst alp, snd alp),sigma
| (Anonymous,Anonymous) -> alp,sigma
| _ -> raise No_match
let rec match_cases_pattern_binders metas acc pat1 pat2 =
match (pat1,pat2) with
| PatVar (_,na1), PatVar (_,na2) -> match_names metas acc na1 na2
| PatCstr (_,c1,patl1,na1), PatCstr (_,c2,patl2,na2)
when eq_constructor c1 c2 && Int.equal (List.length patl1) (List.length patl2) ->
List.fold_left2 (match_cases_pattern_binders metas)
(match_names metas acc na1 na2) patl1 patl2
| _ -> raise No_match
let glue_letin_with_decls = true
let rec match_iterated_binders islambda decls = function
| GLambda (_,Name p,bk,t,GCases (_,LetPatternStyle,None,[(GVar(_,e),_)],[(_,_,[cp],b)]))
when islambda && Id.equal p e ->
match_iterated_binders islambda ((Inr cp,bk,None,t)::decls) b
| GLambda (_,na,bk,t,b) when islambda ->
match_iterated_binders islambda ((Inl na,bk,None,t)::decls) b
| GProd (_,Name p,bk,t,GCases (_,LetPatternStyle,None,[(GVar(_,e),_)],[(_,_,[cp],b)]))
when not islambda && Id.equal p e ->
match_iterated_binders islambda ((Inr cp,bk,None,t)::decls) b
| GProd (_,(Name _ as na),bk,t,b) when not islambda ->
match_iterated_binders islambda ((Inl na,bk,None,t)::decls) b
| GLetIn (loc,na,c,b) when glue_letin_with_decls ->
match_iterated_binders islambda
((Inl na,Explicit (*?*), Some c,GHole(loc,Evar_kinds.BinderType na,Misctypes.IntroAnonymous,None))::decls) b
| b -> (decls,b)
let remove_sigma x (terms,onlybinders,termlists,binderlists) =
(Id.List.remove_assoc x terms,onlybinders,termlists,binderlists)
let remove_bindinglist_sigma x (terms,onlybinders,termlists,binderlists) =
(terms,onlybinders,termlists,Id.List.remove_assoc x binderlists)
let add_ldots_var metas = (ldots_var,((None,[]),NtnTypeConstr))::metas
let add_meta_bindinglist x metas = (x,((None,[]),NtnTypeBinderList))::metas
let match_binderlist_with_app match_fun alp metas sigma rest x y iter termin =
let rec aux sigma bl rest =
try
let metas = add_ldots_var (add_meta_bindinglist y metas) in
let (terms,_,_,binderlists as sigma) = match_fun alp metas sigma rest iter in
let rest = Id.List.assoc ldots_var terms in
let b =
match Id.List.assoc y binderlists with [b] -> b | _ ->assert false
in
let sigma = remove_bindinglist_sigma y (remove_sigma ldots_var sigma) in
aux sigma (b::bl) rest
with No_match when not (List.is_empty bl) ->
bl, rest, sigma in
let bl,rest,sigma = aux sigma [] rest in
let alp,sigma = bind_bindinglist_env alp sigma x bl in
match_fun alp metas sigma rest termin
let add_meta_term x metas = (x,((None,[]),NtnTypeConstr))::metas
let match_termlist match_fun alp metas sigma rest x y iter termin lassoc =
let rec aux sigma acc rest =
try
let metas = add_ldots_var (add_meta_term y metas) in
let (terms,_,_,_ as sigma) = match_fun metas sigma rest iter in
let rest = Id.List.assoc ldots_var terms in
let t = Id.List.assoc y terms in
let sigma = remove_sigma y (remove_sigma ldots_var sigma) in
aux sigma (t::acc) rest
with No_match when not (List.is_empty acc) ->
acc, match_fun metas sigma rest termin in
let l,(terms,onlybinders,termlists,binderlists as sigma) = aux sigma [] rest in
let l = if lassoc then l else List.rev l in
if is_bindinglist_meta x metas then
(* This is a recursive pattern for both bindings and terms; it is *)
(* registered for binders *)
bind_bindinglist_as_term_env alp sigma x l
else
bind_termlist_env alp sigma x l
let does_not_come_from_already_eta_expanded_var =
(* This is hack to avoid looping on a rule with rhs of the form *)
(* "?f (fun ?x => ?g)" since otherwise, matching "F H" expands in *)
(* "F (fun x => H x)" and "H x" is recursively matched against the same *)
(* rule, giving "H (fun x' => x x')" and so on. *)
(* Ideally, we would need the type of the expression to know which of *)
(* the arguments applied to it can be eta-expanded without looping. *)
(* The following test is then an approximation of what can be done *)
(* optimally (whether other looping situations can occur remains to be *)
(* checked). *)
function GVar _ -> false | _ -> true
let rec match_ inner u alp metas sigma a1 a2 =
match (a1,a2) with
(* Matching notation variable *)
| r1, NVar id2 when is_term_meta id2 metas -> bind_term_env alp sigma id2 r1
| GVar (_,id1), NVar id2 when is_onlybinding_meta id2 metas -> bind_binding_as_term_env alp sigma id2 id1
| r1, NVar id2 when is_bindinglist_meta id2 metas -> bind_term_env alp sigma id2 r1
(* Matching recursive notations for terms *)
| r1, NList (x,y,iter,termin,lassoc) ->
match_termlist (match_hd u alp) alp metas sigma r1 x y iter termin lassoc
(* "λ p, let 'cp = p in t" -> "λ 'cp, t" *)
| GLambda (_,Name p,bk,t1,GCases (_,LetPatternStyle,None,[(GVar(_,e),_)],[(_,_,[cp],b1)])),
NBinderList (x,_,NLambda (Name _id2,_,b2),termin) when Id.equal p e ->
let (decls,b) = match_iterated_binders true [(Inr cp,bk,None,t1)] b1 in
let alp,sigma = bind_bindinglist_env alp sigma x decls in
match_in u alp metas sigma b termin
(* Matching recursive notations for binders: ad hoc cases supporting let-in *)
| GLambda (_,na1,bk,t1,b1), NBinderList (x,_,NLambda (Name _id2,_,b2),termin)->
let (decls,b) = match_iterated_binders true [(Inl na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Lambda itself *)
let alp,sigma = bind_bindinglist_env alp sigma x decls in
match_in u alp metas sigma b termin
(* "∀ p, let 'cp = p in t" -> "∀ 'cp, t" *)
| GProd (_,Name p,bk,t1,GCases (_,LetPatternStyle,None,[(GVar(_,e),_)],[(_,_,[cp],b1)])),
NBinderList (x,_,NProd (Name _id2,_,b2),(NVar v as termin)) when Id.equal p e ->
let (decls,b) = match_iterated_binders true [(Inr cp,bk,None,t1)] b1 in
let alp,sigma = bind_bindinglist_env alp sigma x decls in
match_in u alp metas sigma b termin
| GProd (_,na1,bk,t1,b1), NBinderList (x,_,NProd (Name _id2,_,b2),termin)
when na1 != Anonymous ->
let (decls,b) = match_iterated_binders false [(Inl na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Prod itself *)
let alp,sigma = bind_bindinglist_env alp sigma x decls in
match_in u alp metas sigma b termin
(* Matching recursive notations for binders: general case *)
| r, NBinderList (x,y,iter,termin) ->
match_binderlist_with_app (match_hd u) alp metas sigma r x y iter termin
(* Matching individual binders as part of a recursive pattern *)
| GLambda (_,Name p,bk,t,GCases (_,LetPatternStyle,None,[(GVar(_,e),_)],[(_,_,[cp],b1)])),
NLambda (Name id,_,b2)
when is_bindinglist_meta id metas ->
let alp,sigma = bind_bindinglist_env alp sigma id [(Inr cp,bk,None,t)] in
match_in u alp metas sigma b1 b2
| GLambda (_,na,bk,t,b1), NLambda (Name id,_,b2)
when is_bindinglist_meta id metas ->
let alp,sigma = bind_bindinglist_env alp sigma id [(Inl na,bk,None,t)] in
match_in u alp metas sigma b1 b2
| GProd (_,na,bk,t,b1), NProd (Name id,_,b2)
when is_bindinglist_meta id metas && na != Anonymous ->
let alp,sigma = bind_bindinglist_env alp sigma id [(Inl na,bk,None,t)] in
match_in u alp metas sigma b1 b2
(* Matching compositionally *)
| GVar (_,id1), NVar id2 when alpha_var id1 id2 (fst alp) -> sigma
| GRef (_,r1,_), NRef r2 when (eq_gr r1 r2) -> sigma
| GApp (loc,f1,l1), NApp (f2,l2) ->
let n1 = List.length l1 and n2 = List.length l2 in
let f1,l1,f2,l2 =
if n1 < n2 then
let l21,l22 = List.chop (n2-n1) l2 in f1,l1, NApp (f2,l21), l22
else if n1 > n2 then
let l11,l12 = List.chop (n1-n2) l1 in GApp (loc,f1,l11),l12, f2,l2
else f1,l1, f2, l2 in
let may_use_eta = does_not_come_from_already_eta_expanded_var f1 in
List.fold_left2 (match_ may_use_eta u alp metas)
(match_in u alp metas sigma f1 f2) l1 l2
| GLambda (_,na1,_,t1,b1), NLambda (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GProd (_,na1,_,t1,b1), NProd (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GLetIn (_,na1,t1,b1), NLetIn (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GCases (_,sty1,rtno1,tml1,eqnl1), NCases (sty2,rtno2,tml2,eqnl2)
when sty1 == sty2
&& Int.equal (List.length tml1) (List.length tml2)
&& Int.equal (List.length eqnl1) (List.length eqnl2) ->
let rtno1' = abstract_return_type_context_glob_constr tml1 rtno1 in
let rtno2' = abstract_return_type_context_notation_constr tml2 rtno2 in
let sigma =
try Option.fold_left2 (match_in u alp metas) sigma rtno1' rtno2'
with Option.Heterogeneous -> raise No_match
in
let sigma = List.fold_left2
(fun s (tm1,_) (tm2,_) ->
match_in u alp metas s tm1 tm2) sigma tml1 tml2 in
List.fold_left2 (match_equations u alp metas) sigma eqnl1 eqnl2
| GLetTuple (_,nal1,(na1,to1),b1,c1), NLetTuple (nal2,(na2,to2),b2,c2)
when Int.equal (List.length nal1) (List.length nal2) ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
let sigma = match_in u alp metas sigma b1 b2 in
let (alp,sigma) =
List.fold_left2 (match_names metas) (alp,sigma) nal1 nal2 in
match_in u alp metas sigma c1 c2
| GIf (_,a1,(na1,to1),b1,c1), NIf (a2,(na2,to2),b2,c2) ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
List.fold_left2 (match_in u alp metas) sigma [a1;b1;c1] [a2;b2;c2]
| GRec (_,fk1,idl1,dll1,tl1,bl1), NRec (fk2,idl2,dll2,tl2,bl2)
when match_fix_kind fk1 fk2 && Int.equal (Array.length idl1) (Array.length idl2) &&
Array.for_all2 (fun l1 l2 -> Int.equal (List.length l1) (List.length l2)) dll1 dll2
->
let alp,sigma = Array.fold_left2
(List.fold_left2 (fun (alp,sigma) (na1,_,oc1,b1) (na2,oc2,b2) ->
let sigma =
match_in u alp metas
(match_opt (match_in u alp metas) sigma oc1 oc2) b1 b2
in match_names metas (alp,sigma) na1 na2)) (alp,sigma) dll1 dll2 in
let sigma = Array.fold_left2 (match_in u alp metas) sigma tl1 tl2 in
let alp,sigma = Array.fold_right2 (fun id1 id2 alsig ->
match_names metas alsig (Name id1) (Name id2)) idl1 idl2 (alp,sigma) in
Array.fold_left2 (match_in u alp metas) sigma bl1 bl2
| GCast(_,c1,CastConv t1), NCast (c2,CastConv t2)
| GCast(_,c1,CastVM t1), NCast (c2,CastVM t2) ->
match_in u alp metas (match_in u alp metas sigma c1 c2) t1 t2
| GCast(_,c1, CastCoerce), NCast(c2, CastCoerce) ->
match_in u alp metas sigma c1 c2
| GSort (_,GType _), NSort (GType _) when not u -> sigma
| GSort (_,s1), NSort s2 when Miscops.glob_sort_eq s1 s2 -> sigma
| GPatVar _, NHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
| a, NHole _ -> sigma
(* On the fly eta-expansion so as to use notations of the form
"exists x, P x" for "ex P"; ensure at least one constructor is
consumed to avoid looping; expects type not given because don't know
otherwise how to ensure it corresponds to a well-typed eta-expansion;
we make an exception for types which are metavariables: this is useful e.g.
to print "{x:_ & P x}" knowing that notation "{x & P x}" is not defined. *)
| b1, NLambda (Name id as na,(NHole _ | NVar _ as t2),b2) when inner ->
let avoid =
free_glob_vars b1 @ (* as in Namegen: *) glob_visible_short_qualid b1 in
let id' = Namegen.next_ident_away id avoid in
let t1 = GHole(Loc.ghost,Evar_kinds.BinderType (Name id'),Misctypes.IntroAnonymous,None) in
let sigma = match t2 with
| NHole _ -> sigma
| NVar id2 -> bind_term_env alp sigma id2 t1
| _ -> assert false in
let (alp,sigma) =
if is_bindinglist_meta id metas then
bind_bindinglist_env alp sigma id [(Inl (Name id'),Explicit,None,t1)]
else
match_names metas (alp,sigma) (Name id') na in
match_in u alp metas sigma (mkGApp Loc.ghost b1 (GVar (Loc.ghost,id'))) b2
| (GRec _ | GEvar _), _
| _,_ -> raise No_match
and match_in u = match_ true u
and match_hd u = match_ false u
and match_binders u alp metas na1 na2 sigma b1 b2 =
let (alp,sigma) = match_names metas (alp,sigma) na1 na2 in
match_in u alp metas sigma b1 b2
and match_equations u alp metas sigma (_,_,patl1,rhs1) (patl2,rhs2) =
(* patl1 and patl2 have the same length because they respectively
correspond to some tml1 and tml2 that have the same length *)
let (alp,sigma) =
List.fold_left2 (match_cases_pattern_binders metas)
(alp,sigma) patl1 patl2 in
match_in u alp metas sigma rhs1 rhs2
let term_of_binder = function
| Name id -> GVar (Loc.ghost,id)
| Anonymous -> GHole (Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None)
type glob_decl2 =
(name, cases_pattern) Util.union * Decl_kinds.binding_kind *
glob_constr option * glob_constr
let match_notation_constr u c (metas,pat) =
let terms,binders,termlists,binderlists =
match_ false u ([],[]) metas ([],[],[],[]) c pat in
(* Reorder canonically the substitution *)
let find_binder x =
try term_of_binder (Id.List.assoc x binders)
with Not_found ->
(* Happens for binders bound to Anonymous *)
(* Find a better way to propagate Anonymous... *)
GVar (Loc.ghost,x) in
List.fold_right (fun (x,(scl,typ)) (terms',termlists',binders') ->
match typ with
| NtnTypeConstr ->
let term = try Id.List.assoc x terms with Not_found -> raise No_match in
((term, scl)::terms',termlists',binders')
| NtnTypeOnlyBinder ->
((find_binder x, scl)::terms',termlists',binders')
| NtnTypeConstrList ->
(terms',(Id.List.assoc x termlists,scl)::termlists',binders')
| NtnTypeBinderList ->
let bl = try Id.List.assoc x binderlists with Not_found -> raise No_match in
(terms',termlists',(bl, scl)::binders'))
metas ([],[],[])
(* Matching cases pattern *)
let add_patterns_for_params ind l =
let mib,_ = Global.lookup_inductive ind in
let nparams = mib.Declarations.mind_nparams in
Util.List.addn nparams (PatVar (Loc.ghost,Anonymous)) l
let bind_env_cases_pattern (terms,x,termlists,y as sigma) var v =
try
let vvar = Id.List.assoc var terms in
if cases_pattern_eq v vvar then sigma else raise No_match
with Not_found ->
(* TODO: handle the case of multiple occs in different scopes *)
(var,v)::terms,x,termlists,y
let match_cases_pattern_list match_fun metas sigma rest x y iter termin lassoc =
let rec aux sigma acc rest =
try
let metas = add_ldots_var (add_meta_term y metas) in
let (terms,_,_,_ as sigma) = match_fun metas sigma rest iter in
let rest = Id.List.assoc ldots_var terms in
let t = Id.List.assoc y terms in
let sigma = remove_sigma y (remove_sigma ldots_var sigma) in
aux sigma (t::acc) rest
with No_match when not (List.is_empty acc) ->
acc, match_fun metas sigma rest termin in
let l,(terms,onlybinders,termlists,binderlists as sigma) = aux sigma [] rest in
(terms,onlybinders,(x,if lassoc then l else List.rev l)::termlists, binderlists)
let rec match_cases_pattern metas (terms,(),termlists,() as sigma) a1 a2 =
match (a1,a2) with
| r1, NVar id2 when Id.List.mem_assoc id2 metas -> (bind_env_cases_pattern sigma id2 r1),(0,[])
| PatVar (_,Anonymous), NHole _ -> sigma,(0,[])
| PatCstr (loc,(ind,_ as r1),largs,_), NRef (ConstructRef r2) when eq_constructor r1 r2 ->
sigma,(0,add_patterns_for_params (fst r1) largs)
| PatCstr (loc,(ind,_ as r1),args1,_), NApp (NRef (ConstructRef r2),l2)
when eq_constructor r1 r2 ->
let l1 = add_patterns_for_params (fst r1) args1 in
let le2 = List.length l2 in
if Int.equal le2 0 (* Special case of a notation for a @Cstr *) || le2 > List.length l1
then
raise No_match
else
let l1',more_args = Util.List.chop le2 l1 in
(List.fold_left2 (match_cases_pattern_no_more_args metas) sigma l1' l2),(le2,more_args)
| r1, NList (x,y,iter,termin,lassoc) ->
(match_cases_pattern_list (match_cases_pattern_no_more_args)
metas (terms,(),termlists,()) r1 x y iter termin lassoc),(0,[])
| _ -> raise No_match
and match_cases_pattern_no_more_args metas sigma a1 a2 =
match match_cases_pattern metas sigma a1 a2 with
| out,(_,[]) -> out
| _ -> raise No_match
let match_ind_pattern metas sigma ind pats a2 =
match a2 with
| NRef (IndRef r2) when eq_ind ind r2 ->
sigma,(0,pats)
| NApp (NRef (IndRef r2),l2)
when eq_ind ind r2 ->
let le2 = List.length l2 in
if Int.equal le2 0 (* Special case of a notation for a @Cstr *) || le2 > List.length pats
then
raise No_match
else
let l1',more_args = Util.List.chop le2 pats in
(List.fold_left2 (match_cases_pattern_no_more_args metas) sigma l1' l2),(le2,more_args)
|_ -> raise No_match
let reorder_canonically_substitution terms termlists metas =
List.fold_right (fun (x,(scl,typ)) (terms',termlists') ->
match typ with
| NtnTypeConstr -> ((Id.List.assoc x terms, scl)::terms',termlists')
| NtnTypeOnlyBinder -> assert false
| NtnTypeConstrList -> (terms',(Id.List.assoc x termlists,scl)::termlists')
| NtnTypeBinderList -> assert false)
metas ([],[])
let match_notation_constr_cases_pattern c (metas,pat) =
let (terms,(),termlists,()),more_args = match_cases_pattern metas ([],(),[],()) c pat in
reorder_canonically_substitution terms termlists metas, more_args
let match_notation_constr_ind_pattern ind args (metas,pat) =
let (terms,(),termlists,()),more_args = match_ind_pattern metas ([],(),[],()) ind args pat in
reorder_canonically_substitution terms termlists metas, more_args
|