1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Globnames
open Misctypes
open Glob_term
open Glob_ops
open Mod_subst
open Notation_term
open Decl_kinds
(**********************************************************************)
(* Re-interpret a notation as a glob_constr, taking care of binders *)
let name_to_ident = function
| Anonymous -> Errors.error "This expression should be a simple identifier."
| Name id -> id
let to_id g e id = let e,na = g e (Name id) in e,name_to_ident na
let rec cases_pattern_fold_map loc g e = function
| PatVar (_,na) ->
let e',na' = g e na in e', PatVar (loc,na')
| PatCstr (_,cstr,patl,na) ->
let e',na' = g e na in
let e',patl' = List.fold_map (cases_pattern_fold_map loc g) e patl in
e', PatCstr (loc,cstr,patl',na')
let rec subst_glob_vars l = function
| GVar (_,id) as r -> (try Id.List.assoc id l with Not_found -> r)
| GProd (loc,Name id,bk,t,c) ->
let id =
try match Id.List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GProd (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| GLambda (loc,Name id,bk,t,c) ->
let id =
try match Id.List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GLambda (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| r -> map_glob_constr (subst_glob_vars l) r (* assume: id is not binding *)
let ldots_var = Id.of_string ".."
let glob_constr_of_notation_constr_with_binders loc g f e = function
| NVar id -> GVar (loc,id)
| NApp (a,args) -> GApp (loc,f e a, List.map (f e) args)
| NList (x,y,iter,tail,swap) ->
let t = f e tail in let it = f e iter in
let innerl = (ldots_var,t)::(if swap then [] else [x,GVar(loc,y)]) in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = (ldots_var,inner)::(if swap then [x,GVar(loc,y)] else []) in
subst_glob_vars outerl it
| NBinderList (x,y,iter,tail) ->
let t = f e tail in let it = f e iter in
let innerl = [(ldots_var,t);(x,GVar(loc,y))] in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = [(ldots_var,inner)] in
subst_glob_vars outerl it
| NLambda (na,ty,c) ->
let e',na = g e na in GLambda (loc,na,Explicit,f e ty,f e' c)
| NProd (na,ty,c) ->
let e',na = g e na in GProd (loc,na,Explicit,f e ty,f e' c)
| NLetIn (na,b,c) ->
let e',na = g e na in GLetIn (loc,na,f e b,f e' c)
| NCases (sty,rtntypopt,tml,eqnl) ->
let e',tml' = List.fold_right (fun (tm,(na,t)) (e',tml') ->
let e',t' = match t with
| None -> e',None
| Some (ind,nal) ->
let e',nal' = List.fold_right (fun na (e',nal) ->
let e',na' = g e' na in e',na'::nal) nal (e',[]) in
e',Some (loc,ind,nal') in
let e',na' = g e' na in
(e',(f e tm,(na',t'))::tml')) tml (e,[]) in
let fold (idl,e) na = let (e,na) = g e na in ((name_cons na idl,e),na) in
let eqnl' = List.map (fun (patl,rhs) ->
let ((idl,e),patl) =
List.fold_map (cases_pattern_fold_map loc fold) ([],e) patl in
(loc,idl,patl,f e rhs)) eqnl in
GCases (loc,sty,Option.map (f e') rtntypopt,tml',eqnl')
| NLetTuple (nal,(na,po),b,c) ->
let e',nal = List.fold_map g e nal in
let e'',na = g e na in
GLetTuple (loc,nal,(na,Option.map (f e'') po),f e b,f e' c)
| NIf (c,(na,po),b1,b2) ->
let e',na = g e na in
GIf (loc,f e c,(na,Option.map (f e') po),f e b1,f e b2)
| NRec (fk,idl,dll,tl,bl) ->
let e,dll = Array.fold_map (List.fold_map (fun e (na,oc,b) ->
let e,na = g e na in
(e,(na,Explicit,Option.map (f e) oc,f e b)))) e dll in
let e',idl = Array.fold_map (to_id g) e idl in
GRec (loc,fk,idl,dll,Array.map (f e) tl,Array.map (f e') bl)
| NCast (c,k) -> GCast (loc,f e c,Miscops.map_cast_type (f e) k)
| NSort x -> GSort (loc,x)
| NHole (x, naming, arg) -> GHole (loc, x, naming, arg)
| NPatVar n -> GPatVar (loc,(false,n))
| NRef x -> GRef (loc,x,None)
let glob_constr_of_notation_constr loc x =
let rec aux () x =
glob_constr_of_notation_constr_with_binders loc (fun () id -> ((),id)) aux () x
in aux () x
(****************************************************************************)
(* Translating a glob_constr into a notation, interpreting recursive patterns *)
let add_id r id = r := (id :: pi1 !r, pi2 !r, pi3 !r)
let add_name r = function Anonymous -> () | Name id -> add_id r id
let split_at_recursive_part c =
let sub = ref None in
let rec aux = function
| GApp (loc0,GVar(loc,v),c::l) when Id.equal v ldots_var ->
begin match !sub with
| None ->
let () = sub := Some c in
begin match l with
| [] -> GVar (loc, ldots_var)
| _ :: _ -> GApp (loc0, GVar (loc, ldots_var), l)
end
| Some _ ->
(* Not narrowed enough to find only one recursive part *)
raise Not_found
end
| c -> map_glob_constr aux c in
let outer_iterator = aux c in
match !sub with
| None -> (* No recursive pattern found *) raise Not_found
| Some c ->
match outer_iterator with
| GVar (_,v) when Id.equal v ldots_var -> (* Not enough context *) raise Not_found
| _ -> outer_iterator, c
let on_true_do b f c = if b then (f c; b) else b
let compare_glob_constr f add t1 t2 = match t1,t2 with
| GRef (_,r1,_), GRef (_,r2,_) -> eq_gr r1 r2
| GVar (_,v1), GVar (_,v2) -> on_true_do (Id.equal v1 v2) add (Name v1)
| GApp (_,f1,l1), GApp (_,f2,l2) -> f f1 f2 && List.for_all2eq f l1 l2
| GLambda (_,na1,bk1,ty1,c1), GLambda (_,na2,bk2,ty2,c2)
when Name.equal na1 na2 && Constrexpr_ops.binding_kind_eq bk1 bk2 ->
on_true_do (f ty1 ty2 && f c1 c2) add na1
| GProd (_,na1,bk1,ty1,c1), GProd (_,na2,bk2,ty2,c2)
when Name.equal na1 na2 && Constrexpr_ops.binding_kind_eq bk1 bk2 ->
on_true_do (f ty1 ty2 && f c1 c2) add na1
| GHole _, GHole _ -> true
| GSort (_,s1), GSort (_,s2) -> Miscops.glob_sort_eq s1 s2
| GLetIn (_,na1,b1,c1), GLetIn (_,na2,b2,c2) when Name.equal na1 na2 ->
on_true_do (f b1 b2 && f c1 c2) add na1
| (GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _),_
| _,(GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _)
-> error "Unsupported construction in recursive notations."
| (GRef _ | GVar _ | GApp _ | GLambda _ | GProd _
| GHole _ | GSort _ | GLetIn _), _
-> false
let rec eq_glob_constr t1 t2 = compare_glob_constr eq_glob_constr (fun _ -> ()) t1 t2
let subtract_loc loc1 loc2 = Loc.make_loc (fst (Loc.unloc loc1),fst (Loc.unloc loc2)-1)
let check_is_hole id = function GHole _ -> () | t ->
user_err_loc (loc_of_glob_constr t,"",
strbrk "In recursive notation with binders, " ++ pr_id id ++
strbrk " is expected to come without type.")
let compare_recursive_parts found f (iterator,subc) =
let diff = ref None in
let terminator = ref None in
let rec aux c1 c2 = match c1,c2 with
| GVar(_,v), term when Id.equal v ldots_var ->
(* We found the pattern *)
assert (match !terminator with None -> true | Some _ -> false);
terminator := Some term;
true
| GApp (_,GVar(_,v),l1), GApp (_,term,l2) when Id.equal v ldots_var ->
(* We found the pattern, but there are extra arguments *)
(* (this allows e.g. alternative (recursive) notation of application) *)
assert (match !terminator with None -> true | Some _ -> false);
terminator := Some term;
List.for_all2eq aux l1 l2
| GVar (_,x), GVar (_,y) when not (Id.equal x y) ->
(* We found the position where it differs *)
let lassoc = match !terminator with None -> false | Some _ -> true in
let x,y = if lassoc then y,x else x,y in
begin match !diff with
| None ->
let () = diff := Some (x, y, Some lassoc) in
true
| Some _ -> false
end
| GLambda (_,Name x,_,t_x,c), GLambda (_,Name y,_,t_y,term)
| GProd (_,Name x,_,t_x,c), GProd (_,Name y,_,t_y,term) ->
(* We found a binding position where it differs *)
check_is_hole x t_x;
check_is_hole y t_y;
begin match !diff with
| None ->
let () = diff := Some (x, y, None) in
aux c term
| Some _ -> false
end
| _ ->
compare_glob_constr aux (add_name found) c1 c2 in
if aux iterator subc then
match !diff with
| None ->
let loc1 = loc_of_glob_constr iterator in
let loc2 = loc_of_glob_constr (Option.get !terminator) in
(* Here, we would need a loc made of several parts ... *)
user_err_loc (subtract_loc loc1 loc2,"",
str "Both ends of the recursive pattern are the same.")
| Some (x,y,Some lassoc) ->
let newfound = (pi1 !found, (x,y) :: pi2 !found, pi3 !found) in
let iterator =
f (if lassoc then subst_glob_vars [y,GVar(Loc.ghost,x)] iterator
else iterator) in
(* found have been collected by compare_constr *)
found := newfound;
NList (x,y,iterator,f (Option.get !terminator),lassoc)
| Some (x,y,None) ->
let newfound = (pi1 !found, pi2 !found, (x,y) :: pi3 !found) in
let iterator = f iterator in
(* found have been collected by compare_constr *)
found := newfound;
NBinderList (x,y,iterator,f (Option.get !terminator))
else
raise Not_found
let notation_constr_and_vars_of_glob_constr a =
let found = ref ([],[],[]) in
let rec aux c =
let keepfound = !found in
(* n^2 complexity but small and done only once per notation *)
try compare_recursive_parts found aux' (split_at_recursive_part c)
with Not_found ->
found := keepfound;
match c with
| GApp (_,GVar (loc,f),[c]) when Id.equal f ldots_var ->
(* Fall on the second part of the recursive pattern w/o having
found the first part *)
user_err_loc (loc,"",
str "Cannot find where the recursive pattern starts.")
| c ->
aux' c
and aux' = function
| GVar (_,id) -> add_id found id; NVar id
| GApp (_,g,args) -> NApp (aux g, List.map aux args)
| GLambda (_,na,bk,ty,c) -> add_name found na; NLambda (na,aux ty,aux c)
| GProd (_,na,bk,ty,c) -> add_name found na; NProd (na,aux ty,aux c)
| GLetIn (_,na,b,c) -> add_name found na; NLetIn (na,aux b,aux c)
| GCases (_,sty,rtntypopt,tml,eqnl) ->
let f (_,idl,pat,rhs) = List.iter (add_id found) idl; (pat,aux rhs) in
NCases (sty,Option.map aux rtntypopt,
List.map (fun (tm,(na,x)) ->
add_name found na;
Option.iter
(fun (_,_,nl) -> List.iter (add_name found) nl) x;
(aux tm,(na,Option.map (fun (_,ind,nal) -> (ind,nal)) x))) tml,
List.map f eqnl)
| GLetTuple (loc,nal,(na,po),b,c) ->
add_name found na;
List.iter (add_name found) nal;
NLetTuple (nal,(na,Option.map aux po),aux b,aux c)
| GIf (loc,c,(na,po),b1,b2) ->
add_name found na;
NIf (aux c,(na,Option.map aux po),aux b1,aux b2)
| GRec (_,fk,idl,dll,tl,bl) ->
Array.iter (add_id found) idl;
let dll = Array.map (List.map (fun (na,bk,oc,b) ->
if bk != Explicit then
error "Binders marked as implicit not allowed in notations.";
add_name found na; (na,Option.map aux oc,aux b))) dll in
NRec (fk,idl,dll,Array.map aux tl,Array.map aux bl)
| GCast (_,c,k) -> NCast (aux c,Miscops.map_cast_type aux k)
| GSort (_,s) -> NSort s
| GHole (_,w,naming,arg) -> NHole (w, naming, arg)
| GRef (_,r,_) -> NRef r
| GPatVar (_,(_,n)) -> NPatVar n
| GEvar _ ->
error "Existential variables not allowed in notations."
in
let t = aux a in
(* Side effect *)
t, !found
let pair_equal eq1 eq2 (a,b) (a',b') = eq1 a a' && eq2 b b'
let check_variables nenv (found,foundrec,foundrecbinding) =
let recvars = nenv.ninterp_rec_vars in
let fold _ y accu = Id.Set.add y accu in
let useless_vars = Id.Map.fold fold recvars Id.Set.empty in
let filter y _ = not (Id.Set.mem y useless_vars) in
let vars = Id.Map.filter filter nenv.ninterp_var_type in
let check_recvar x =
if Id.List.mem x found then
errorlabstrm "" (pr_id x ++
strbrk " should only be used in the recursive part of a pattern.") in
let check (x, y) = check_recvar x; check_recvar y in
let () = List.iter check foundrec in
let () = List.iter check foundrecbinding in
let check_bound x =
if not (Id.List.mem x found) then
if Id.List.mem_assoc x foundrec ||
Id.List.mem_assoc x foundrecbinding ||
Id.List.mem_assoc_sym x foundrec ||
Id.List.mem_assoc_sym x foundrecbinding
then
error
(Id.to_string x ^
" should not be bound in a recursive pattern of the right-hand side.")
else nenv.ninterp_only_parse <- true
in
let check_pair s x y where =
if not (List.mem_f (pair_equal Id.equal Id.equal) (x,y) where) then
errorlabstrm "" (strbrk "in the right-hand side, " ++ pr_id x ++
str " and " ++ pr_id y ++ strbrk " should appear in " ++ str s ++
str " position as part of a recursive pattern.") in
let check_type x typ =
match typ with
| NtnInternTypeConstr ->
begin
try check_pair "term" x (Id.Map.find x recvars) foundrec
with Not_found -> check_bound x
end
| NtnInternTypeBinder ->
begin
try check_pair "binding" x (Id.Map.find x recvars) foundrecbinding
with Not_found -> check_bound x
end
| NtnInternTypeIdent -> check_bound x in
Id.Map.iter check_type vars
let notation_constr_of_glob_constr nenv a =
let a, found = notation_constr_and_vars_of_glob_constr a in
let () = check_variables nenv found in
a
(* Substitution of kernel names, avoiding a list of bound identifiers *)
let notation_constr_of_constr avoiding t =
let t = Detyping.detype false avoiding (Global.env()) Evd.empty t in
let nenv = {
ninterp_var_type = Id.Map.empty;
ninterp_rec_vars = Id.Map.empty;
ninterp_only_parse = false;
} in
notation_constr_of_glob_constr nenv t
let rec subst_pat subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_mind subst kn
and cpl' = List.smartmap (subst_pat subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_notation_constr subst bound raw =
match raw with
| NRef ref ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
notation_constr_of_constr bound t
| NVar _ -> raw
| NApp (r,rl) ->
let r' = subst_notation_constr subst bound r
and rl' = List.smartmap (subst_notation_constr subst bound) rl in
if r' == r && rl' == rl then raw else
NApp(r',rl')
| NList (id1,id2,r1,r2,b) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NList (id1,id2,r1',r2',b)
| NLambda (n,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NLambda (n,r1',r2')
| NProd (n,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NProd (n,r1',r2')
| NBinderList (id1,id2,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NBinderList (id1,id2,r1',r2')
| NLetIn (n,r1,r2) ->
let r1' = subst_notation_constr subst bound r1
and r2' = subst_notation_constr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
NLetIn (n,r1',r2')
| NCases (sty,rtntypopt,rl,branches) ->
let rtntypopt' = Option.smartmap (subst_notation_constr subst bound) rtntypopt
and rl' = List.smartmap
(fun (a,(n,signopt) as x) ->
let a' = subst_notation_constr subst bound a in
let signopt' = Option.map (fun ((indkn,i),nal as z) ->
let indkn' = subst_mind subst indkn in
if indkn == indkn' then z else ((indkn',i),nal)) signopt in
if a' == a && signopt' == signopt then x else (a',(n,signopt')))
rl
and branches' = List.smartmap
(fun (cpl,r as branch) ->
let cpl' = List.smartmap (subst_pat subst) cpl
and r' = subst_notation_constr subst bound r in
if cpl' == cpl && r' == r then branch else
(cpl',r'))
branches
in
if rtntypopt' == rtntypopt && rtntypopt == rtntypopt' &&
rl' == rl && branches' == branches then raw else
NCases (sty,rtntypopt',rl',branches')
| NLetTuple (nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_notation_constr subst bound) po
and b' = subst_notation_constr subst bound b
and c' = subst_notation_constr subst bound c in
if po' == po && b' == b && c' == c then raw else
NLetTuple (nal,(na,po'),b',c')
| NIf (c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_notation_constr subst bound) po
and b1' = subst_notation_constr subst bound b1
and b2' = subst_notation_constr subst bound b2
and c' = subst_notation_constr subst bound c in
if po' == po && b1' == b1 && b2' == b2 && c' == c then raw else
NIf (c',(na,po'),b1',b2')
| NRec (fk,idl,dll,tl,bl) ->
let dll' =
Array.smartmap (List.smartmap (fun (na,oc,b as x) ->
let oc' = Option.smartmap (subst_notation_constr subst bound) oc in
let b' = subst_notation_constr subst bound b in
if oc' == oc && b' == b then x else (na,oc',b'))) dll in
let tl' = Array.smartmap (subst_notation_constr subst bound) tl in
let bl' = Array.smartmap (subst_notation_constr subst bound) bl in
if dll' == dll && tl' == tl && bl' == bl then raw else
NRec (fk,idl,dll',tl',bl')
| NPatVar _ | NSort _ -> raw
| NHole (knd, naming, solve) ->
let nknd = match knd with
| Evar_kinds.ImplicitArg (ref, i, b) ->
let nref, _ = subst_global subst ref in
if nref == ref then knd else Evar_kinds.ImplicitArg (nref, i, b)
| _ -> knd
in
let nsolve = Option.smartmap (Genintern.generic_substitute subst) solve in
if nsolve == solve && nknd == knd then raw
else NHole (nknd, naming, nsolve)
| NCast (r1,k) ->
let r1' = subst_notation_constr subst bound r1 in
let k' = Miscops.smartmap_cast_type (subst_notation_constr subst bound) k in
if r1' == r1 && k' == k then raw else NCast(r1',k')
let subst_interpretation subst (metas,pat) =
let bound = List.map fst metas in
(metas,subst_notation_constr subst bound pat)
(* Pattern-matching glob_constr and notation_constr *)
let abstract_return_type_context pi mklam tml rtno =
Option.map (fun rtn ->
let nal =
List.flatten (List.map (fun (_,(na,t)) ->
match t with Some x -> (pi x)@[na] | None -> [na]) tml) in
List.fold_right mklam nal rtn)
rtno
let abstract_return_type_context_glob_constr =
abstract_return_type_context (fun (_,_,nal) -> nal)
(fun na c ->
GLambda(Loc.ghost,na,Explicit,GHole(Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None),c))
let abstract_return_type_context_notation_constr =
abstract_return_type_context snd
(fun na c -> NLambda(na,NHole (Evar_kinds.InternalHole, Misctypes.IntroAnonymous, None),c))
exception No_match
let rec alpha_var id1 id2 = function
| (i1,i2)::_ when Id.equal i1 id1 -> Id.equal i2 id2
| (i1,i2)::_ when Id.equal i2 id2 -> Id.equal i1 id1
| _::idl -> alpha_var id1 id2 idl
| [] -> Id.equal id1 id2
let add_env alp (sigma,sigmalist,sigmabinders) var v =
(* Check that no capture of binding variables occur *)
if List.exists (fun (id,_) ->occur_glob_constr id v) alp then raise No_match;
(* TODO: handle the case of multiple occs in different scopes *)
((var,v)::sigma,sigmalist,sigmabinders)
let bind_env alp (sigma,sigmalist,sigmabinders as fullsigma) var v =
try
let v' = Id.List.assoc var sigma in
match v, v' with
| GHole _, _ -> fullsigma
| _, GHole _ ->
add_env alp (Id.List.remove_assoc var sigma,sigmalist,sigmabinders) var v
| _, _ ->
if glob_constr_eq v v' then fullsigma
else raise No_match
with Not_found -> add_env alp fullsigma var v
let bind_binder (sigma,sigmalist,sigmabinders) x bl =
(sigma,sigmalist,(x,List.rev bl)::sigmabinders)
let match_fix_kind fk1 fk2 =
match (fk1,fk2) with
| GCoFix n1, GCoFix n2 -> Int.equal n1 n2
| GFix (nl1,n1), GFix (nl2,n2) ->
let test (n1, _) (n2, _) = match n1, n2 with
| _, None -> true
| Some id1, Some id2 -> Int.equal id1 id2
| _ -> false
in
Int.equal n1 n2 &&
Array.for_all2 test nl1 nl2
| _ -> false
let match_opt f sigma t1 t2 = match (t1,t2) with
| None, None -> sigma
| Some t1, Some t2 -> f sigma t1 t2
| _ -> raise No_match
let match_names metas (alp,sigma) na1 na2 = match (na1,na2) with
| (_,Name id2) when Id.List.mem id2 (fst metas) ->
let rhs = match na1 with
| Name id1 -> GVar (Loc.ghost,id1)
| Anonymous -> GHole (Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None) in
alp, bind_env alp sigma id2 rhs
| (Name id1,Name id2) -> (id1,id2)::alp,sigma
| (Anonymous,Anonymous) -> alp,sigma
| _ -> raise No_match
let rec match_cases_pattern_binders metas acc pat1 pat2 =
match (pat1,pat2) with
| PatVar (_,na1), PatVar (_,na2) -> match_names metas acc na1 na2
| PatCstr (_,c1,patl1,na1), PatCstr (_,c2,patl2,na2)
when eq_constructor c1 c2 && Int.equal (List.length patl1) (List.length patl2) ->
List.fold_left2 (match_cases_pattern_binders metas)
(match_names metas acc na1 na2) patl1 patl2
| _ -> raise No_match
let glue_letin_with_decls = true
let rec match_iterated_binders islambda decls = function
| GLambda (_,na,bk,t,b) when islambda ->
match_iterated_binders islambda ((na,bk,None,t)::decls) b
| GProd (_,(Name _ as na),bk,t,b) when not islambda ->
match_iterated_binders islambda ((na,bk,None,t)::decls) b
| GLetIn (loc,na,c,b) when glue_letin_with_decls ->
match_iterated_binders islambda
((na,Explicit (*?*), Some c,GHole(loc,Evar_kinds.BinderType na,Misctypes.IntroAnonymous,None))::decls) b
| b -> (decls,b)
let remove_sigma x (sigmavar,sigmalist,sigmabinders) =
(Id.List.remove_assoc x sigmavar,sigmalist,sigmabinders)
let match_abinderlist_with_app match_fun metas sigma rest x iter termin =
let rec aux sigma acc rest =
try
let sigma = match_fun (ldots_var::fst metas,snd metas) sigma rest iter in
let rest = Id.List.assoc ldots_var (pi1 sigma) in
let b =
match Id.List.assoc x (pi3 sigma) with [b] -> b | _ ->assert false
in
let sigma = remove_sigma x (remove_sigma ldots_var sigma) in
aux sigma (b::acc) rest
with No_match when not (List.is_empty acc) ->
acc, match_fun metas sigma rest termin in
let bl,sigma = aux sigma [] rest in
bind_binder sigma x bl
let match_alist match_fun metas sigma rest x iter termin lassoc =
let rec aux sigma acc rest =
try
let sigma = match_fun (ldots_var::fst metas,snd metas) sigma rest iter in
let rest = Id.List.assoc ldots_var (pi1 sigma) in
let t = Id.List.assoc x (pi1 sigma) in
let sigma = remove_sigma x (remove_sigma ldots_var sigma) in
aux sigma (t::acc) rest
with No_match when not (List.is_empty acc) ->
acc, match_fun metas sigma rest termin in
let l,sigma = aux sigma [] rest in
(pi1 sigma, (x,if lassoc then l else List.rev l)::pi2 sigma, pi3 sigma)
let does_not_come_from_already_eta_expanded_var =
(* This is hack to avoid looping on a rule with rhs of the form *)
(* "?f (fun ?x => ?g)" since otherwise, matching "F H" expands in *)
(* "F (fun x => H x)" and "H x" is recursively matched against the same *)
(* rule, giving "H (fun x' => x x')" and so on. *)
(* Ideally, we would need the type of the expression to know which of *)
(* the arguments applied to it can be eta-expanded without looping. *)
(* The following test is then an approximation of what can be done *)
(* optimally (whether other looping situations can occur remains to be *)
(* checked). *)
function GVar _ -> false | _ -> true
let rec match_ inner u alp (tmetas,blmetas as metas) sigma a1 a2 =
match (a1,a2) with
(* Matching notation variable *)
| r1, NVar id2 when Id.List.mem id2 tmetas -> bind_env alp sigma id2 r1
(* Matching recursive notations for terms *)
| r1, NList (x,_,iter,termin,lassoc) ->
match_alist (match_hd u alp) metas sigma r1 x iter termin lassoc
(* Matching recursive notations for binders: ad hoc cases supporting let-in *)
| GLambda (_,na1,bk,t1,b1), NBinderList (x,_,NLambda (Name id2,_,b2),termin)->
let (decls,b) = match_iterated_binders true [(na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Lambda itself *)
match_in u alp metas (bind_binder sigma x decls) b termin
| GProd (_,na1,bk,t1,b1), NBinderList (x,_,NProd (Name id2,_,b2),termin)
when na1 != Anonymous ->
let (decls,b) = match_iterated_binders false [(na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Prod itself *)
match_in u alp metas (bind_binder sigma x decls) b termin
(* Matching recursive notations for binders: general case *)
| r, NBinderList (x,_,iter,termin) ->
match_abinderlist_with_app (match_hd u alp) metas sigma r x iter termin
(* Matching individual binders as part of a recursive pattern *)
| GLambda (_,na,bk,t,b1), NLambda (Name id,_,b2) when Id.List.mem id blmetas ->
match_in u alp metas (bind_binder sigma id [(na,bk,None,t)]) b1 b2
| GProd (_,na,bk,t,b1), NProd (Name id,_,b2)
when Id.List.mem id blmetas && na != Anonymous ->
match_in u alp metas (bind_binder sigma id [(na,bk,None,t)]) b1 b2
(* Matching compositionally *)
| GVar (_,id1), NVar id2 when alpha_var id1 id2 alp -> sigma
| GRef (_,r1,_), NRef r2 when (eq_gr r1 r2) -> sigma
| GPatVar (_,(_,n1)), NPatVar n2 when Id.equal n1 n2 -> sigma
| GApp (loc,f1,l1), NApp (f2,l2) ->
let n1 = List.length l1 and n2 = List.length l2 in
let f1,l1,f2,l2 =
if n1 < n2 then
let l21,l22 = List.chop (n2-n1) l2 in f1,l1, NApp (f2,l21), l22
else if n1 > n2 then
let l11,l12 = List.chop (n1-n2) l1 in GApp (loc,f1,l11),l12, f2,l2
else f1,l1, f2, l2 in
let may_use_eta = does_not_come_from_already_eta_expanded_var f1 in
List.fold_left2 (match_ may_use_eta u alp metas)
(match_in u alp metas sigma f1 f2) l1 l2
| GLambda (_,na1,_,t1,b1), NLambda (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GProd (_,na1,_,t1,b1), NProd (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GLetIn (_,na1,t1,b1), NLetIn (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GCases (_,sty1,rtno1,tml1,eqnl1), NCases (sty2,rtno2,tml2,eqnl2)
when sty1 == sty2
&& Int.equal (List.length tml1) (List.length tml2)
&& Int.equal (List.length eqnl1) (List.length eqnl2) ->
let rtno1' = abstract_return_type_context_glob_constr tml1 rtno1 in
let rtno2' = abstract_return_type_context_notation_constr tml2 rtno2 in
let sigma =
try Option.fold_left2 (match_in u alp metas) sigma rtno1' rtno2'
with Option.Heterogeneous -> raise No_match
in
let sigma = List.fold_left2
(fun s (tm1,_) (tm2,_) ->
match_in u alp metas s tm1 tm2) sigma tml1 tml2 in
List.fold_left2 (match_equations u alp metas) sigma eqnl1 eqnl2
| GLetTuple (_,nal1,(na1,to1),b1,c1), NLetTuple (nal2,(na2,to2),b2,c2)
when Int.equal (List.length nal1) (List.length nal2) ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
let sigma = match_in u alp metas sigma b1 b2 in
let (alp,sigma) =
List.fold_left2 (match_names metas) (alp,sigma) nal1 nal2 in
match_in u alp metas sigma c1 c2
| GIf (_,a1,(na1,to1),b1,c1), NIf (a2,(na2,to2),b2,c2) ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
List.fold_left2 (match_in u alp metas) sigma [a1;b1;c1] [a2;b2;c2]
| GRec (_,fk1,idl1,dll1,tl1,bl1), NRec (fk2,idl2,dll2,tl2,bl2)
when match_fix_kind fk1 fk2 && Int.equal (Array.length idl1) (Array.length idl2) &&
Array.for_all2 (fun l1 l2 -> Int.equal (List.length l1) (List.length l2)) dll1 dll2
->
let alp,sigma = Array.fold_left2
(List.fold_left2 (fun (alp,sigma) (na1,_,oc1,b1) (na2,oc2,b2) ->
let sigma =
match_in u alp metas
(match_opt (match_in u alp metas) sigma oc1 oc2) b1 b2
in match_names metas (alp,sigma) na1 na2)) (alp,sigma) dll1 dll2 in
let sigma = Array.fold_left2 (match_in u alp metas) sigma tl1 tl2 in
let alp,sigma = Array.fold_right2 (fun id1 id2 alsig ->
match_names metas alsig (Name id1) (Name id2)) idl1 idl2 (alp,sigma) in
Array.fold_left2 (match_in u alp metas) sigma bl1 bl2
| GCast(_,c1,CastConv t1), NCast (c2,CastConv t2)
| GCast(_,c1,CastVM t1), NCast (c2,CastVM t2) ->
match_in u alp metas (match_in u alp metas sigma c1 c2) t1 t2
| GCast(_,c1, CastCoerce), NCast(c2, CastCoerce) ->
match_in u alp metas sigma c1 c2
| GSort (_,GType _), NSort (GType _) when not u -> sigma
| GSort (_,s1), NSort s2 when Miscops.glob_sort_eq s1 s2 -> sigma
| GPatVar _, NHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
| a, NHole _ -> sigma
(* On the fly eta-expansion so as to use notations of the form
"exists x, P x" for "ex P"; ensure at least one constructor is
consumed to avoid looping; expects type not given because don't know
otherwise how to ensure it corresponds to a well-typed eta-expansion;
we make an exception for types which are metavariables: this is useful e.g.
to print "{x:_ & P x}" knowing that notation "{x & P x}" is not defined. *)
| b1, NLambda (Name id,(NHole _ | NVar _ as t2),b2) when inner ->
let id' = Namegen.next_ident_away id (free_glob_vars b1) in
let t1 = GHole(Loc.ghost,Evar_kinds.BinderType (Name id'),Misctypes.IntroAnonymous,None) in
let sigma = match t2 with
| NHole _ -> sigma
| NVar id2 -> bind_env alp sigma id2 t1
| _ -> assert false in
match_in u alp metas (bind_binder sigma id [(Name id',Explicit,None,t1)])
(mkGApp Loc.ghost b1 (GVar (Loc.ghost,id'))) b2
| (GRec _ | GEvar _), _
| _,_ -> raise No_match
and match_in u = match_ true u
and match_hd u = match_ false u
and match_binders u alp metas na1 na2 sigma b1 b2 =
let (alp,sigma) = match_names metas (alp,sigma) na1 na2 in
match_in u alp metas sigma b1 b2
and match_equations u alp metas sigma (_,_,patl1,rhs1) (patl2,rhs2) =
(* patl1 and patl2 have the same length because they respectively
correspond to some tml1 and tml2 that have the same length *)
let (alp,sigma) =
List.fold_left2 (match_cases_pattern_binders metas)
(alp,sigma) patl1 patl2 in
match_in u alp metas sigma rhs1 rhs2
let match_notation_constr u c (metas,pat) =
let test (_, (_, x)) = match x with NtnTypeBinderList -> false | _ -> true in
let vars = List.partition test metas in
let vars = (List.map fst (fst vars), List.map fst (snd vars)) in
let terms,termlists,binders = match_ false u [] vars ([],[],[]) c pat in
(* Reorder canonically the substitution *)
let find x =
try Id.List.assoc x terms
with Not_found ->
(* Happens for binders bound to Anonymous *)
(* Find a better way to propagate Anonymous... *)
GVar (Loc.ghost,x) in
List.fold_right (fun (x,(scl,typ)) (terms',termlists',binders') ->
match typ with
| NtnTypeConstr ->
((find x, scl)::terms',termlists',binders')
| NtnTypeConstrList ->
(terms',(Id.List.assoc x termlists,scl)::termlists',binders')
| NtnTypeBinderList ->
(terms',termlists',(Id.List.assoc x binders,scl)::binders'))
metas ([],[],[])
(* Matching cases pattern *)
let add_patterns_for_params ind l =
let mib,_ = Global.lookup_inductive ind in
let nparams = mib.Declarations.mind_nparams in
Util.List.addn nparams (PatVar (Loc.ghost,Anonymous)) l
let bind_env_cases_pattern (sigma,sigmalist,x as fullsigma) var v =
try
let vvar = Id.List.assoc var sigma in
if cases_pattern_eq v vvar then fullsigma else raise No_match
with Not_found ->
(* TODO: handle the case of multiple occs in different scopes *)
(var,v)::sigma,sigmalist,x
let rec match_cases_pattern metas sigma a1 a2 =
match (a1,a2) with
| r1, NVar id2 when Id.List.mem id2 metas -> (bind_env_cases_pattern sigma id2 r1),(0,[])
| PatVar (_,Anonymous), NHole _ -> sigma,(0,[])
| PatCstr (loc,(ind,_ as r1),largs,_), NRef (ConstructRef r2) when eq_constructor r1 r2 ->
sigma,(0,add_patterns_for_params (fst r1) largs)
| PatCstr (loc,(ind,_ as r1),args1,_), NApp (NRef (ConstructRef r2),l2)
when eq_constructor r1 r2 ->
let l1 = add_patterns_for_params (fst r1) args1 in
let le2 = List.length l2 in
if Int.equal le2 0 (* Special case of a notation for a @Cstr *) || le2 > List.length l1
then
raise No_match
else
let l1',more_args = Util.List.chop le2 l1 in
(List.fold_left2 (match_cases_pattern_no_more_args metas) sigma l1' l2),(le2,more_args)
| r1, NList (x,_,iter,termin,lassoc) ->
(match_alist (fun (metas,_) -> match_cases_pattern_no_more_args metas)
(metas,[]) (pi1 sigma,pi2 sigma,()) r1 x iter termin lassoc),(0,[])
| _ -> raise No_match
and match_cases_pattern_no_more_args metas sigma a1 a2 =
match match_cases_pattern metas sigma a1 a2 with
|out,(_,[]) -> out
|_ -> raise No_match
let match_ind_pattern metas sigma ind pats a2 =
match a2 with
| NRef (IndRef r2) when eq_ind ind r2 ->
sigma,(0,pats)
| NApp (NRef (IndRef r2),l2)
when eq_ind ind r2 ->
let le2 = List.length l2 in
if Int.equal le2 0 (* Special case of a notation for a @Cstr *) || le2 > List.length pats
then
raise No_match
else
let l1',more_args = Util.List.chop le2 pats in
(List.fold_left2 (match_cases_pattern_no_more_args metas) sigma l1' l2),(le2,more_args)
|_ -> raise No_match
let reorder_canonically_substitution terms termlists metas =
List.fold_right (fun (x,(scl,typ)) (terms',termlists') ->
match typ with
| NtnTypeConstr -> ((Id.List.assoc x terms, scl)::terms',termlists')
| NtnTypeConstrList -> (terms',(Id.List.assoc x termlists,scl)::termlists')
| NtnTypeBinderList -> assert false)
metas ([],[])
let match_notation_constr_cases_pattern c (metas,pat) =
let vars = List.map fst metas in
let (terms,termlists,()),more_args = match_cases_pattern vars ([],[],()) c pat in
reorder_canonically_substitution terms termlists metas, more_args
let match_notation_constr_ind_pattern ind args (metas,pat) =
let vars = List.map fst metas in
let (terms,termlists,()),more_args = match_ind_pattern vars ([],[],()) ind args pat in
reorder_canonically_substitution terms termlists metas, more_args
|