1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Errors
open Util
open Pp
open Bigint
open Names
open Term
open Nametab
open Libnames
open Globnames
open Constrexpr
open Notation_term
open Glob_term
open Glob_ops
open Ppextend
(*i*)
(*s A scope is a set of notations; it includes
- a set of ML interpreters/parsers for positive (e.g. 0, 1, 15, ...) and
negative numbers (e.g. -0, -2, -13, ...). These interpreters may
fail if a number has no interpretation in the scope (e.g. there is
no interpretation for negative numbers in [nat]); interpreters both for
terms and patterns can be set; these interpreters are in permanent table
[numeral_interpreter_tab]
- a set of ML printers for expressions denoting numbers parsable in
this scope
- a set of interpretations for infix (more generally distfix) notations
- an optional pair of delimiters which, when occurring in a syntactic
expression, set this scope to be the current scope
*)
(**********************************************************************)
(* Scope of symbols *)
type level = precedence * tolerability list
type delimiters = string
type notation_location = (DirPath.t * DirPath.t) * string
type scope = {
notations: (interpretation * notation_location) String.Map.t;
delimiters: delimiters option
}
(* Uninterpreted notation map: notation -> level * DirPath.t *)
let notation_level_map = ref String.Map.empty
(* Scopes table: scope_name -> symbol_interpretation *)
let scope_map = ref String.Map.empty
(* Delimiter table : delimiter -> scope_name *)
let delimiters_map = ref String.Map.empty
let empty_scope = {
notations = String.Map.empty;
delimiters = None
}
let default_scope = "" (* empty name, not available from outside *)
let type_scope = "type_scope" (* special scope used for interpreting types *)
let init_scope_map () =
scope_map := String.Map.add default_scope empty_scope !scope_map;
scope_map := String.Map.add type_scope empty_scope !scope_map
(**********************************************************************)
(* Operations on scopes *)
let parenRelation_eq t1 t2 = match t1, t2 with
| L, L | E, E | Any, Any -> true
| Prec l1, Prec l2 -> Int.equal l1 l2
| _ -> false
let level_eq (l1, t1) (l2, t2) =
let tolerability_eq (i1, r1) (i2, r2) =
Int.equal i1 i2 && parenRelation_eq r1 r2
in
Int.equal l1 l2 && List.equal tolerability_eq t1 t2
let declare_scope scope =
try let _ = String.Map.find scope !scope_map in ()
with Not_found ->
(* Flags.if_warn message ("Creating scope "^scope);*)
scope_map := String.Map.add scope empty_scope !scope_map
let error_unknown_scope sc = error ("Scope "^sc^" is not declared.")
let find_scope scope =
try String.Map.find scope !scope_map
with Not_found -> error_unknown_scope scope
let check_scope sc = let _ = find_scope sc in ()
(* [sc] might be here a [scope_name] or a [delimiter]
(now allowed after Open Scope) *)
let normalize_scope sc =
try let _ = String.Map.find sc !scope_map in sc
with Not_found ->
try
let sc = String.Map.find sc !delimiters_map in
let _ = String.Map.find sc !scope_map in sc
with Not_found -> error_unknown_scope sc
(**********************************************************************)
(* The global stack of scopes *)
type scope_elem = Scope of scope_name | SingleNotation of string
type scopes = scope_elem list
let scope_stack = ref []
let current_scopes () = !scope_stack
let scope_is_open_in_scopes sc l =
List.exists (function Scope sc' -> String.equal sc sc' | _ -> false) l
let scope_is_open sc = scope_is_open_in_scopes sc (!scope_stack)
(* TODO: push nat_scope, z_scope, ... in scopes summary *)
(* Exportation of scopes *)
let open_scope i (_,(local,op,sc)) =
if Int.equal i 1 then
let sc = match sc with
| Scope sc -> Scope (normalize_scope sc)
| _ -> sc
in
scope_stack :=
if op then sc :: !scope_stack
else List.except Pervasives.(=) sc !scope_stack (* FIXME *)
let cache_scope o =
open_scope 1 o
let subst_scope (subst,sc) = sc
open Libobject
let discharge_scope (_,(local,_,_ as o)) =
if local then None else Some o
let classify_scope (local,_,_ as o) =
if local then Dispose else Substitute o
let inScope : bool * bool * scope_elem -> obj =
declare_object {(default_object "SCOPE") with
cache_function = cache_scope;
open_function = open_scope;
subst_function = subst_scope;
discharge_function = discharge_scope;
classify_function = classify_scope }
let open_close_scope (local,opening,sc) =
Lib.add_anonymous_leaf (inScope (local,opening,Scope sc))
let empty_scope_stack = []
let push_scope sc scopes = Scope sc :: scopes
let push_scopes = List.fold_right push_scope
type local_scopes = tmp_scope_name option * scope_name list
let make_current_scopes (tmp_scope,scopes) =
Option.fold_right push_scope tmp_scope (push_scopes scopes !scope_stack)
(**********************************************************************)
(* Delimiters *)
let declare_delimiters scope key =
let sc = find_scope scope in
let newsc = { sc with delimiters = Some key } in
begin match sc.delimiters with
| None -> scope_map := String.Map.add scope newsc !scope_map
| Some oldkey when String.equal oldkey key -> ()
| Some oldkey ->
msg_warning
(strbrk ("Overwriting previous delimiting key "^oldkey^" in scope "^scope));
scope_map := String.Map.add scope newsc !scope_map
end;
try
let oldscope = String.Map.find key !delimiters_map in
if String.equal oldscope scope then ()
else begin
msg_warning (strbrk ("Hiding binding of key "^key^" to "^oldscope));
delimiters_map := String.Map.add key scope !delimiters_map
end
with Not_found -> delimiters_map := String.Map.add key scope !delimiters_map
let find_delimiters_scope loc key =
try String.Map.find key !delimiters_map
with Not_found ->
user_err_loc
(loc, "find_delimiters", str ("Unknown scope delimiting key "^key^"."))
(* Uninterpretation tables *)
type interp_rule =
| NotationRule of scope_name option * notation
| SynDefRule of kernel_name
let compare_interp_rule x y =
match x, y with
| NotationRule (sno1, n1), NotationRule (sno2, n2) ->
(match sno1, sno2 with
| None, None -> String.compare n1 n2
| None, Some _ -> -1
| Some sn1, Some sn2 -> String.compare sn1 sn2
| Some _, None -> 1)
| SynDefRule kn1, SynDefRule kn2 -> KerName.compare kn1 kn2
| NotationRule _, SynDefRule _ -> -1
| SynDefRule _, NotationRule _ -> 1
(* We define keys for glob_constr and aconstr to split the syntax entries
according to the key of the pattern (adapted from Chet Murthy by HH) *)
type key =
| RefKey of global_reference
| Oth
let key_compare k1 k2 = match k1, k2 with
| RefKey gr1, RefKey gr2 -> RefOrdered.compare gr1 gr2
| RefKey _, Oth -> -1
| Oth, RefKey _ -> 1
| Oth, Oth -> 0
module KeyOrd = struct type t = key let compare = key_compare end
module KeyMap = Map.Make(KeyOrd)
type notation_rule = interp_rule * interpretation * int option
let keymap_add key interp map =
let old = try KeyMap.find key map with Not_found -> [] in
KeyMap.add key (interp :: old) map
let keymap_find key map =
try KeyMap.find key map
with Not_found -> []
(* Scopes table : interpretation -> scope_name *)
let notations_key_table = ref (KeyMap.empty : notation_rule list KeyMap.t)
let prim_token_key_table = Hashtbl.create 7
let glob_prim_constr_key = function
| GApp (_,GRef (_,ref),_) | GRef (_,ref) -> RefKey (canonical_gr ref)
| _ -> Oth
let glob_constr_keys = function
| GApp (_,GRef (_,ref),_) -> [RefKey (canonical_gr ref); Oth]
| GRef (_,ref) -> [RefKey (canonical_gr ref)]
| _ -> [Oth]
let cases_pattern_key = function
| PatCstr (_,ref,_,_) -> RefKey (canonical_gr (ConstructRef ref))
| _ -> Oth
let notation_constr_key = function (* Rem: NApp(NRef ref,[]) stands for @ref *)
| NApp (NRef ref,args) -> RefKey(canonical_gr ref), Some (List.length args)
| NList (_,_,NApp (NRef ref,args),_,_)
| NBinderList (_,_,NApp (NRef ref,args),_) ->
RefKey (canonical_gr ref), Some (List.length args)
| NRef ref -> RefKey(canonical_gr ref), None
| NApp (_,args) -> Oth, Some (List.length args)
| _ -> Oth, None
(**********************************************************************)
(* Interpreting numbers (not in summary because functional objects) *)
type required_module = full_path * string list
type 'a prim_token_interpreter =
Loc.t -> 'a -> glob_constr
type cases_pattern_status = bool (* true = use prim token in patterns *)
type 'a prim_token_uninterpreter =
glob_constr list * (glob_constr -> 'a option) * cases_pattern_status
type internal_prim_token_interpreter =
Loc.t -> prim_token -> required_module * (unit -> glob_constr)
let prim_token_interpreter_tab =
(Hashtbl.create 7 : (scope_name, internal_prim_token_interpreter) Hashtbl.t)
let add_prim_token_interpreter sc interp =
try
let cont = Hashtbl.find prim_token_interpreter_tab sc in
Hashtbl.replace prim_token_interpreter_tab sc (interp cont)
with Not_found ->
let cont = (fun _loc _p -> raise Not_found) in
Hashtbl.add prim_token_interpreter_tab sc (interp cont)
let declare_prim_token_interpreter sc interp (patl,uninterp,b) =
declare_scope sc;
add_prim_token_interpreter sc interp;
List.iter (fun pat ->
Hashtbl.add prim_token_key_table
(glob_prim_constr_key pat) (sc,uninterp,b))
patl
let mkNumeral n = Numeral n
let mkString s = String s
let delay dir int loc x = (dir, (fun () -> int loc x))
let declare_numeral_interpreter sc dir interp (patl,uninterp,inpat) =
declare_prim_token_interpreter sc
(fun cont loc -> function Numeral n-> delay dir interp loc n | p -> cont loc p)
(patl, (fun r -> Option.map mkNumeral (uninterp r)), inpat)
let declare_string_interpreter sc dir interp (patl,uninterp,inpat) =
declare_prim_token_interpreter sc
(fun cont loc -> function String s -> delay dir interp loc s | p -> cont loc p)
(patl, (fun r -> Option.map mkString (uninterp r)), inpat)
let check_required_module loc sc (sp,d) =
try let _ = Nametab.global_of_path sp in ()
with Not_found ->
user_err_loc (loc,"prim_token_interpreter",
str ("Cannot interpret in "^sc^" without requiring first module "
^(List.last d)^"."))
(* Look if some notation or numeral printer in [scope] can be used in
the scope stack [scopes], and if yes, using delimiters or not *)
let find_with_delimiters = function
| None -> None
| Some scope ->
match (String.Map.find scope !scope_map).delimiters with
| Some key -> Some (Some scope, Some key)
| None -> None
let rec find_without_delimiters find (ntn_scope,ntn) = function
| Scope scope :: scopes ->
(* Is the expected ntn/numpr attached to the most recently open scope? *)
begin match ntn_scope with
| Some scope' when String.equal scope scope' ->
Some (None,None)
| _ ->
(* If the most recently open scope has a notation/numeral printer
but not the expected one then we need delimiters *)
if find scope then
find_with_delimiters ntn_scope
else
find_without_delimiters find (ntn_scope,ntn) scopes
end
| SingleNotation ntn' :: scopes ->
begin match ntn_scope, ntn with
| None, Some ntn when String.equal ntn ntn' ->
Some (None, None)
| _ ->
find_without_delimiters find (ntn_scope,ntn) scopes
end
| [] ->
(* Can we switch to [scope]? Yes if it has defined delimiters *)
find_with_delimiters ntn_scope
(* Uninterpreted notation levels *)
let declare_notation_level ntn level =
if String.Map.mem ntn !notation_level_map then
anomaly (str "Notation " ++ str ntn ++ str " is already assigned a level");
notation_level_map := String.Map.add ntn level !notation_level_map
let level_of_notation ntn =
String.Map.find ntn !notation_level_map
(* The mapping between notations and their interpretation *)
let declare_notation_interpretation ntn scopt pat df =
let scope = match scopt with Some s -> s | None -> default_scope in
let sc = find_scope scope in
let () =
if String.Map.mem ntn sc.notations then
let which_scope = match scopt with
| None -> ""
| Some _ -> " in scope " ^ scope in
let message = "Notation " ^ ntn ^ " was already used" ^ which_scope in
msg_warning (strbrk message)
in
let sc = { sc with notations = String.Map.add ntn (pat,df) sc.notations } in
let () = scope_map := String.Map.add scope sc !scope_map in
begin match scopt with
| None -> scope_stack := SingleNotation ntn :: !scope_stack
| Some _ -> ()
end
let declare_uninterpretation rule (metas,c as pat) =
let (key,n) = notation_constr_key c in
notations_key_table := keymap_add key (rule,pat,n) !notations_key_table
let rec find_interpretation ntn find = function
| [] -> raise Not_found
| Scope scope :: scopes ->
(try let (pat,df) = find scope in pat,(df,Some scope)
with Not_found -> find_interpretation ntn find scopes)
| SingleNotation ntn'::scopes when String.equal ntn' ntn ->
(try let (pat,df) = find default_scope in pat,(df,None)
with Not_found ->
(* e.g. because single notation only for constr, not cases_pattern *)
find_interpretation ntn find scopes)
| SingleNotation _::scopes ->
find_interpretation ntn find scopes
let find_notation ntn sc =
String.Map.find ntn (find_scope sc).notations
let notation_of_prim_token = function
| Numeral n when is_pos_or_zero n -> to_string n
| Numeral n -> "- "^(to_string (neg n))
| String _ -> raise Not_found
let find_prim_token g loc p sc =
(* Try for a user-defined numerical notation *)
try
let (_,c),df = find_notation (notation_of_prim_token p) sc in
g (Notation_ops.glob_constr_of_notation_constr loc c),df
with Not_found ->
(* Try for a primitive numerical notation *)
let (spdir,interp) = Hashtbl.find prim_token_interpreter_tab sc loc p in
check_required_module loc sc spdir;
g (interp ()), ((dirpath (fst spdir),DirPath.empty),"")
let interp_prim_token_gen g loc p local_scopes =
let scopes = make_current_scopes local_scopes in
let p_as_ntn = try notation_of_prim_token p with Not_found -> "" in
try find_interpretation p_as_ntn (find_prim_token g loc p) scopes
with Not_found ->
user_err_loc (loc,"interp_prim_token",
(match p with
| Numeral n -> str "No interpretation for numeral " ++ str (to_string n)
| String s -> str "No interpretation for string " ++ qs s) ++ str ".")
let interp_prim_token =
interp_prim_token_gen (fun x -> x)
let interp_prim_token_cases_pattern_expr loc looked_for p =
interp_prim_token_gen (Constrexpr_ops.raw_cases_pattern_expr_of_glob_constr looked_for) loc p
let interp_notation loc ntn local_scopes =
let scopes = make_current_scopes local_scopes in
try find_interpretation ntn (find_notation ntn) scopes
with Not_found ->
user_err_loc
(loc,"",str ("Unknown interpretation for notation \""^ntn^"\"."))
let uninterp_notations c =
List.map_append (fun key -> keymap_find key !notations_key_table)
(glob_constr_keys c)
let uninterp_cases_pattern_notations c =
keymap_find (cases_pattern_key c) !notations_key_table
let uninterp_ind_pattern_notations ind =
keymap_find (RefKey (canonical_gr (IndRef ind))) !notations_key_table
let availability_of_notation (ntn_scope,ntn) scopes =
let f scope =
String.Map.mem ntn (String.Map.find scope !scope_map).notations in
find_without_delimiters f (ntn_scope,Some ntn) (make_current_scopes scopes)
let uninterp_prim_token c =
try
let (sc,numpr,_) =
Hashtbl.find prim_token_key_table (glob_prim_constr_key c) in
match numpr c with
| None -> raise Notation_ops.No_match
| Some n -> (sc,n)
with Not_found -> raise Notation_ops.No_match
let uninterp_prim_token_ind_pattern ind args =
let ref = IndRef ind in
try
let (sc,numpr,b) = Hashtbl.find prim_token_key_table
(RefKey (canonical_gr ref)) in
if not b then raise Notation_ops.No_match;
let args' = List.map
(fun x -> snd (glob_constr_of_closed_cases_pattern x)) args in
let ref = GRef (Loc.ghost,ref) in
match numpr (GApp (Loc.ghost,ref,args')) with
| None -> raise Notation_ops.No_match
| Some n -> (sc,n)
with Not_found -> raise Notation_ops.No_match
let uninterp_prim_token_cases_pattern c =
try
let k = cases_pattern_key c in
let (sc,numpr,b) = Hashtbl.find prim_token_key_table k in
if not b then raise Notation_ops.No_match;
let na,c = glob_constr_of_closed_cases_pattern c in
match numpr c with
| None -> raise Notation_ops.No_match
| Some n -> (na,sc,n)
with Not_found -> raise Notation_ops.No_match
let availability_of_prim_token n printer_scope local_scopes =
let f scope =
try ignore (Hashtbl.find prim_token_interpreter_tab scope Loc.ghost n); true
with Not_found -> false in
let scopes = make_current_scopes local_scopes in
Option.map snd (find_without_delimiters f (Some printer_scope,None) scopes)
(* Miscellaneous *)
let exists_notation_in_scope scopt ntn r =
let scope = match scopt with Some s -> s | None -> default_scope in
try
let sc = String.Map.find scope !scope_map in
let (r',_) = String.Map.find ntn sc.notations in
Pervasives.(=) r' r (** FIXME *)
with Not_found -> false
let isNVar_or_NHole = function NVar _ | NHole _ -> true | _ -> false
(**********************************************************************)
(* Mapping classes to scopes *)
type scope_class = ScopeRef of global_reference | ScopeSort
let scope_class_compare sc1 sc2 = match sc1, sc2 with
| ScopeRef gr1, ScopeRef gr2 -> RefOrdered.compare gr1 gr2
| ScopeRef _, ScopeSort -> -1
| ScopeSort, ScopeRef _ -> 1
| ScopeSort, ScopeSort -> 0
let scope_class_of_reference x = ScopeRef x
let compute_scope_class t =
let t', _ = decompose_appvect (Reductionops.whd_betaiotazeta Evd.empty t) in
match kind_of_term t' with
| Var _ | Const _ | Ind _ -> ScopeRef (global_of_constr t')
| Sort _ -> ScopeSort
| _ -> raise Not_found
module ScopeClassOrd =
struct
type t = scope_class
let compare = scope_class_compare
end
module ScopeClassMap = Map.Make(ScopeClassOrd)
let initial_scope_class_map : scope_name ScopeClassMap.t =
ScopeClassMap.add ScopeSort "type_scope" ScopeClassMap.empty
let scope_class_map = ref initial_scope_class_map
let declare_scope_class sc cl =
scope_class_map := ScopeClassMap.add cl sc !scope_class_map
let find_scope_class cl =
ScopeClassMap.find cl !scope_class_map
let find_scope_class_opt = function
| None -> None
| Some cl -> try Some (find_scope_class cl) with Not_found -> None
(**********************************************************************)
(* Special scopes associated to arguments of a global reference *)
let rec compute_arguments_classes t =
match kind_of_term (Reductionops.whd_betaiotazeta Evd.empty t) with
| Prod (_,t,u) ->
let cl = try Some (compute_scope_class t) with Not_found -> None in
cl :: compute_arguments_classes u
| _ -> []
let compute_arguments_scope_full t =
let cls = compute_arguments_classes t in
let scs = List.map find_scope_class_opt cls in
scs, cls
let compute_arguments_scope t = fst (compute_arguments_scope_full t)
let compute_type_scope t =
find_scope_class_opt (try Some (compute_scope_class t) with Not_found -> None)
let compute_scope_of_global ref =
find_scope_class_opt (Some (ScopeRef ref))
(** Updating a scope list, thanks to a list of argument classes
and the current Bind Scope base. When some current scope
have been manually given, the corresponding argument class
is emptied below, so this manual scope will be preserved. *)
let update_scope cl sco =
match find_scope_class_opt cl with
| None -> sco
| sco' -> sco'
let rec update_scopes cls scl = match cls, scl with
| [], _ -> scl
| _, [] -> List.map find_scope_class_opt cls
| cl :: cls, sco :: scl -> update_scope cl sco :: update_scopes cls scl
let arguments_scope = ref Refmap.empty
type arguments_scope_discharge_request =
| ArgsScopeAuto
| ArgsScopeManual
| ArgsScopeNoDischarge
let load_arguments_scope _ (_,(_,r,scl,cls)) =
List.iter (Option.iter check_scope) scl;
let initial_stamp = ScopeClassMap.empty in
arguments_scope := Refmap.add r (scl,cls,initial_stamp) !arguments_scope
let cache_arguments_scope o =
load_arguments_scope 1 o
let subst_scope_class subst cs = match cs with
| ScopeSort -> Some cs
| ScopeRef t ->
let (t',c) = subst_global subst t in
if t == t' then Some cs
else try Some (compute_scope_class c) with Not_found -> None
let subst_arguments_scope (subst,(req,r,scl,cls)) =
let r' = fst (subst_global subst r) in
let subst_cl ocl = match ocl with
| None -> ocl
| Some cl ->
match subst_scope_class subst cl with
| Some cl' as ocl' when cl' != cl -> ocl'
| _ -> ocl in
let cls' = List.smartmap subst_cl cls in
(ArgsScopeNoDischarge,r',scl,cls')
let discharge_arguments_scope (_,(req,r,l,_)) =
if req == ArgsScopeNoDischarge || (isVarRef r && Lib.is_in_section r) then None
else Some (req,Lib.discharge_global r,l,[])
let classify_arguments_scope (req,_,_,_ as obj) =
if req == ArgsScopeNoDischarge then Dispose else Substitute obj
let rebuild_arguments_scope (req,r,l,_) =
match req with
| ArgsScopeNoDischarge -> assert false
| ArgsScopeAuto ->
let scs,cls = compute_arguments_scope_full (Global.type_of_global r) in
(req,r,scs,cls)
| ArgsScopeManual ->
(* Add to the manually given scopes the one found automatically
for the extra parameters of the section. Discard the classes
of the manually given scopes to avoid further re-computations. *)
let l',cls = compute_arguments_scope_full (Global.type_of_global r) in
let nparams = List.length l' - List.length l in
let l1 = List.firstn nparams l' in
let cls1 = List.firstn nparams cls in
(req,r,l1@l,cls1)
type arguments_scope_obj =
arguments_scope_discharge_request * global_reference *
scope_name option list * scope_class option list
let inArgumentsScope : arguments_scope_obj -> obj =
declare_object {(default_object "ARGUMENTS-SCOPE") with
cache_function = cache_arguments_scope;
load_function = load_arguments_scope;
subst_function = subst_arguments_scope;
classify_function = classify_arguments_scope;
discharge_function = discharge_arguments_scope;
rebuild_function = rebuild_arguments_scope }
let is_local local ref = local || isVarRef ref && Lib.is_in_section ref
let declare_arguments_scope_gen req r (scl,cls) =
Lib.add_anonymous_leaf (inArgumentsScope (req,r,scl,cls))
let declare_arguments_scope local r scl =
let req = if is_local local r then ArgsScopeNoDischarge else ArgsScopeManual
in
(* We empty the list of argument classes to disable futher scope
re-computations and keep these manually given scopes. *)
declare_arguments_scope_gen req r (scl,[])
let find_arguments_scope r =
try
let (scl,cls,stamp) = Refmap.find r !arguments_scope in
let cur_stamp = !scope_class_map in
if stamp == cur_stamp then scl
else
(* Recent changes in the Bind Scope base, we re-compute the scopes *)
let scl' = update_scopes cls scl in
arguments_scope := Refmap.add r (scl',cls,cur_stamp) !arguments_scope;
scl'
with Not_found -> []
let declare_ref_arguments_scope ref =
let t = Global.type_of_global ref in
declare_arguments_scope_gen ArgsScopeAuto ref (compute_arguments_scope_full t)
(********************************)
(* Encoding notations as string *)
type symbol =
| Terminal of string
| NonTerminal of Id.t
| SProdList of Id.t * symbol list
| Break of int
let rec symbol_eq s1 s2 = match s1, s2 with
| Terminal s1, Terminal s2 -> String.equal s1 s2
| NonTerminal id1, NonTerminal id2 -> Id.equal id1 id2
| SProdList (id1, l1), SProdList (id2, l2) ->
Id.equal id1 id2 && List.equal symbol_eq l1 l2
| Break i1, Break i2 -> Int.equal i1 i2
| _ -> false
let rec string_of_symbol = function
| NonTerminal _ -> ["_"]
| Terminal "_" -> ["'_'"]
| Terminal s -> [s]
| SProdList (_,l) ->
let l = List.flatten (List.map string_of_symbol l) in "_"::l@".."::l@["_"]
| Break _ -> []
let make_notation_key symbols =
String.concat " " (List.flatten (List.map string_of_symbol symbols))
let decompose_notation_key s =
let len = String.length s in
let rec decomp_ntn dirs n =
if n>=len then List.rev dirs else
let pos =
try
String.index_from s n ' '
with Not_found -> len
in
let tok =
match String.sub s n (pos-n) with
| "_" -> NonTerminal (Id.of_string "_")
| s -> Terminal (String.drop_simple_quotes s) in
decomp_ntn (tok::dirs) (pos+1)
in
decomp_ntn [] 0
(************)
(* Printing *)
let pr_delimiters_info = function
| None -> str "No delimiting key"
| Some key -> str "Delimiting key is " ++ str key
let classes_of_scope sc =
ScopeClassMap.fold (fun cl sc' l -> if String.equal sc sc' then cl::l else l) !scope_class_map []
let pr_scope_class = function
| ScopeSort -> str "Sort"
| ScopeRef t -> pr_global_env Id.Set.empty t
let pr_scope_classes sc =
let l = classes_of_scope sc in
match l with
| [] -> mt ()
| _ :: l ->
let opt_s = match l with [] -> "" | _ -> "es" in
hov 0 (str ("Bound to class" ^ opt_s) ++
spc() ++ prlist_with_sep spc pr_scope_class l) ++ fnl()
let pr_notation_info prglob ntn c =
str "\"" ++ str ntn ++ str "\" := " ++
prglob (Notation_ops.glob_constr_of_notation_constr Loc.ghost c)
let pr_named_scope prglob scope sc =
(if String.equal scope default_scope then
match String.Map.cardinal sc.notations with
| 0 -> str "No lonely notation"
| n -> str "Lonely notation" ++ (if Int.equal n 1 then mt() else str"s")
else
str "Scope " ++ str scope ++ fnl () ++ pr_delimiters_info sc.delimiters)
++ fnl ()
++ pr_scope_classes scope
++ String.Map.fold
(fun ntn ((_,r),(_,df)) strm ->
pr_notation_info prglob df r ++ fnl () ++ strm)
sc.notations (mt ())
let pr_scope prglob scope = pr_named_scope prglob scope (find_scope scope)
let pr_scopes prglob =
String.Map.fold
(fun scope sc strm -> pr_named_scope prglob scope sc ++ fnl () ++ strm)
!scope_map (mt ())
let rec find_default ntn = function
| [] -> None
| Scope scope :: scopes ->
if String.Map.mem ntn (find_scope scope).notations then
Some scope
else find_default ntn scopes
| SingleNotation ntn' :: scopes ->
if String.equal ntn ntn' then Some default_scope
else find_default ntn scopes
let factorize_entries = function
| [] -> []
| (ntn,c)::l ->
let (ntn,l_of_ntn,rest) =
List.fold_left
(fun (a',l,rest) (a,c) ->
if String.equal a a' then (a',c::l,rest) else (a,[c],(a',l)::rest))
(ntn,[c],[]) l in
(ntn,l_of_ntn)::rest
let browse_notation strict ntn map =
let find ntn' =
if String.contains ntn ' ' then String.equal ntn ntn'
else
let toks = decompose_notation_key ntn' in
let get_terminals = function Terminal ntn -> Some ntn | _ -> None in
let trms = List.map_filter get_terminals toks in
if strict then String.List.equal [ntn] trms
else String.List.mem ntn trms
in
let l =
String.Map.fold
(fun scope_name sc ->
String.Map.fold (fun ntn ((_,r),df) l ->
if find ntn then (ntn,(scope_name,r,df))::l else l) sc.notations)
map [] in
List.sort (fun x y -> String.compare (fst x) (fst y)) l
let global_reference_of_notation test (ntn,(sc,c,_)) =
match c with
| NRef ref when test ref -> Some (ntn,sc,ref)
| NApp (NRef ref, l) when List.for_all isNVar_or_NHole l && test ref ->
Some (ntn,sc,ref)
| _ -> None
let error_ambiguous_notation loc _ntn =
user_err_loc (loc,"",str "Ambiguous notation.")
let error_notation_not_reference loc ntn =
user_err_loc (loc,"",
str "Unable to interpret " ++ quote (str ntn) ++
str " as a reference.")
let interp_notation_as_global_reference loc test ntn sc =
let scopes = match sc with
| Some sc ->
let scope = find_scope (find_delimiters_scope Loc.ghost sc) in
String.Map.add sc scope String.Map.empty
| None -> !scope_map in
let ntns = browse_notation true ntn scopes in
let refs = List.map (global_reference_of_notation test) ntns in
match Option.List.flatten refs with
| [_,_,ref] -> ref
| [] -> error_notation_not_reference loc ntn
| refs ->
let f (ntn,sc,ref) =
let def = find_default ntn !scope_stack in
match def with
| None -> false
| Some sc' -> String.equal sc sc'
in
match List.filter f refs with
| [_,_,ref] -> ref
| [] -> error_notation_not_reference loc ntn
| _ -> error_ambiguous_notation loc ntn
let locate_notation prglob ntn scope =
let ntns = factorize_entries (browse_notation false ntn !scope_map) in
let scopes = Option.fold_right push_scope scope !scope_stack in
match ntns with
| [] -> str "Unknown notation"
| _ ->
t (str "Notation " ++
tab () ++ str "Scope " ++ tab () ++ fnl () ++
prlist (fun (ntn,l) ->
let scope = find_default ntn scopes in
prlist
(fun (sc,r,(_,df)) ->
hov 0 (
pr_notation_info prglob df r ++ tbrk (1,2) ++
(if String.equal sc default_scope then mt () else (str ": " ++ str sc)) ++
tbrk (1,2) ++
(if Option.equal String.equal (Some sc) scope then str "(default interpretation)" else mt ())
++ fnl ()))
l) ntns)
let collect_notation_in_scope scope sc known =
assert (not (String.equal scope default_scope));
String.Map.fold
(fun ntn ((_,r),(_,df)) (l,known as acc) ->
if String.List.mem ntn known then acc else ((df,r)::l,ntn::known))
sc.notations ([],known)
let collect_notations stack =
fst (List.fold_left
(fun (all,knownntn as acc) -> function
| Scope scope ->
if String.List.mem_assoc scope all then acc
else
let (l,knownntn) =
collect_notation_in_scope scope (find_scope scope) knownntn in
((scope,l)::all,knownntn)
| SingleNotation ntn ->
if String.List.mem ntn knownntn then (all,knownntn)
else
let ((_,r),(_,df)) =
String.Map.find ntn (find_scope default_scope).notations in
let all' = match all with
| (s,lonelyntn)::rest when String.equal s default_scope ->
(s,(df,r)::lonelyntn)::rest
| _ ->
(default_scope,[df,r])::all in
(all',ntn::knownntn))
([],[]) stack)
let pr_visible_in_scope prglob (scope,ntns) =
let strm =
List.fold_right
(fun (df,r) strm -> pr_notation_info prglob df r ++ fnl () ++ strm)
ntns (mt ()) in
(if String.equal scope default_scope then
str "Lonely notation" ++ (match ntns with [_] -> mt () | _ -> str "s")
else
str "Visible in scope " ++ str scope)
++ fnl () ++ strm
let pr_scope_stack prglob stack =
List.fold_left
(fun strm scntns -> strm ++ pr_visible_in_scope prglob scntns ++ fnl ())
(mt ()) (collect_notations stack)
let pr_visibility prglob = function
| Some scope -> pr_scope_stack prglob (push_scope scope !scope_stack)
| None -> pr_scope_stack prglob !scope_stack
(**********************************************************************)
(* Mapping notations to concrete syntax *)
type unparsing_rule = unparsing list * precedence
(* Concrete syntax for symbolic-extension table *)
let printing_rules =
ref (String.Map.empty : unparsing_rule String.Map.t)
let declare_notation_printing_rule ntn unpl =
printing_rules := String.Map.add ntn unpl !printing_rules
let find_notation_printing_rule ntn =
try String.Map.find ntn !printing_rules
with Not_found -> anomaly (str "No printing rule found for " ++ str ntn)
(**********************************************************************)
(* Synchronisation with reset *)
let freeze _ =
(!scope_map, !notation_level_map, !scope_stack, !arguments_scope,
!delimiters_map, !notations_key_table, !printing_rules,
!scope_class_map)
let unfreeze (scm,nlm,scs,asc,dlm,fkm,pprules,clsc) =
scope_map := scm;
notation_level_map := nlm;
scope_stack := scs;
delimiters_map := dlm;
arguments_scope := asc;
notations_key_table := fkm;
printing_rules := pprules;
scope_class_map := clsc
let init () =
init_scope_map ();
notation_level_map := String.Map.empty;
delimiters_map := String.Map.empty;
notations_key_table := KeyMap.empty;
printing_rules := String.Map.empty;
scope_class_map := initial_scope_class_map
let _ =
Summary.declare_summary "symbols"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
let with_notation_protection f x =
let fs = freeze false in
try let a = f x in unfreeze fs; a
with reraise ->
let reraise = Errors.push reraise in
let () = unfreeze fs in
raise reraise
|