1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Pp
open Util
open Names
open Constr
open Globnames
open Declarations
open Decl_kinds
open Lib
open Libobject
open EConstr
open Termops
open Reductionops
open Constrexpr
open Namegen
module NamedDecl = Context.Named.Declaration
(*s Flags governing the computation of implicit arguments *)
type implicits_flags = {
auto : bool; (* automatic or manual only *)
strict : bool; (* true = strict *)
strongly_strict : bool; (* true = strongly strict *)
reversible_pattern : bool;
contextual : bool; (* true = contextual *)
maximal : bool
}
let implicit_args = ref {
auto = false;
strict = true;
strongly_strict = false;
reversible_pattern = false;
contextual = false;
maximal = false;
}
let make_implicit_args flag =
implicit_args := { !implicit_args with auto = flag }
let make_strict_implicit_args flag =
implicit_args := { !implicit_args with strict = flag }
let make_strongly_strict_implicit_args flag =
implicit_args := { !implicit_args with strongly_strict = flag }
let make_reversible_pattern_implicit_args flag =
implicit_args := { !implicit_args with reversible_pattern = flag }
let make_contextual_implicit_args flag =
implicit_args := { !implicit_args with contextual = flag }
let make_maximal_implicit_args flag =
implicit_args := { !implicit_args with maximal = flag }
let is_implicit_args () = !implicit_args.auto
let is_strict_implicit_args () = !implicit_args.strict
let is_strongly_strict_implicit_args () = !implicit_args.strongly_strict
let is_reversible_pattern_implicit_args () = !implicit_args.reversible_pattern
let is_contextual_implicit_args () = !implicit_args.contextual
let is_maximal_implicit_args () = !implicit_args.maximal
let with_implicit_protection f x =
let oflags = !implicit_args in
try
let rslt = f x in
implicit_args := oflags;
rslt
with reraise ->
let reraise = CErrors.push reraise in
let () = implicit_args := oflags in
iraise reraise
let set_maximality imps b =
(* Force maximal insertion on ending implicits (compatibility) *)
let is_set x = match x with None -> false | _ -> true in
b || List.for_all is_set imps
(*s Computation of implicit arguments *)
(* We remember various information about why an argument is
inferable as implicit
- [DepRigid] means that the implicit argument can be found by
unification along a rigid path (we do not print the arguments of
this kind if there is enough arguments to infer them)
- [DepFlex] means that the implicit argument can be found by unification
along a collapsable path only (e.g. as x in (P x) where P is another
argument) (we do (defensively) print the arguments of this kind)
- [DepFlexAndRigid] means that the least argument from which the
implicit argument can be inferred is following a collapsable path
but there is a greater argument from where the implicit argument is
inferable following a rigid path (useful to know how to print a
partial application)
- [Manual] means the argument has been explicitly set as implicit.
We also consider arguments inferable from the conclusion but it is
operational only if [conclusion_matters] is true.
*)
type argument_position =
| Conclusion
| Hyp of int
let argument_position_eq p1 p2 = match p1, p2 with
| Conclusion, Conclusion -> true
| Hyp h1, Hyp h2 -> Int.equal h1 h2
| _ -> false
let explicitation_eq ex1 ex2 = match ex1, ex2 with
| ExplByPos (i1, id1), ExplByPos (i2, id2) ->
Int.equal i1 i2 && Option.equal Id.equal id1 id2
| ExplByName id1, ExplByName id2 ->
Id.equal id1 id2
| _ -> false
type implicit_explanation =
| DepRigid of argument_position
| DepFlex of argument_position
| DepFlexAndRigid of (*flex*) argument_position * (*rig*) argument_position
| Manual
let argument_less = function
| Hyp n, Hyp n' -> n<n'
| Hyp _, Conclusion -> true
| Conclusion, _ -> false
let update pos rig st =
let e =
if rig then
match st with
| None -> DepRigid pos
| Some (DepRigid n as x) ->
if argument_less (pos,n) then DepRigid pos else x
| Some (DepFlexAndRigid (fpos,rpos) as x) ->
if argument_less (pos,fpos) || argument_position_eq pos fpos then DepRigid pos else
if argument_less (pos,rpos) then DepFlexAndRigid (fpos,pos) else x
| Some (DepFlex fpos) ->
if argument_less (pos,fpos) || argument_position_eq pos fpos then DepRigid pos
else DepFlexAndRigid (fpos,pos)
| Some Manual -> assert false
else
match st with
| None -> DepFlex pos
| Some (DepRigid rpos as x) ->
if argument_less (pos,rpos) then DepFlexAndRigid (pos,rpos) else x
| Some (DepFlexAndRigid (fpos,rpos) as x) ->
if argument_less (pos,fpos) then DepFlexAndRigid (pos,rpos) else x
| Some (DepFlex fpos as x) ->
if argument_less (pos,fpos) then DepFlex pos else x
| Some Manual -> assert false
in Some e
(* modified is_rigid_reference with a truncated env *)
let is_flexible_reference env sigma bound depth f =
match kind sigma f with
| Rel n when n >= bound+depth -> (* inductive type *) false
| Rel n when n >= depth -> (* previous argument *) true
| Rel n -> (* since local definitions have been expanded *) false
| Const (kn,_) ->
let cb = Environ.lookup_constant kn env in
(match cb.const_body with Def _ -> true | _ -> false)
| Var id ->
env |> Environ.lookup_named id |> NamedDecl.is_local_def
| Ind _ | Construct _ -> false
| _ -> true
let push_lift d (e,n) = (push_rel d e,n+1)
let is_reversible_pattern sigma bound depth f l =
isRel sigma f && let n = destRel sigma f in (n < bound+depth) && (n >= depth) &&
Array.for_all (fun c -> isRel sigma c && destRel sigma c < depth) l &&
Array.distinct l
(* Precondition: rels in env are for inductive types only *)
let add_free_rels_until strict strongly_strict revpat bound env sigma m pos acc =
let rec frec rig (env,depth as ed) c =
let hd = if strict then whd_all env sigma c else c in
let c = if strongly_strict then hd else c in
match kind sigma hd with
| Rel n when (n < bound+depth) && (n >= depth) ->
let i = bound + depth - n - 1 in
acc.(i) <- update pos rig acc.(i)
| App (f,l) when revpat && is_reversible_pattern sigma bound depth f l ->
let i = bound + depth - EConstr.destRel sigma f - 1 in
acc.(i) <- update pos rig acc.(i)
| App (f,_) when rig && is_flexible_reference env sigma bound depth f ->
if strict then () else
iter_constr_with_full_binders sigma push_lift (frec false) ed c
| Proj (p,c) when rig ->
if strict then () else
iter_constr_with_full_binders sigma push_lift (frec false) ed c
| Case _ when rig ->
if strict then () else
iter_constr_with_full_binders sigma push_lift (frec false) ed c
| Evar _ -> ()
| _ ->
iter_constr_with_full_binders sigma push_lift (frec rig) ed c
in
let () = if not (Vars.noccur_between sigma 1 bound m) then frec true (env,1) m in
acc
(* compute the list of implicit arguments *)
let rec is_rigid_head sigma t = match kind sigma t with
| Rel _ | Evar _ -> false
| Ind _ | Const _ | Var _ | Sort _ -> true
| Case (_,_,f,_) -> is_rigid_head sigma f
| Proj (p,c) -> true
| App (f,args) ->
(match kind sigma f with
| Fix ((fi,i),_) -> is_rigid_head sigma (args.(fi.(i)))
| _ -> is_rigid_head sigma f)
| Lambda _ | LetIn _ | Construct _ | CoFix _ | Fix _
| Prod _ | Meta _ | Cast _ -> assert false
let is_rigid env sigma t =
let open Context.Rel.Declaration in
let t = whd_all env sigma t in
match kind sigma t with
| Prod (na,a,b) ->
let (_,t) = splay_prod (push_rel (LocalAssum (na,a)) env) sigma b in
is_rigid_head sigma t
| _ -> true
let find_displayed_name_in sigma all avoid na (env, b) =
let envnames_b = (env, b) in
let flag = RenamingElsewhereFor envnames_b in
if all then compute_and_force_displayed_name_in sigma flag avoid na b
else compute_displayed_name_in sigma flag avoid na b
let compute_implicits_names_gen all env sigma t =
let open Context.Rel.Declaration in
let rec aux env avoid names t =
let t = whd_all env sigma t in
match kind sigma t with
| Prod (na,a,b) ->
let na',avoid' = find_displayed_name_in sigma all avoid na (names,b) in
aux (push_rel (LocalAssum (na,a)) env) avoid' (na'::names) b
| _ -> List.rev names
in aux env Id.Set.empty [] t
let compute_implicits_names = compute_implicits_names_gen true
let compute_implicits_explanation_gen strict strongly_strict revpat contextual env sigma t =
let open Context.Rel.Declaration in
let rec aux env n t =
let t = whd_all env sigma t in
match kind sigma t with
| Prod (na,a,b) ->
add_free_rels_until strict strongly_strict revpat n env sigma a (Hyp (n+1))
(aux (push_rel (LocalAssum (na,a)) env) (n+1) b)
| _ ->
let v = Array.make n None in
if contextual then
add_free_rels_until strict strongly_strict revpat n env sigma t Conclusion v
else v
in
match kind sigma (whd_all env sigma t) with
| Prod (na,a,b) ->
let v = aux (push_rel (LocalAssum (na,a)) env) 1 b in
Array.to_list v
| _ -> []
let compute_implicits_explanation_flags env sigma f t =
compute_implicits_explanation_gen
(f.strict || f.strongly_strict) f.strongly_strict
f.reversible_pattern f.contextual env sigma t
let compute_implicits_flags env sigma f all t =
List.combine
(compute_implicits_names_gen all env sigma t)
(compute_implicits_explanation_flags env sigma f t)
let compute_auto_implicits env sigma flags enriching t =
List.combine
(compute_implicits_names env sigma t)
(if enriching then compute_implicits_explanation_flags env sigma flags t
else compute_implicits_explanation_gen false false false true env sigma t)
(* Extra information about implicit arguments *)
type maximal_insertion = bool (* true = maximal contextual insertion *)
type force_inference = bool (* true = always infer, never turn into evar/subgoal *)
type implicit_status =
(* None = Not implicit *)
(Id.t * implicit_explanation * (maximal_insertion * force_inference)) option
type implicit_side_condition = DefaultImpArgs | LessArgsThan of int
type implicits_list = implicit_side_condition * implicit_status list
let is_status_implicit = function
| None -> false
| _ -> true
let name_of_implicit = function
| None -> anomaly (Pp.str "Not an implicit argument.")
| Some (id,_,_) -> id
let maximal_insertion_of = function
| Some (_,_,(b,_)) -> b
| None -> anomaly (Pp.str "Not an implicit argument.")
let force_inference_of = function
| Some (_, _, (_, b)) -> b
| None -> anomaly (Pp.str "Not an implicit argument.")
(* [in_ctx] means we know the expected type, [n] is the index of the argument *)
let is_inferable_implicit in_ctx n = function
| None -> false
| Some (_,DepRigid (Hyp p),_) -> in_ctx || n >= p
| Some (_,DepFlex (Hyp p),_) -> false
| Some (_,DepFlexAndRigid (_,Hyp q),_) -> in_ctx || n >= q
| Some (_,DepRigid Conclusion,_) -> in_ctx
| Some (_,DepFlex Conclusion,_) -> false
| Some (_,DepFlexAndRigid (_,Conclusion),_) -> in_ctx
| Some (_,Manual,_) -> true
let positions_of_implicits (_,impls) =
let rec aux n = function
[] -> []
| Some _ :: l -> n :: aux (n+1) l
| None :: l -> aux (n+1) l
in aux 1 impls
(* Manage user-given implicit arguments *)
let rec prepare_implicits f = function
| [] -> []
| (Anonymous, Some _)::_ -> anomaly (Pp.str "Unnamed implicit.")
| (Name id, Some imp)::imps ->
let imps' = prepare_implicits f imps in
Some (id,imp,(set_maximality imps' f.maximal,true)) :: imps'
| _::imps -> None :: prepare_implicits f imps
(*
If found, returns Some (x,(b,fi,fo)) and l with the entry removed,
otherwise returns None and l unchanged.
*)
let assoc_by_pos k l =
let rec aux = function
(ExplByPos (k', x), b) :: tl when Int.equal k k' -> Some (x,b), tl
| hd :: tl -> let (x, tl) = aux tl in x, hd :: tl
| [] -> raise Not_found
in try aux l with Not_found -> None, l
let check_correct_manual_implicits autoimps l =
List.iter (function
| ExplByName id,(b,fi,forced) ->
if not forced then
user_err
(str "Wrong or non-dependent implicit argument name: " ++ Id.print id ++ str ".")
| ExplByPos (i,_id),_t ->
if i<1 || i>List.length autoimps then
user_err
(str "Bad implicit argument number: " ++ int i ++ str ".")
else
user_err
(str "Cannot set implicit argument number " ++ int i ++
str ": it has no name.")) l
(* Take a list l of explicitations, and map them to positions. *)
let flatten_explicitations l autoimps =
let rec aux k l = function
| (Name id,_)::imps ->
let value, l' =
try
let eq = explicitation_eq in
let flags = List.assoc_f eq (ExplByName id) l in
Some (Some id, flags), List.remove_assoc_f eq (ExplByName id) l
with Not_found -> assoc_by_pos k l
in value :: aux (k+1) l' imps
| (Anonymous,_)::imps ->
let value, l' = assoc_by_pos k l
in value :: aux (k+1) l' imps
| [] when List.is_empty l -> []
| [] ->
check_correct_manual_implicits autoimps l;
[]
in aux 1 l autoimps
let set_manual_implicits flags enriching autoimps l =
if not (List.distinct l) then
user_err Pp.(str "Some parameters are referred more than once.");
(* Compare with automatic implicits to recover printing data and names *)
let rec merge k autoimps explimps = match autoimps, explimps with
| autoimp::autoimps, explimp::explimps ->
let imps' = merge (k+1) autoimps explimps in
begin match autoimp, explimp with
| (Name id,_), Some (_, (b, fi, _)) ->
Some (id, Manual, (set_maximality imps' b, fi))
| (Name id,Some exp), None when enriching ->
Some (id, exp, (set_maximality imps' flags.maximal, true))
| (Name _,_), None -> None
| (Anonymous,_), Some (Some id, (b, fi, true)) ->
Some (id,Manual,(b,fi))
| (Anonymous,_), Some (None, (b, fi, true)) ->
let id = Id.of_string ("arg_" ^ string_of_int k) in
Some (id,Manual,(b,fi))
| (Anonymous,_), Some (_, (_, _, false)) -> None
| (Anonymous,_), None -> None
end :: imps'
| [], [] -> []
(* flatten_explicitations returns a list of the same length as autoimps *)
| _ -> assert false
in merge 1 autoimps (flatten_explicitations l autoimps)
let compute_semi_auto_implicits env sigma f t =
if not f.auto then [DefaultImpArgs, []]
else let l = compute_implicits_flags env sigma f false t in
[DefaultImpArgs, prepare_implicits f l]
(*s Constants. *)
let compute_constant_implicits flags cst =
let env = Global.env () in
let sigma = Evd.from_env env in
let cb = Environ.lookup_constant cst env in
let ty = of_constr cb.const_type in
let impls = compute_semi_auto_implicits env sigma flags ty in
impls
(*s Inductives and constructors. Their implicit arguments are stored
in an array, indexed by the inductive number, of pairs $(i,v)$ where
$i$ are the implicit arguments of the inductive and $v$ the array of
implicit arguments of the constructors. *)
let compute_mib_implicits flags kn =
let env = Global.env () in
let sigma = Evd.from_env env in
let mib = Environ.lookup_mind kn env in
let ar =
Array.to_list
(Array.mapi (* No need to lift, arities contain no de Bruijn *)
(fun i mip ->
(** No need to care about constraints here *)
let ty, _ = Global.type_of_global_in_context env (IndRef (kn,i)) in
Context.Rel.Declaration.LocalAssum (Name mip.mind_typename, ty))
mib.mind_packets) in
let env_ar = Environ.push_rel_context ar env in
let imps_one_inductive i mip =
let ind = (kn,i) in
let ar, _ = Global.type_of_global_in_context env (IndRef ind) in
((IndRef ind,compute_semi_auto_implicits env sigma flags (of_constr ar)),
Array.mapi (fun j c ->
(ConstructRef (ind,j+1),compute_semi_auto_implicits env_ar sigma flags c))
(Array.map of_constr mip.mind_nf_lc))
in
Array.mapi imps_one_inductive mib.mind_packets
let compute_all_mib_implicits flags kn =
let imps = compute_mib_implicits flags kn in
List.flatten
(Array.map_to_list (fun (ind,cstrs) -> ind::Array.to_list cstrs) imps)
(*s Variables. *)
let compute_var_implicits flags id =
let env = Global.env () in
let sigma = Evd.from_env env in
compute_semi_auto_implicits env sigma flags (NamedDecl.get_type (lookup_named id env))
(* Implicits of a global reference. *)
let compute_global_implicits flags = function
| VarRef id -> compute_var_implicits flags id
| ConstRef kn -> compute_constant_implicits flags kn
| IndRef (kn,i) ->
let ((_,imps),_) = (compute_mib_implicits flags kn).(i) in imps
| ConstructRef ((kn,i),j) ->
let (_,cimps) = (compute_mib_implicits flags kn).(i) in snd cimps.(j-1)
(* Merge a manual explicitation with an implicit_status list *)
let merge_impls (cond,oldimpls) (_,newimpls) =
let oldimpls,usersuffiximpls = List.chop (List.length newimpls) oldimpls in
cond, (List.map2 (fun orig ni ->
match orig with
| Some (_, Manual, _) -> orig
| _ -> ni) oldimpls newimpls)@usersuffiximpls
(* Caching implicits *)
type implicit_interactive_request =
| ImplAuto
| ImplManual of int
type implicit_discharge_request =
| ImplLocal
| ImplConstant of Constant.t * implicits_flags
| ImplMutualInductive of MutInd.t * implicits_flags
| ImplInteractive of GlobRef.t * implicits_flags *
implicit_interactive_request
let implicits_table = Summary.ref Refmap.empty ~name:"implicits"
let implicits_of_global ref =
try
let l = Refmap.find ref !implicits_table in
try
let rename_l = Arguments_renaming.arguments_names ref in
let rec rename implicits names = match implicits, names with
| [], _ -> []
| _, [] -> implicits
| Some (_, x,y) :: implicits, Name id :: names ->
Some (id, x,y) :: rename implicits names
| imp :: implicits, _ :: names -> imp :: rename implicits names
in
List.map (fun (t, il) -> t, rename il rename_l) l
with Not_found -> l
with Not_found -> [DefaultImpArgs,[]]
let cache_implicits_decl (ref,imps) =
implicits_table := Refmap.add ref imps !implicits_table
let load_implicits _ (_,(_,l)) = List.iter cache_implicits_decl l
let cache_implicits o =
load_implicits 1 o
let subst_implicits_decl subst (r,imps as o) =
let r' = fst (subst_global subst r) in if r==r' then o else (r',imps)
let subst_implicits (subst,(req,l)) =
(ImplLocal,List.Smart.map (subst_implicits_decl subst) l)
let impls_of_context ctx =
let map (decl, impl) = match impl with
| Implicit -> Some (NamedDecl.get_id decl, Manual, (true, true))
| _ -> None
in
List.rev_map map (List.filter (fst %> NamedDecl.is_local_assum) ctx)
let adjust_side_condition p = function
| LessArgsThan n -> LessArgsThan (n+p)
| DefaultImpArgs -> DefaultImpArgs
let add_section_impls vars extra_impls (cond,impls) =
let p = List.length vars - List.length extra_impls in
adjust_side_condition p cond, extra_impls @ impls
let discharge_implicits (_,(req,l)) =
match req with
| ImplLocal -> None
| ImplInteractive (ref,flags,exp) ->
(try
let vars = variable_section_segment_of_reference ref in
let ref' = if isVarRef ref then ref else pop_global_reference ref in
let extra_impls = impls_of_context vars in
let l' = [ref', List.map (add_section_impls vars extra_impls) (snd (List.hd l))] in
Some (ImplInteractive (ref',flags,exp),l')
with Not_found -> (* ref not defined in this section *) Some (req,l))
| ImplConstant (con,flags) ->
(try
let con' = pop_con con in
let vars = variable_section_segment_of_reference (ConstRef con) in
let extra_impls = impls_of_context vars in
let newimpls = List.map (add_section_impls vars extra_impls) (snd (List.hd l)) in
let l' = [ConstRef con',newimpls] in
Some (ImplConstant (con',flags),l')
with Not_found -> (* con not defined in this section *) Some (req,l))
| ImplMutualInductive (kn,flags) ->
(try
let l' = List.map (fun (gr, l) ->
let vars = variable_section_segment_of_reference gr in
let extra_impls = impls_of_context vars in
((if isVarRef gr then gr else pop_global_reference gr),
List.map (add_section_impls vars extra_impls) l)) l
in
Some (ImplMutualInductive (pop_kn kn,flags),l')
with Not_found -> (* ref not defined in this section *) Some (req,l))
let rebuild_implicits (req,l) =
match req with
| ImplLocal -> assert false
| ImplConstant (con,flags) ->
let oldimpls = snd (List.hd l) in
let newimpls = compute_constant_implicits flags con in
req, [ConstRef con, List.map2 merge_impls oldimpls newimpls]
| ImplMutualInductive (kn,flags) ->
let newimpls = compute_all_mib_implicits flags kn in
let rec aux olds news =
match olds, news with
| (_, oldimpls) :: old, (gr, newimpls) :: tl ->
(gr, List.map2 merge_impls oldimpls newimpls) :: aux old tl
| [], [] -> []
| _, _ -> assert false
in req, aux l newimpls
| ImplInteractive (ref,flags,o) ->
(if isVarRef ref && is_in_section ref then ImplLocal else req),
match o with
| ImplAuto ->
let oldimpls = snd (List.hd l) in
let newimpls = compute_global_implicits flags ref in
[ref,List.map2 merge_impls oldimpls newimpls]
| ImplManual userimplsize ->
let oldimpls = snd (List.hd l) in
if flags.auto then
let newimpls = List.hd (compute_global_implicits flags ref) in
let p = List.length (snd newimpls) - userimplsize in
let newimpls = on_snd (List.firstn p) newimpls in
[ref,List.map (fun o -> merge_impls o newimpls) oldimpls]
else
[ref,oldimpls]
let classify_implicits (req,_ as obj) = match req with
| ImplLocal -> Dispose
| _ -> Substitute obj
type implicits_obj =
implicit_discharge_request *
(GlobRef.t * implicits_list list) list
let inImplicits : implicits_obj -> obj =
declare_object {(default_object "IMPLICITS") with
cache_function = cache_implicits;
load_function = load_implicits;
subst_function = subst_implicits;
classify_function = classify_implicits;
discharge_function = discharge_implicits;
rebuild_function = rebuild_implicits }
let is_local local ref = local || isVarRef ref && is_in_section ref
let declare_implicits_gen req flags ref =
let imps = compute_global_implicits flags ref in
add_anonymous_leaf (inImplicits (req,[ref,imps]))
let declare_implicits local ref =
let flags = { !implicit_args with auto = true } in
let req =
if is_local local ref then ImplLocal else ImplInteractive(ref,flags,ImplAuto) in
declare_implicits_gen req flags ref
let declare_var_implicits id =
let flags = !implicit_args in
declare_implicits_gen ImplLocal flags (VarRef id)
let declare_constant_implicits con =
let flags = !implicit_args in
declare_implicits_gen (ImplConstant (con,flags)) flags (ConstRef con)
let declare_mib_implicits kn =
let flags = !implicit_args in
let imps = Array.map_to_list
(fun (ind,cstrs) -> ind::(Array.to_list cstrs))
(compute_mib_implicits flags kn) in
add_anonymous_leaf
(inImplicits (ImplMutualInductive (kn,flags),List.flatten imps))
(* Declare manual implicits *)
type manual_explicitation = Constrexpr.explicitation * (bool * bool * bool)
type manual_implicits = manual_explicitation list
let compute_implicits_with_manual env sigma typ enriching l =
let autoimpls = compute_auto_implicits env sigma !implicit_args enriching typ in
set_manual_implicits !implicit_args enriching autoimpls l
let check_inclusion l =
(* Check strict inclusion *)
let rec aux = function
| n1::(n2::_ as nl) ->
if n1 <= n2 then
user_err Pp.(str "Sequences of implicit arguments must be of different lengths.");
aux nl
| _ -> () in
aux (List.map (fun (imps,_) -> List.length imps) l)
let check_rigidity isrigid =
if not isrigid then
user_err (strbrk "Multiple sequences of implicit arguments available only for references that cannot be applied to an arbitrarily large number of arguments.")
let projection_implicits env p impls =
let pb = Environ.lookup_projection p env in
CList.skipn_at_least pb.Declarations.proj_npars impls
let declare_manual_implicits local ref ?enriching l =
let flags = !implicit_args in
let env = Global.env () in
let sigma = Evd.from_env env in
let t, _ = Global.type_of_global_in_context env ref in
let t = of_constr t in
let enriching = Option.default flags.auto enriching in
let autoimpls = compute_auto_implicits env sigma flags enriching t in
let l' = match l with
| [] -> assert false
| [l] ->
[DefaultImpArgs, set_manual_implicits flags enriching autoimpls l]
| _ ->
check_rigidity (is_rigid env sigma t);
let l = List.map (fun imps -> (imps,List.length imps)) l in
let l = List.sort (fun (_,n1) (_,n2) -> n2 - n1) l in
check_inclusion l;
let nargs = List.length autoimpls in
List.map (fun (imps,n) ->
(LessArgsThan (nargs-n),
set_manual_implicits flags enriching autoimpls imps)) l in
let req =
if is_local local ref then ImplLocal
else ImplInteractive(ref,flags,ImplManual (List.length autoimpls))
in add_anonymous_leaf (inImplicits (req,[ref,l']))
let maybe_declare_manual_implicits local ref ?enriching l =
match l with
| [] -> ()
| _ -> declare_manual_implicits local ref ?enriching [l]
let extract_impargs_data impls =
let rec aux p = function
| (DefaultImpArgs, imps)::_ -> [None,imps]
| (LessArgsThan n, imps)::l -> (Some (p,n),imps) :: aux (n+1) l
| [] -> [] in
aux 0 impls
let lift_implicits n =
List.map (fun x ->
match fst x with
ExplByPos (k, id) -> ExplByPos (k + n, id), snd x
| _ -> x)
let make_implicits_list l = [DefaultImpArgs, l]
let rec drop_first_implicits p l =
if Int.equal p 0 then l else match l with
| _,[] as x -> x
| DefaultImpArgs,imp::impls ->
drop_first_implicits (p-1) (DefaultImpArgs,impls)
| LessArgsThan n,imp::impls ->
let n = if is_status_implicit imp then n-1 else n in
drop_first_implicits (p-1) (LessArgsThan n,impls)
let rec select_impargs_size n = function
| [] -> [] (* Tolerance for (DefaultImpArgs,[]) *)
| [_, impls] | (DefaultImpArgs, impls)::_ -> impls
| (LessArgsThan p, impls)::l ->
if n <= p then impls else select_impargs_size n l
let select_stronger_impargs = function
| [] -> [] (* Tolerance for (DefaultImpArgs,[]) *)
| (_,impls)::_ -> impls
|