1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Glob_term
open Constrexpr
open Misctypes
type argument_type =
(* Basic types *)
| BoolArgType
| IntArgType
| IntOrVarArgType
| StringArgType
| PreIdentArgType
| IntroPatternArgType
| IdentArgType of bool
| VarArgType
| RefArgType
(* Specific types *)
| SortArgType
| ConstrArgType
| ConstrMayEvalArgType
| QuantHypArgType
| OpenConstrArgType of bool
| ConstrWithBindingsArgType
| BindingsArgType
| RedExprArgType
| List0ArgType of argument_type
| List1ArgType of argument_type
| OptArgType of argument_type
| PairArgType of argument_type * argument_type
| ExtraArgType of string
let rec argument_type_eq arg1 arg2 = match arg1, arg2 with
| BoolArgType, BoolArgType -> true
| IntArgType, IntArgType -> true
| IntOrVarArgType, IntOrVarArgType -> true
| StringArgType, StringArgType -> true
| PreIdentArgType, PreIdentArgType -> true
| IntroPatternArgType, IntroPatternArgType -> true
| IdentArgType b1, IdentArgType b2 -> (b1 : bool) == b2
| VarArgType, VarArgType -> true
| RefArgType, RefArgType -> true
| SortArgType, SortArgType -> true
| ConstrArgType, ConstrArgType -> true
| ConstrMayEvalArgType, ConstrMayEvalArgType -> true
| QuantHypArgType, QuantHypArgType -> true
| OpenConstrArgType b1, OpenConstrArgType b2 -> (b1 : bool) == b2
| ConstrWithBindingsArgType, ConstrWithBindingsArgType -> true
| BindingsArgType, BindingsArgType -> true
| RedExprArgType, RedExprArgType -> true
| List0ArgType arg1, List0ArgType arg2 -> argument_type_eq arg1 arg2
| List1ArgType arg1, List1ArgType arg2 -> argument_type_eq arg1 arg2
| OptArgType arg1, OptArgType arg2 -> argument_type_eq arg1 arg2
| PairArgType (arg1l, arg1r), PairArgType (arg2l, arg2r) ->
argument_type_eq arg1l arg2l && argument_type_eq arg1r arg2r
| ExtraArgType s1, ExtraArgType s2 -> CString.equal s1 s2
| _ -> false
let loc_of_or_by_notation f = function
| AN c -> f c
| ByNotation (loc,s,_) -> loc
type glob_constr_and_expr = glob_constr * constr_expr option
type open_constr_expr = unit * constr_expr
type open_glob_constr = unit * glob_constr_and_expr
type glob_constr_pattern_and_expr = glob_constr_and_expr * Pattern.constr_pattern
type ('raw, 'glob, 'top) genarg_type = argument_type
type 'a uniform_genarg_type = ('a, 'a, 'a) genarg_type
(** Alias for concision *)
(* Dynamics but tagged by a type expression *)
type rlevel
type glevel
type tlevel
type 'a generic_argument = argument_type * Obj.t
type raw_generic_argument = rlevel generic_argument
type glob_generic_argument = glevel generic_argument
type typed_generic_argument = tlevel generic_argument
let rawwit t = t
let glbwit t = t
let topwit t = t
let wit_bool = BoolArgType
let wit_int = IntArgType
let wit_int_or_var = IntOrVarArgType
let wit_string = StringArgType
let wit_pre_ident = PreIdentArgType
let wit_intro_pattern = IntroPatternArgType
let wit_ident_gen b = IdentArgType b
let wit_ident = wit_ident_gen true
let wit_pattern_ident = wit_ident_gen false
let wit_var = VarArgType
let wit_ref = RefArgType
let wit_quant_hyp = QuantHypArgType
let wit_sort = SortArgType
let wit_constr = ConstrArgType
let wit_constr_may_eval = ConstrMayEvalArgType
let wit_open_constr_gen b = OpenConstrArgType b
let wit_open_constr = wit_open_constr_gen false
let wit_casted_open_constr = wit_open_constr_gen true
let wit_constr_with_bindings = ConstrWithBindingsArgType
let wit_bindings = BindingsArgType
let wit_red_expr = RedExprArgType
let wit_list0 t = List0ArgType t
let wit_list1 t = List1ArgType t
let wit_opt t = OptArgType t
let wit_pair t1 t2 = PairArgType (t1,t2)
let in_gen t o = (t,Obj.repr o)
let out_gen t (t',o) = if argument_type_eq t t' then Obj.magic o else failwith "out_gen"
let genarg_tag (s,_) = s
let fold_list0 f = function
| (List0ArgType t, l) ->
List.fold_right (fun x -> f (in_gen t x)) (Obj.magic l)
| _ -> failwith "Genarg: not a list0"
let fold_list1 f = function
| (List1ArgType t, l) ->
List.fold_right (fun x -> f (in_gen t x)) (Obj.magic l)
| _ -> failwith "Genarg: not a list1"
let fold_opt f a = function
| (OptArgType t, l) ->
(match Obj.magic l with
| None -> a
| Some x -> f (in_gen t x))
| _ -> failwith "Genarg: not a opt"
let fold_pair f = function
| (PairArgType (t1,t2), l) ->
let (x1,x2) = Obj.magic l in
f (in_gen t1 x1) (in_gen t2 x2)
| _ -> failwith "Genarg: not a pair"
let app_list0 f = function
| (List0ArgType t as u, l) ->
let o = Obj.magic l in
(u, Obj.repr (List.map (fun x -> out_gen t (f (in_gen t x))) o))
| _ -> failwith "Genarg: not a list0"
let app_list1 f = function
| (List1ArgType t as u, l) ->
let o = Obj.magic l in
(u, Obj.repr (List.map (fun x -> out_gen t (f (in_gen t x))) o))
| _ -> failwith "Genarg: not a list1"
let app_opt f = function
| (OptArgType t as u, l) ->
let o = Obj.magic l in
(u, Obj.repr (Option.map (fun x -> out_gen t (f (in_gen t x))) o))
| _ -> failwith "Genarg: not an opt"
let app_pair f1 f2 = function
| (PairArgType (t1,t2) as u, l) ->
let (o1,o2) = Obj.magic l in
let o1 = out_gen t1 (f1 (in_gen t1 o1)) in
let o2 = out_gen t2 (f2 (in_gen t2 o2)) in
(u, Obj.repr (o1,o2))
| _ -> failwith "Genarg: not a pair"
let has_type (t, v) u = argument_type_eq t u
let unquote x = x
type an_arg_of_this_type = Obj.t
let in_generic t x = (t, Obj.repr x)
let dyntab = ref ([] : (string * glevel generic_argument option) list)
type ('a,'b) abstract_argument_type = argument_type
type 'a raw_abstract_argument_type = ('a,rlevel) abstract_argument_type
type 'a glob_abstract_argument_type = ('a,glevel) abstract_argument_type
type 'a typed_abstract_argument_type = ('a,tlevel) abstract_argument_type
let create_arg v s =
if List.mem_assoc s !dyntab then
Errors.anomaly ~label:"Genarg.create" (str ("already declared generic argument " ^ s));
let t = ExtraArgType s in
dyntab := (s,Option.map (in_gen t) v) :: !dyntab;
t
let default_empty_argtype_value s = List.assoc s !dyntab
let default_empty_value t =
let rec aux = function
| List0ArgType _ -> Some (in_gen t [])
| OptArgType _ -> Some (in_gen t None)
| PairArgType(t1,t2) ->
(match aux t1, aux t2 with
| Some (_,v1), Some (_,v2) -> Some (in_gen t (v1,v2))
| _ -> None)
| ExtraArgType s -> default_empty_argtype_value s
| _ -> None in
match aux t with
| Some v -> Some (out_gen t v)
| None -> None
|