1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Options
open Names
open Nameops
open Libnames
open Impargs
open Rawterm
open Pattern
open Pretyping
open Topconstr
open Nametab
open Notation
(* To interpret implicits and arg scopes of recursive variables in
inductive types and recursive definitions *)
type var_internalisation_data =
identifier list * Impargs.implicits_list * scope_name option list
type implicits_env = (identifier * var_internalisation_data) list
type full_implicits_env = identifier list * implicits_env
let interning_grammar = ref false
(* Historically for parsing grammar rules, but in fact used only for
translator, v7 parsing, and unstrict tactic internalisation *)
let for_grammar f x =
interning_grammar := true;
let a = f x in
interning_grammar := false;
a
let variables_bind = ref false
(* For the translator *)
let temporary_implicits_in = ref []
let set_temporary_implicits_in l = temporary_implicits_in := l
(**********************************************************************)
(* Internalisation errors *)
type internalisation_error =
| VariableCapture of identifier
| WrongExplicitImplicit
| NegativeMetavariable
| NotAConstructor of reference
| UnboundFixName of bool * identifier
| NonLinearPattern of identifier
| BadPatternsNumber of int * int
| BadExplicitationNumber of explicitation * int option
exception InternalisationError of loc * internalisation_error
let explain_variable_capture id =
str "The variable " ++ pr_id id ++ str " occurs in its type"
let explain_wrong_explicit_implicit =
str "Found an explicitly given implicit argument but was expecting" ++
fnl () ++ str "a regular one"
let explain_negative_metavariable =
str "Metavariable numbers must be positive"
let explain_not_a_constructor ref =
str "Unknown constructor: " ++ pr_reference ref
let explain_unbound_fix_name is_cofix id =
str "The name" ++ spc () ++ pr_id id ++
spc () ++ str "is not bound in the corresponding" ++ spc () ++
str (if is_cofix then "co" else "") ++ str "fixpoint definition"
let explain_non_linear_pattern id =
str "The variable " ++ pr_id id ++ str " is bound several times in pattern"
let explain_bad_patterns_number n1 n2 =
let s = if n1 > 1 then "s" else "" in
str "Expecting " ++ int n1 ++ str " pattern" ++ str s ++ str " but found "
++ int n2
let explain_bad_explicitation_number n po =
match n with
| ExplByPos n ->
let s = match po with
| None -> str "a regular argument"
| Some p -> int p in
str "Bad explicitation number: found " ++ int n ++
str" but was expecting " ++ s
| ExplByName id ->
let s = match po with
| None -> str "a regular argument"
| Some p -> (*pr_id (name_of_position p) in*) failwith "" in
str "Bad explicitation name: found " ++ pr_id id ++
str" but was expecting " ++ s
let explain_internalisation_error = function
| VariableCapture id -> explain_variable_capture id
| WrongExplicitImplicit -> explain_wrong_explicit_implicit
| NegativeMetavariable -> explain_negative_metavariable
| NotAConstructor ref -> explain_not_a_constructor ref
| UnboundFixName (iscofix,id) -> explain_unbound_fix_name iscofix id
| NonLinearPattern id -> explain_non_linear_pattern id
| BadPatternsNumber (n1,n2) -> explain_bad_patterns_number n1 n2
| BadExplicitationNumber (n,po) -> explain_bad_explicitation_number n po
let error_unbound_patvar loc n =
user_err_loc
(loc,"glob_qualid_or_patvar", str "?" ++ pr_patvar n ++
str " is unbound")
let error_bad_inductive_type loc =
user_err_loc (loc,"",str
"This should be an inductive type applied to names or \"_\"")
(**********************************************************************)
(* Dump of globalization (to be used by coqdoc) *)
let token_number = ref 0
let last_pos = ref 0
type coqdoc_state = Lexer.location_table * int * int
let coqdoc_freeze () =
let lt = Lexer.location_table() in
let state = (lt,!token_number,!last_pos) in
token_number := 0;
last_pos := 0;
state
let coqdoc_unfreeze (lt,tn,lp) =
Lexer.restore_location_table lt;
token_number := tn;
last_pos := lp
let add_glob loc ref =
(*i
let sp = Nametab.sp_of_global (Global.env ()) ref in
let dir,_ = repr_path sp in
let rec find_module d =
try
let qid = let dir,id = split_dirpath d in make_qualid dir id in
let _ = Nametab.locate_loaded_library qid in d
with Not_found -> find_module (dirpath_prefix d)
in
let s = string_of_dirpath (find_module dir) in
i*)
let sp = Nametab.sp_of_global ref in
let id = let _,id = repr_path sp in string_of_id id in
let dp = string_of_dirpath (Lib.library_part ref) in
dump_string (Printf.sprintf "R%d %s.%s\n" (fst (unloc loc)) dp id)
let loc_of_notation f loc args ntn =
if args=[] or ntn.[0] <> '_' then fst (unloc loc)
else snd (unloc (f (List.hd args)))
let ntn_loc = loc_of_notation constr_loc
let patntn_loc = loc_of_notation cases_pattern_loc
let dump_notation_location =
fun pos ntn ((path,df),sc) ->
let rec next growing =
let loc = Lexer.location_function !token_number in
let (bp,_) = unloc loc in
if growing then if bp >= pos then loc else (incr token_number;next true)
else if bp = pos then loc
else if bp > pos then (decr token_number;next false)
else (incr token_number;next true) in
let loc = next (pos >= !last_pos) in
last_pos := pos;
let path = string_of_dirpath path in
let sc = match sc with Some sc -> " "^sc | None -> "" in
dump_string (Printf.sprintf "R%d %s \"%s\"%s\n" (fst (unloc loc)) path df sc)
(**********************************************************************)
(* Contracting "{ _ }" in notations *)
let rec wildcards ntn n =
if n = String.length ntn then []
else let l = spaces ntn (n+1) in if ntn.[n] = '_' then n::l else l
and spaces ntn n =
if n = String.length ntn then []
else if ntn.[n] = ' ' then wildcards ntn (n+1) else spaces ntn (n+1)
let expand_notation_string ntn n =
let pos = List.nth (wildcards ntn 0) n in
let hd = if pos = 0 then "" else String.sub ntn 0 pos in
let tl =
if pos = String.length ntn then ""
else String.sub ntn (pos+1) (String.length ntn - pos -1) in
hd ^ "{ _ }" ^ tl
(* This contracts the special case of "{ _ }" for sumbool, sumor notations *)
(* Remark: expansion of squash at definition is done in metasyntax.ml *)
let contract_notation ntn l =
let ntn' = ref ntn in
let rec contract_squash n = function
| [] -> []
| CNotation (_,"{ _ }",[a]) :: l ->
ntn' := expand_notation_string !ntn' n;
contract_squash n (a::l)
| a :: l ->
a::contract_squash (n+1) l in
let l = contract_squash 0 l in
(* side effect; don't inline *)
!ntn',l
let contract_pat_notation ntn l =
let ntn' = ref ntn in
let rec contract_squash n = function
| [] -> []
| CPatNotation (_,"{ _ }",[a]) :: l ->
ntn' := expand_notation_string !ntn' n;
contract_squash n (a::l)
| a :: l ->
a::contract_squash (n+1) l in
let l = contract_squash 0 l in
(* side effect; don't inline *)
!ntn',l
(**********************************************************************)
(* Remembering the parsing scope of variables in notations *)
let make_current_scope (scopt,scopes) = option_cons scopt scopes
let set_var_scope loc id (_,scopt,scopes) varscopes =
let idscopes = List.assoc id varscopes in
if !idscopes <> None &
make_current_scope (out_some !idscopes)
<> make_current_scope (scopt,scopes) then
user_err_loc (loc,"set_var_scope",
pr_id id ++ str " already occurs in a different scope")
else
idscopes := Some (scopt,scopes)
(**********************************************************************)
(* Discriminating between bound variables and global references *)
(* [vars1] is a set of name to avoid (used for the tactic language);
[vars2] is the set of global variables, env is the set of variables
abstracted until this point *)
let intern_var (env,_,_ as genv) (ltacvars,vars2,vars3,_,impls) loc id =
let (vars1,unbndltacvars) = ltacvars in
(* Is [id] an inductive type potentially with implicit *)
try
let l,impl,argsc = List.assoc id impls in
let l = List.map
(fun id -> CRef (Ident (loc,id)), Some (loc,ExplByName id)) l in
RVar (loc,id), impl, argsc,
(if !Options.v7 & !interning_grammar then [] else l)
with Not_found ->
(* Is [id] bound in current env or is an ltac var bound to constr *)
if Idset.mem id env or List.mem id vars1
then
RVar (loc,id), [], [], []
(* Is [id] a notation variable *)
else if List.mem_assoc id vars3
then
(set_var_scope loc id genv vars3; RVar (loc,id), [], [], [])
else
(* Is [id] bound to a free name in ltac (this is an ltac error message) *)
try
match List.assoc id unbndltacvars with
| None -> user_err_loc (loc,"intern_var",
pr_id id ++ str " ist not bound to a term")
| Some id0 -> Pretype_errors.error_var_not_found_loc loc id0
with Not_found ->
(* Is [id] a goal or section variable *)
let _ = Sign.lookup_named id vars2 in
try
(* [id] a section variable *)
(* Redundant: could be done in intern_qualid *)
let ref = VarRef id in
RRef (loc, ref), implicits_of_global ref, find_arguments_scope ref, []
with _ ->
(* [id] a goal variable *)
RVar (loc,id), [], [], []
let find_appl_head_data (_,_,_,_,impls) = function
| RRef (_,ref) as x -> x,implicits_of_global ref,find_arguments_scope ref,[]
| x -> x,[],[],[]
(* Is it a global reference or a syntactic definition? *)
let intern_qualid loc qid =
try match Nametab.extended_locate qid with
| TrueGlobal ref ->
if !dump then add_glob loc ref;
RRef (loc, ref)
| SyntacticDef sp ->
Syntax_def.search_syntactic_definition loc sp
with Not_found ->
error_global_not_found_loc loc qid
let intern_inductive r =
let loc,qid = qualid_of_reference r in
try match Nametab.extended_locate qid with
| TrueGlobal (IndRef ind) -> ind, []
| TrueGlobal _ -> raise Not_found
| SyntacticDef sp ->
(match Syntax_def.search_syntactic_definition loc sp with
| RApp (_,RRef(_,IndRef ind),l)
when List.for_all (function RHole _ -> true | _ -> false) l ->
(ind, List.map (fun _ -> Anonymous) l)
| _ -> raise Not_found)
with Not_found ->
error_global_not_found_loc loc qid
let intern_reference env lvar = function
| Qualid (loc, qid) ->
find_appl_head_data lvar (intern_qualid loc qid)
| Ident (loc, id) ->
(* For old ast syntax compatibility *)
if (string_of_id id).[0] = '$' then RVar (loc,id),[],[],[] else
(* End old ast syntax compatibility *)
(* Pour traduction des implicites d'inductifs et points-fixes *)
try RVar (loc,id), List.assoc id !temporary_implicits_in, [], []
with Not_found ->
(* Fin pour traduction *)
try intern_var env lvar loc id
with Not_found ->
try find_appl_head_data lvar (intern_qualid loc (make_short_qualid id))
with e ->
(* Extra allowance for non globalizing functions *)
if !interning_grammar then RVar (loc,id), [], [], []
else raise e
let interp_reference vars r =
let (r,_,_,_) = intern_reference (Idset.empty,None,[]) (vars,[],[],[],[]) r
in r
let apply_scope_env (ids,_,scopes) = function
| [] -> (ids,None,scopes), []
| sc::scl -> (ids,sc,scopes), scl
let rec adjust_scopes env scopes = function
| [] -> []
| a::args ->
let (enva,scopes) = apply_scope_env env scopes in
enva :: adjust_scopes env scopes args
let rec simple_adjust_scopes = function
| _,[] -> []
| [],_::args -> None :: simple_adjust_scopes ([],args)
| sc::scopes,_::args -> sc :: simple_adjust_scopes (scopes,args)
(**********************************************************************)
(* Cases *)
let product_of_cases_patterns ids idspl =
List.fold_right (fun (ids,pl) (ids',ptaill) ->
(ids@ids',
(* Cartesian prod of the or-pats for the nth arg and the tail args *)
List.flatten (
List.map (fun (subst,p) ->
List.map (fun (subst',ptail) -> (subst@subst',p::ptail)) ptaill) pl)))
idspl (ids,[[],[]])
let simple_product_of_cases_patterns pl =
List.fold_right (fun pl ptaill ->
List.flatten (List.map (fun (subst,p) ->
List.map (fun (subst',ptail) -> (subst@subst',p::ptail)) ptaill) pl))
pl [[],[]]
(* Check linearity of pattern-matching *)
let rec has_duplicate = function
| [] -> None
| x::l -> if List.mem x l then (Some x) else has_duplicate l
let loc_of_lhs lhs =
join_loc (cases_pattern_loc (List.hd lhs)) (cases_pattern_loc (list_last lhs))
let check_linearity lhs ids =
match has_duplicate ids with
| Some id ->
raise (InternalisationError (loc_of_lhs lhs,NonLinearPattern id))
| None ->
()
(* Warns if some pattern variable starts with uppercase *)
let check_uppercase loc ids =
(* A quoi ça sert ? Pour l'extraction vers ML ? Maintenant elle est externe
let is_uppercase_var v =
match (string_of_id v).[0] with 'A'..'Z' -> true | _ -> false
in
let warning_uppercase loc uplid =
let vars = h 0 (prlist_with_sep pr_coma pr_id uplid) in
let (s1,s2) = if List.length uplid = 1 then (" ","s ") else ("s "," ") in
warn (str ("the variable"^s1) ++ vars ++
str (" start"^s2^"with an upper case letter in pattern")) in
let uplid = List.filter is_uppercase_var ids in
if uplid <> [] then warning_uppercase loc uplid
*)
()
(* Match the number of pattern against the number of matched args *)
let check_number_of_pattern loc n l =
let p = List.length l in
if n<>p then raise (InternalisationError (loc,BadPatternsNumber (n,p)))
let check_or_pat_variables loc ids idsl =
if List.exists ((<>) ids) idsl then
user_err_loc (loc, "", str
"The components of this disjunctive pattern must bind the same variables")
(* Manage multiple aliases *)
(* [merge_aliases] returns the sets of all aliases encountered at this
point and a substitution mapping extra aliases to the first one *)
let merge_aliases (ids,subst as _aliases) id =
ids@[id], if ids=[] then subst else (id, List.hd ids)::subst
let alias_of = function
| ([],_) -> Anonymous
| (id::_,_) -> Name id
let message_redundant_alias (id1,id2) =
if_verbose warning
("Alias variable "^(string_of_id id1)^" is merged with "^(string_of_id id2))
(* Expanding notations *)
let decode_patlist_value = function
| CPatCstr (_,_,l) -> l
| _ -> anomaly "Ill-formed list argument of notation"
let rec subst_pat_iterator y t (subst,p) = match p with
| PatVar (_,id) as x ->
if id = Name y then t else [subst,x]
| PatCstr (loc,id,l,alias) ->
let l' = List.map (fun a -> (subst_pat_iterator y t ([],a))) l in
let pl = simple_product_of_cases_patterns l' in
List.map (fun (subst',pl) -> subst'@subst,PatCstr (loc,id,pl,alias)) pl
let subst_cases_pattern loc (ids,asubst as aliases) intern subst scopes a =
let rec aux aliases subst = function
| AVar id ->
begin
(* subst remembers the delimiters stack in the interpretation *)
(* of the notations *)
try
let (a,(scopt,subscopes)) = List.assoc id subst in
intern (subscopes@scopes) ([],[]) scopt a
with Not_found ->
if id = ldots_var then [],[[], PatVar (loc,Name id)] else
anomaly ("Unbound pattern notation variable: "^(string_of_id id))
(*
(* Happens for local notation joint with inductive/fixpoint defs *)
if aliases <> ([],[]) then
anomaly "Pattern notation without constructors";
[[id],[]], PatVar (loc,Name id)
*)
end
| ARef (ConstructRef c) ->
(ids,[asubst, PatCstr (loc,c, [], alias_of aliases)])
| AApp (ARef (ConstructRef (ind,_ as c)),args) ->
let nparams = (fst (Global.lookup_inductive ind)).Declarations.mind_nparams in
let _,args = list_chop nparams args in
let idslpll = List.map (aux ([],[]) subst) args in
let ids',pll = product_of_cases_patterns ids idslpll in
let pl' = List.map (fun (subst,pl) ->
subst,PatCstr (loc,c,pl,alias_of aliases)) pll in
ids', pl'
| AList (x,_,iter,terminator,lassoc) ->
(try
(* All elements of the list are in scopes (scopt,subscopes) *)
let (a,(scopt,subscopes)) = List.assoc x subst in
let termin = aux ([],[]) subst terminator in
let l = decode_patlist_value a in
let idsl,v =
List.fold_right (fun a (tids,t) ->
let uids,u = aux ([],[]) ((x,(a,(scopt,subscopes)))::subst) iter in
let pll = List.map (subst_pat_iterator ldots_var t) u in
tids@uids, List.flatten pll)
(if lassoc then List.rev l else l) termin in
ids@idsl, v
with Not_found ->
anomaly "Inconsistent substitution of recursive notation")
| t -> user_err_loc (loc,"",str "Invalid notation for pattern")
in aux aliases subst a
(* Differentiating between constructors and matching variables *)
type pattern_qualid_kind =
| ConstrPat of (constructor * cases_pattern list)
| VarPat of identifier
let rec patt_of_rawterm loc cstr =
match cstr with
| RRef (_,(ConstructRef c as x)) ->
if !dump then add_glob loc x;
(c,[])
| RApp (_,RApp(_,h,l1),l2) -> patt_of_rawterm loc (RApp(loc,h,l1@l2))
| RApp (_,RRef(_,(ConstructRef c as x)),pl) ->
if !dump then add_glob loc x;
let (mib,_) = Inductive.lookup_mind_specif (Global.env()) (fst c) in
let npar = mib.Declarations.mind_nparams in
let (params,args) =
if List.length pl <= npar then (pl,[]) else
list_chop npar pl in
(* All parameters must be _ *)
List.iter
(function RHole _ -> ()
| _ -> raise Not_found) params;
let pl' = List.map
(fun c ->
let (c,pl) = patt_of_rawterm loc c in
PatCstr(loc,c,pl,Anonymous)) args in
(c,pl')
| _ -> raise Not_found
let find_constructor ref =
let (loc,qid) = qualid_of_reference ref in
let gref =
try extended_locate qid
with Not_found ->
raise (InternalisationError (loc,NotAConstructor ref)) in
match gref with
| SyntacticDef sp ->
let sdef = Syntax_def.search_syntactic_definition loc sp in
patt_of_rawterm loc sdef
| TrueGlobal r ->
let rec unf = function
| ConstRef cst ->
let v = Environ.constant_value (Global.env()) cst in
unf (global_of_constr v)
| ConstructRef c ->
if !dump then add_glob loc r;
c, []
| _ -> raise Not_found
in unf r
let find_pattern_variable = function
| Ident (loc,id) -> id
| Qualid (loc,_) as x -> raise (InternalisationError(loc,NotAConstructor x))
let maybe_constructor ref =
try ConstrPat (find_constructor ref)
with
(* patt var does not exists globally *)
| InternalisationError _ -> VarPat (find_pattern_variable ref)
(* patt var also exists globally but does not satisfy preconditions *)
| (Environ.NotEvaluableConst _ | Not_found) ->
warn (str "pattern " ++ pr_reference ref ++
str " is understood as a pattern variable");
VarPat (find_pattern_variable ref)
let mustbe_constructor loc ref =
try find_constructor ref
with (Environ.NotEvaluableConst _ | Not_found) ->
raise (InternalisationError (loc,NotAConstructor ref))
let rec intern_cases_pattern scopes (ids,subst as aliases) tmp_scope = function
| CPatAlias (loc, p, id) ->
let aliases' = merge_aliases aliases id in
intern_cases_pattern scopes aliases' tmp_scope p
| CPatCstr (loc, head, pl) ->
let c,pl0 = mustbe_constructor loc head in
let argscs =
simple_adjust_scopes (find_arguments_scope (ConstructRef c), pl) in
let idslpl = List.map2 (intern_cases_pattern scopes ([],[])) argscs pl in
let (ids',pll) = product_of_cases_patterns ids idslpl in
let pl' = List.map (fun (subst,pl) ->
(subst, PatCstr (loc,c,pl0@pl,alias_of aliases))) pll in
ids',pl'
| CPatNotation (loc,"- _",[CPatNumeral(_,p)]) when Bigint.is_strictly_pos p->
let scopes = option_cons tmp_scope scopes in
(ids,
[subst, Notation.interp_numeral_as_pattern loc (Bigint.neg p)
(alias_of aliases) scopes])
| CPatNotation (_,"( _ )",[a]) ->
intern_cases_pattern scopes aliases tmp_scope a
| CPatNotation (loc, ntn, args) ->
let ntn,args = contract_pat_notation ntn args in
let scopes = option_cons tmp_scope scopes in
let ((ids,c),df) = Notation.interp_notation loc ntn scopes in
if !dump then dump_notation_location (patntn_loc loc args ntn) ntn df;
let subst = List.map2 (fun (id,scl) a -> (id,(a,scl))) ids args in
subst_cases_pattern loc aliases intern_cases_pattern subst scopes c
| CPatNumeral (loc, n) ->
let scopes = option_cons tmp_scope scopes in
(ids,[subst,
Notation.interp_numeral_as_pattern loc n (alias_of aliases) scopes])
| CPatDelimiters (loc, key, e) ->
intern_cases_pattern (find_delimiters_scope loc key::scopes)
aliases None e
| CPatAtom (loc, Some head) ->
(match maybe_constructor head with
| ConstrPat (c,args) ->
(ids,[subst, PatCstr (loc,c,args,alias_of aliases)])
| VarPat id ->
let ids,subst = merge_aliases aliases id in
(ids,[subst, PatVar (loc,alias_of (ids,subst))]))
| CPatAtom (loc, None) ->
(ids,[subst, PatVar (loc,alias_of aliases)])
| CPatOr (loc, pl) ->
assert (pl <> []);
let pl' = List.map (intern_cases_pattern scopes aliases tmp_scope) pl in
let (idsl,pl') = List.split pl' in
let ids = List.hd idsl in
check_or_pat_variables loc ids (List.tl idsl);
(ids,List.flatten pl')
(**********************************************************************)
(* Fix and CoFix *)
(**********************************************************************)
(* Utilities for binders *)
let check_capture loc ty = function
| Name id when occur_var_constr_expr id ty ->
raise (InternalisationError (loc,VariableCapture id))
| _ ->
()
let locate_if_isevar loc na = function
| RHole _ ->
(try match na with
| Name id -> Reserve.find_reserved_type id
| Anonymous -> raise Not_found
with Not_found -> RHole (loc, Evd.BinderType na))
| x -> x
let check_hidden_implicit_parameters id (_,_,_,indnames,_) =
if List.mem id indnames then
errorlabstrm "" (str "A parameter or name of an inductive type " ++
pr_id id ++ str " must not be used as a bound variable in the type \
of its constructor")
let push_name_env lvar (ids,tmpsc,scopes as env) = function
| Anonymous -> env
| Name id ->
check_hidden_implicit_parameters id lvar;
(Idset.add id ids,tmpsc,scopes)
(**********************************************************************)
(* Utilities for application *)
let merge_impargs l args =
List.fold_right (fun a l ->
match a with
| (_,Some (_,(ExplByName id as x))) when
List.exists (function (_,Some (_,y)) -> x=y | _ -> false) args -> l
| _ -> a::l)
l args
let check_projection isproj r =
match (r,isproj) with
| RRef (loc, ref), Some nth ->
(try
let n = Recordops.find_projection_nparams ref + 1 in
if nth < n then
user_err_loc (loc,"",str "Projection has not enough parameters");
with Not_found ->
user_err_loc
(loc,"",pr_global_env Idset.empty ref ++ str " is not a registered projection"))
| _, Some _ -> user_err_loc (loc_of_rawconstr r, "", str "Not a projection")
| _, None -> ()
let get_implicit_name n imps =
if !Options.v7 then None
else Some (Impargs.name_of_implicit (List.nth imps (n-1)))
let set_hole_implicit i = function
| RRef (loc,r) -> (loc,Evd.ImplicitArg (r,i))
| RVar (loc,id) -> (loc,Evd.ImplicitArg (VarRef id,i))
| _ -> anomaly "Only refs have implicits"
let exists_implicit_name id =
List.exists (fun imp -> is_status_implicit imp & id = name_of_implicit imp)
let extract_explicit_arg imps args =
let rec aux = function
| [] -> [],[]
| (a,e)::l ->
let (eargs,rargs) = aux l in
match e with
| None -> (eargs,a::rargs)
| Some (loc,pos) ->
let id = match pos with
| ExplByName id ->
if not (exists_implicit_name id imps) then
user_err_loc (loc,"",str "Wrong argument name: " ++ pr_id id);
if List.mem_assoc id eargs then
user_err_loc (loc,"",str "Argument name " ++ pr_id id
++ str " occurs more than once");
id
| ExplByPos p ->
let id =
try
let imp = List.nth imps (p-1) in
if not (is_status_implicit imp) then failwith "imp";
name_of_implicit imp
with Failure _ (* "nth" | "imp" *) ->
user_err_loc (loc,"",str"Wrong argument position: " ++ int p)
in
if List.mem_assoc id eargs then
user_err_loc (loc,"",str"Argument at position " ++ int p ++
str " is mentioned more than once");
id in
((id,(loc,a))::eargs,rargs)
in aux args
(**********************************************************************)
(* Syntax extensions *)
let coerce_to_id = function
| CRef (Ident (_,id)) -> id
| c ->
user_err_loc (constr_loc c, "subst_rawconstr",
str"This expression should be a simple identifier")
let traverse_binder subst id (ids,tmpsc,scopes as env) =
try
(* Binders bound in the notation are consider first-order object *)
(* and binders not bound in the notation do not capture variables *)
(* outside the notation *)
let id' = coerce_to_id (fst (List.assoc id subst)) in
id', (Idset.add id' ids,tmpsc,scopes)
with Not_found ->
id, env
let decode_constrlist_value = function
| CAppExpl (_,_,l) -> l
| _ -> anomaly "Ill-formed list argument of notation"
let rec subst_iterator y t = function
| RVar (_,id) as x -> if id = y then t else x
| x -> map_rawconstr (subst_iterator y t) x
let rec subst_aconstr_in_rawconstr loc interp subst (ids,_,scopes as _env) =
function
| AVar id ->
begin
(* subst remembers the delimiters stack in the interpretation *)
(* of the notations *)
try
let (a,(scopt,subscopes)) = List.assoc id subst in
interp (ids,scopt,subscopes@scopes) a
with Not_found ->
(* Happens for local notation joint with inductive/fixpoint defs *)
RVar (loc,id)
end
| AList (x,_,iter,terminator,lassoc) ->
(try
(* All elements of the list are in scopes (scopt,subscopes) *)
let (a,(scopt,subscopes)) = List.assoc x subst in
let termin =
subst_aconstr_in_rawconstr loc interp subst (ids,None,scopes)
terminator in
let l = decode_constrlist_value a in
List.fold_right (fun a t ->
subst_iterator ldots_var t
(subst_aconstr_in_rawconstr loc interp
((x,(a,(scopt,subscopes)))::subst)
(ids,None,scopes) iter))
(if lassoc then List.rev l else l) termin
with Not_found ->
anomaly "Inconsistent substitution of recursive notation")
| t ->
rawconstr_of_aconstr_with_binders loc (traverse_binder subst)
(subst_aconstr_in_rawconstr loc interp subst) (ids,None,scopes) t
let intern_notation intern (_,tmp_scope,scopes as env) loc ntn args =
let ntn,args = contract_notation ntn args in
let scopes = option_cons tmp_scope scopes in
let ((ids,c),df) = Notation.interp_notation loc ntn scopes in
if !dump then dump_notation_location (ntn_loc loc args ntn) ntn df;
let subst = List.map2 (fun (id,scl) a -> (id,(a,scl))) ids args in
subst_aconstr_in_rawconstr loc intern subst env c
let set_type_scope (ids,tmp_scope,scopes) =
(ids,Some Notation.type_scope,scopes)
let reset_tmp_scope (ids,tmp_scope,scopes) =
(ids,None,scopes)
(**********************************************************************)
(* Main loop *)
let internalise sigma env allow_soapp lvar c =
let rec intern (ids,tmp_scope,scopes as env) = function
| CRef ref as x ->
let (c,imp,subscopes,l) = intern_reference env lvar ref in
(match intern_impargs c env imp subscopes l with
| [] -> c
| l -> RApp (constr_loc x, c, l))
| CFix (loc, (locid,iddef), dl) ->
let lf = List.map (fun (id,_,_,_,_) -> id) dl in
let dl = Array.of_list dl in
let n =
try
(list_index iddef lf) -1
with Not_found ->
raise (InternalisationError (locid,UnboundFixName (false,iddef)))
in
let idl = Array.map
(fun (id,n,bl,ty,bd) ->
let ((ids',_,_),rbl) =
List.fold_left intern_local_binder (env,[]) bl in
let ids'' = List.fold_right Idset.add lf ids' in
(List.rev rbl,
intern_type (ids',tmp_scope,scopes) ty,
intern (ids'',None,scopes) bd)) dl in
RRec (loc,RFix (Array.map (fun (_,n,_,_,_) -> n) dl,n),
Array.of_list lf,
Array.map (fun (bl,_,_) -> bl) idl,
Array.map (fun (_,ty,_) -> ty) idl,
Array.map (fun (_,_,bd) -> bd) idl)
| CCoFix (loc, (locid,iddef), dl) ->
let lf = List.map (fun (id,_,_,_) -> id) dl in
let dl = Array.of_list dl in
let n =
try
(list_index iddef lf) -1
with Not_found ->
raise (InternalisationError (locid,UnboundFixName (true,iddef)))
in
let idl = Array.map
(fun (id,bl,ty,bd) ->
let ((ids',_,_),rbl) =
List.fold_left intern_local_binder (env,[]) bl in
let ids'' = List.fold_right Idset.add lf ids' in
(List.rev rbl,
intern_type (ids',tmp_scope,scopes) ty,
intern (ids'',None,scopes) bd)) dl in
RRec (loc,RCoFix n,
Array.of_list lf,
Array.map (fun (bl,_,_) -> bl) idl,
Array.map (fun (_,ty,_) -> ty) idl,
Array.map (fun (_,_,bd) -> bd) idl)
| CArrow (loc,c1,c2) ->
RProd (loc, Anonymous, intern_type env c1, intern_type env c2)
| CProdN (loc,[],c2) ->
intern_type env c2
| CProdN (loc,(nal,ty)::bll,c2) ->
iterate_prod loc env ty (CProdN (loc, bll, c2)) nal
| CLambdaN (loc,[],c2) ->
intern env c2
| CLambdaN (loc,(nal,ty)::bll,c2) ->
iterate_lam loc (reset_tmp_scope env) ty (CLambdaN (loc, bll, c2)) nal
| CLetIn (loc,(_,na),c1,c2) ->
RLetIn (loc, na, intern (reset_tmp_scope env) c1,
intern (push_name_env lvar env na) c2)
| CNotation (loc,"- _",[CNumeral(_,p)]) when Bigint.is_strictly_pos p ->
let scopes = option_cons tmp_scope scopes in
Notation.interp_numeral loc (Bigint.neg p) scopes
| CNotation (_,"( _ )",[a]) -> intern env a
| CNotation (loc,ntn,args) ->
intern_notation intern env loc ntn args
| CNumeral (loc, n) ->
let scopes = option_cons tmp_scope scopes in
Notation.interp_numeral loc n scopes
| CDelimiters (loc, key, e) ->
intern (ids,None,find_delimiters_scope loc key::scopes) e
| CAppExpl (loc, (isproj,ref), args) ->
let (f,_,args_scopes,_) = intern_reference env lvar ref in
check_projection isproj f;
RApp (loc, f, intern_args env args_scopes args)
| CApp (loc, (isproj,f), args) ->
let isproj,f,args = match f with
(* Compact notations like "t.(f args') args" *)
| CApp (_,(Some _,f), args') when isproj=None -> isproj,f,args'@args
(* Don't compact "(f args') args" to resolve implicits separately *)
| _ -> isproj,f,args in
let (c,impargs,args_scopes,l) =
match f with
| CRef ref -> intern_reference env lvar ref
| CNotation (loc,ntn,[]) ->
let c = intern_notation intern env loc ntn [] in
find_appl_head_data lvar c
| x -> (intern env f,[],[],[]) in
let args =
intern_impargs c env impargs args_scopes (merge_impargs l args) in
check_projection isproj c;
(match c with
(* Now compact "(f args') args" *)
| RApp (loc', f', args') -> RApp (join_loc loc' loc, f',args'@args)
| _ -> RApp (loc, c, args))
| CCases (loc, (po,rtnpo), tms, eqns) ->
let tms,env' = List.fold_right
(fun citm (inds,env) ->
let (tm,ind),nal = intern_case_item env citm in
(tm,ref ind)::inds,List.fold_left (push_name_env lvar) env nal)
tms ([],env) in
let rtnpo = option_app (intern_type env') rtnpo in
let eqns' = List.map (intern_eqn (List.length tms) env) eqns in
RCases (loc, (option_app (intern_type env) po, ref rtnpo), tms,
List.flatten eqns')
| COrderedCase (loc, tag, po, c, cl) ->
let env = reset_tmp_scope env in
ROrderedCase (loc, tag, option_app (intern_type env) po,
intern env c,
Array.of_list (List.map (intern env) cl),ref None)
| CLetTuple (loc, nal, (na,po), b, c) ->
let env' = reset_tmp_scope env in
let ((b',(na',_)),ids) = intern_case_item env' (b,(na,None)) in
let env'' = List.fold_left (push_name_env lvar) env ids in
let p' = option_app (intern_type env'') po in
RLetTuple (loc, nal, (na', p'), b',
intern (List.fold_left (push_name_env lvar) env nal) c)
| CIf (loc, c, (na,po), b1, b2) ->
let env' = reset_tmp_scope env in
let ((c',(na',_)),ids) = intern_case_item env' (c,(na,None)) in
let env'' = List.fold_left (push_name_env lvar) env ids in
let p' = option_app (intern_type env'') po in
RIf (loc, c', (na', p'), intern env b1, intern env b2)
| CHole loc ->
RHole (loc, Evd.QuestionMark)
| CPatVar (loc, n) when allow_soapp ->
RPatVar (loc, n)
| CPatVar (loc, (false,n)) when Options.do_translate () ->
RVar (loc, n)
| CPatVar (loc, (false,n)) ->
if List.mem n (fst (let (a,_,_,_,_) = lvar in a)) & !Options.v7 then
RVar (loc, n)
else
error_unbound_patvar loc n
| CPatVar (loc, _) ->
raise (InternalisationError (loc,NegativeMetavariable))
| CEvar (loc, n) ->
REvar (loc, n, None)
| CSort (loc, s) ->
RSort(loc,s)
| CCast (loc, c1, c2) ->
RCast (loc,intern env c1,intern_type env c2)
| CDynamic (loc,d) -> RDynamic (loc,d)
and intern_type (ids,_,scopes) =
intern (ids,Some Notation.type_scope,scopes)
and intern_local_binder ((ids,ts,sc as env),bl) = function
| LocalRawAssum(nal,ty) ->
let (loc,na) = List.hd nal in
(* TODO: fail if several names with different implicit types *)
let ty = locate_if_isevar loc na (intern_type env ty) in
List.fold_left
(fun ((ids,ts,sc),bl) (_,na) ->
((name_fold Idset.add na ids,ts,sc), (na,None,ty)::bl))
(env,bl) nal
| LocalRawDef((loc,na),def) ->
((name_fold Idset.add na ids,ts,sc),
(na,Some(intern env def),RHole(loc,Evd.BinderType na))::bl)
and intern_eqn n (ids,tmp_scope,scopes as _env) (loc,lhs,rhs) =
let idsl_pll = List.map (intern_cases_pattern scopes ([],[]) None) lhs in
let eqn_ids,pll = product_of_cases_patterns [] idsl_pll in
(* Linearity implies the order in ids is irrelevant *)
check_linearity lhs eqn_ids;
check_uppercase loc eqn_ids;
check_number_of_pattern loc n (snd (List.hd pll));
let env_ids = List.fold_right Idset.add eqn_ids ids in
List.map (fun (subst,pl) ->
let rhs = replace_vars_constr_expr subst rhs in
List.iter message_redundant_alias subst;
let rhs' = intern (env_ids,tmp_scope,scopes) rhs in
(loc,eqn_ids,pl,rhs')) pll
and intern_case_item (vars,_,scopes as env) (tm,(na,t)) =
let tm' = intern env tm in
let ids,typ = match t with
| Some t ->
let tids = names_of_cases_indtype t in
let tids = List.fold_right Idset.add tids Idset.empty in
let t = intern_type (tids,None,scopes) t in
begin match t with
| RRef (loc,IndRef ind) -> [],Some (loc,ind,[])
| RApp (loc,RRef (_,IndRef ind),l) ->
let nal = List.map (function
| RHole _ -> Anonymous
| RVar (_,id) -> Name id
| c ->
user_err_loc (loc_of_rawconstr c,"",str "Not a name")) l in
nal, Some (loc,ind,nal)
| _ -> error_bad_inductive_type (loc_of_rawconstr t)
end
| None ->
[], None in
let na = match tm', na with
| RVar (_,id), None when Idset.mem id vars & not !Options.v7 -> Name id
| _, None -> Anonymous
| _, Some na -> na in
(tm',(na,typ)), na::ids
and iterate_prod loc2 env ty body = function
| (loc1,na)::nal ->
if nal <> [] then check_capture loc1 ty na;
let body = iterate_prod loc2 (push_name_env lvar env na) ty body nal in
let ty = locate_if_isevar loc1 na (intern_type env ty) in
RProd (join_loc loc1 loc2, na, ty, body)
| [] -> intern_type env body
and iterate_lam loc2 env ty body = function
| (loc1,na)::nal ->
if nal <> [] then check_capture loc1 ty na;
let body = iterate_lam loc2 (push_name_env lvar env na) ty body nal in
let ty = locate_if_isevar loc1 na (intern_type env ty) in
RLambda (join_loc loc1 loc2, na, ty, body)
| [] -> intern env body
and intern_impargs c env l subscopes args =
let eargs, rargs = extract_explicit_arg l args in
let rec aux n impl subscopes eargs rargs =
let (enva,subscopes') = apply_scope_env env subscopes in
match (impl,rargs) with
| (imp::impl', rargs) when is_status_implicit imp ->
begin try
let id = name_of_implicit imp in
let (_,a) = List.assoc id eargs in
let eargs' = List.remove_assoc id eargs in
intern enva a :: aux (n+1) impl' subscopes' eargs' rargs
with Not_found ->
if rargs=[] & eargs=[] &
not (List.for_all is_status_implicit impl') then
(* Less regular arguments than expected: don't complete *)
(* with implicit arguments *)
[]
else
RHole (set_hole_implicit (n,get_implicit_name n l) c) ::
aux (n+1) impl' subscopes' eargs rargs
end
| (imp::impl', a::rargs') ->
intern enva a :: aux (n+1) impl' subscopes' eargs rargs'
| (imp::impl', []) ->
if eargs <> [] then
(let (id,(loc,_)) = List.hd eargs in
user_err_loc (loc,"",str "Not enough non implicit
arguments to accept the argument bound to " ++ pr_id id));
[]
| ([], rargs) ->
assert (eargs = []);
intern_args env subscopes rargs
in aux 1 l subscopes eargs rargs
and intern_args env subscopes = function
| [] -> []
| a::args ->
let (enva,subscopes) = apply_scope_env env subscopes in
(intern enva a) :: (intern_args env subscopes args)
in
try
intern env c
with
InternalisationError (loc,e) ->
user_err_loc (loc,"internalize",explain_internalisation_error e)
(**************************************************************************)
(* Functions to translate constr_expr into rawconstr *)
(**************************************************************************)
let extract_ids env =
List.fold_right Idset.add
(Termops.ids_of_rel_context (Environ.rel_context env))
Idset.empty
let interp_rawconstr_gen_with_implicits isarity sigma env (indpars,impls) allow_soapp ltacvar c =
let tmp_scope = if isarity then Some Notation.type_scope else None in
internalise sigma (extract_ids env, tmp_scope,[])
allow_soapp (ltacvar,Environ.named_context env, [], indpars, impls) c
let interp_rawconstr_gen isarity sigma env allow_soapp ltacvar c =
interp_rawconstr_gen_with_implicits isarity sigma env ([],[]) allow_soapp ltacvar c
let interp_rawconstr sigma env c =
interp_rawconstr_gen false sigma env false ([],[]) c
let interp_rawtype sigma env c =
interp_rawconstr_gen true sigma env false ([],[]) c
let interp_rawtype_with_implicits sigma env impls c =
interp_rawconstr_gen_with_implicits true sigma env impls false ([],[]) c
let interp_rawconstr_with_implicits sigma env vars impls c =
interp_rawconstr_gen_with_implicits false sigma env ([],impls) false
(vars,[]) c
(*
(* The same as interp_rawconstr but with a list of variables which must not be
globalized *)
let interp_rawconstr_wo_glob sigma env lvar c =
interp_rawconstr_gen sigma env [] (Some []) lvar c
*)
(*********************************************************************)
(* Functions to parse and interpret constructions *)
let interp_constr sigma env c =
understand sigma env (interp_rawconstr sigma env c)
let interp_openconstr sigma env c =
understand_gen_tcc sigma env [] None (interp_rawconstr sigma env c)
(*
let interp_casted_openconstr sigma env c typ =
understand_gen_tcc sigma env [] (Some typ) (interp_rawconstr sigma env c)
*)
let interp_type sigma env c =
understand_type sigma env (interp_rawtype sigma env c)
let interp_binder sigma env na t =
let t = interp_rawtype sigma env t in
understand_type sigma env (locate_if_isevar (loc_of_rawconstr t) na t)
let interp_type_with_implicits sigma env impls c =
understand_type sigma env (interp_rawtype_with_implicits sigma env impls c)
let judgment_of_rawconstr sigma env c =
understand_judgment sigma env (interp_rawconstr sigma env c)
let type_judgment_of_rawconstr sigma env c =
understand_type_judgment sigma env (interp_rawconstr sigma env c)
(* To retype a list of key*constr with undefined key *)
let retype_list sigma env lst =
List.fold_right (fun (x,csr) a ->
try (x,Retyping.get_judgment_of env sigma csr)::a with
| Anomaly _ -> a) lst []
(* List.map (fun (x,csr) -> (x,Retyping.get_judgment_of env sigma csr)) lst*)
type ltac_sign = identifier list * unbound_ltac_var_map
type ltac_env = (identifier * Term.constr) list * unbound_ltac_var_map
(* Interprets a constr according to two lists *)
(* of instantiations (variables and metas) *)
(* Note: typ is retyped *)
let interp_constr_gen sigma env (ltacvars,unbndltacvars) c exptyp =
let c = interp_rawconstr_gen false sigma env false
(List.map fst ltacvars,unbndltacvars) c in
let typs = retype_list sigma env ltacvars in
understand_gen_ltac sigma env (typs,[]) exptyp c
(*Interprets a casted constr according to two lists of instantiations
(variables and metas)*)
let interp_openconstr_gen sigma env (ltacvars,unbndltacvars) c exptyp =
let c = interp_rawconstr_gen false sigma env false
(List.map fst ltacvars,unbndltacvars) c in
let typs = retype_list sigma env ltacvars in
understand_gen_tcc sigma env typs exptyp c
let interp_casted_constr sigma env c typ =
understand_gen sigma env [] (Some typ) (interp_rawconstr sigma env c)
let interp_casted_constr_with_implicits sigma env impls c typ =
understand_gen sigma env [] (Some typ)
(interp_rawconstr_with_implicits sigma env [] impls c)
let interp_constrpattern_gen sigma env ltacvar c =
let c = interp_rawconstr_gen false sigma env true (ltacvar,[]) c in
pattern_of_rawconstr c
let interp_constrpattern sigma env c =
interp_constrpattern_gen sigma env [] c
let interp_aconstr impls vars a =
let env = Global.env () in
(* [vl] is intended to remember the scope of the free variables of [a] *)
let vl = List.map (fun id -> (id,ref None)) vars in
let c = internalise Evd.empty (extract_ids env, None, [])
false (([],[]),Environ.named_context env,vl,[],impls) a in
(* Translate and check that [c] has all its free variables bound in [vars] *)
let a = aconstr_of_rawconstr vars c in
(* Returns [a] and the ordered list of variables with their scopes *)
(* Variables occurring in binders have no relevant scope since bound *)
List.map
(fun (id,r) -> (id,match !r with None -> None,[] | Some (a,l) -> a,l)) vl,
a
(**********************************************************************)
(* Locating reference, possibly via an abbreviation *)
let locate_reference qid =
match Nametab.extended_locate qid with
| TrueGlobal ref -> ref
| SyntacticDef kn ->
match Syntax_def.search_syntactic_definition dummy_loc kn with
| Rawterm.RRef (_,ref) -> ref
| _ -> raise Not_found
let is_global id =
try
let _ = locate_reference (make_short_qualid id) in true
with Not_found ->
false
let global_reference id =
constr_of_global (locate_reference (make_short_qualid id))
let construct_reference ctx id =
try
Term.mkVar (let _ = Sign.lookup_named id ctx in id)
with Not_found ->
global_reference id
let global_reference_in_absolute_module dir id =
constr_of_global (Nametab.absolute_reference (Libnames.make_path dir id))
|