1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Flags
open Names
open Nameops
open Libnames
open Impargs
open Rawterm
open Pattern
open Pretyping
open Cases
open Topconstr
open Nametab
open Notation
open Inductiveops
(* To interpret implicits and arg scopes of recursive variables in
inductive types and recursive definitions *)
type var_internalisation_data =
identifier list * Impargs.implicits_list * scope_name option list
type implicits_env = (identifier * var_internalisation_data) list
type full_implicits_env = identifier list * implicits_env
type raw_binder = (name * binding_kind * rawconstr option * rawconstr)
let interning_grammar = ref false
(* Historically for parsing grammar rules, but in fact used only for
translator, v7 parsing, and unstrict tactic internalisation *)
let for_grammar f x =
interning_grammar := true;
let a = f x in
interning_grammar := false;
a
(**********************************************************************)
(* Internalisation errors *)
type internalisation_error =
| VariableCapture of identifier
| WrongExplicitImplicit
| NegativeMetavariable
| NotAConstructor of reference
| UnboundFixName of bool * identifier
| NonLinearPattern of identifier
| BadPatternsNumber of int * int
| BadExplicitationNumber of explicitation * int option
exception InternalisationError of loc * internalisation_error
let explain_variable_capture id =
str "The variable " ++ pr_id id ++ str " occurs in its type"
let explain_wrong_explicit_implicit =
str "Found an explicitly given implicit argument but was expecting" ++
fnl () ++ str "a regular one"
let explain_negative_metavariable =
str "Metavariable numbers must be positive"
let explain_not_a_constructor ref =
str "Unknown constructor: " ++ pr_reference ref
let explain_unbound_fix_name is_cofix id =
str "The name" ++ spc () ++ pr_id id ++
spc () ++ str "is not bound in the corresponding" ++ spc () ++
str (if is_cofix then "co" else "") ++ str "fixpoint definition"
let explain_non_linear_pattern id =
str "The variable " ++ pr_id id ++ str " is bound several times in pattern"
let explain_bad_patterns_number n1 n2 =
str "Expecting " ++ int n1 ++ str (plural n1 " pattern") ++
str " but found " ++ int n2
let explain_bad_explicitation_number n po =
match n with
| ExplByPos (n,_id) ->
let s = match po with
| None -> str "a regular argument"
| Some p -> int p in
str "Bad explicitation number: found " ++ int n ++
str" but was expecting " ++ s
| ExplByName id ->
let s = match po with
| None -> str "a regular argument"
| Some p -> (*pr_id (name_of_position p) in*) failwith "" in
str "Bad explicitation name: found " ++ pr_id id ++
str" but was expecting " ++ s
let explain_internalisation_error = function
| VariableCapture id -> explain_variable_capture id
| WrongExplicitImplicit -> explain_wrong_explicit_implicit
| NegativeMetavariable -> explain_negative_metavariable
| NotAConstructor ref -> explain_not_a_constructor ref
| UnboundFixName (iscofix,id) -> explain_unbound_fix_name iscofix id
| NonLinearPattern id -> explain_non_linear_pattern id
| BadPatternsNumber (n1,n2) -> explain_bad_patterns_number n1 n2
| BadExplicitationNumber (n,po) -> explain_bad_explicitation_number n po
let error_unbound_patvar loc n =
user_err_loc
(loc,"glob_qualid_or_patvar", str "?" ++ pr_patvar n ++
str " is unbound")
let error_bad_inductive_type loc =
user_err_loc (loc,"",str
"This should be an inductive type applied to names or \"_\"")
let error_inductive_parameter_not_implicit loc =
user_err_loc (loc,"", str
("The parameters of inductive types do not bind in\n"^
"the 'return' clauses; they must be replaced by '_' in the 'in' clauses."))
(**********************************************************************)
(* Dump of globalization (to be used by coqdoc) *)
let token_number = ref 0
let last_pos = ref 0
type coqdoc_state = Lexer.location_table * int * int
let coqdoc_freeze () =
let lt = Lexer.location_table() in
let state = (lt,!token_number,!last_pos) in
token_number := 0;
last_pos := 0;
state
let coqdoc_unfreeze (lt,tn,lp) =
Lexer.restore_location_table lt;
token_number := tn;
last_pos := lp
open Decl_kinds
let type_of_logical_kind = function
| IsDefinition def ->
(match def with
| Definition -> "def"
| Coercion -> "coe"
| SubClass -> "subclass"
| CanonicalStructure -> "canonstruc"
| Example -> "ex"
| Fixpoint -> "def"
| CoFixpoint -> "def"
| Scheme -> "scheme"
| StructureComponent -> "proj"
| IdentityCoercion -> "coe"
| Instance -> "inst"
| Method -> "meth")
| IsAssumption a ->
(match a with
| Definitional -> "def"
| Logical -> "prf"
| Conjectural -> "prf")
| IsProof th ->
(match th with
| Theorem
| Lemma
| Fact
| Remark
| Property
| Proposition
| Corollary -> "thm")
let type_of_global_ref gr =
if Typeclasses.is_class gr then
"class"
else
match gr with
| ConstRef cst ->
type_of_logical_kind (Decls.constant_kind cst)
| VarRef v ->
"var" ^ type_of_logical_kind (Decls.variable_kind v)
| IndRef ind ->
let (mib,oib) = Inductive.lookup_mind_specif (Global.env ()) ind in
if mib.Declarations.mind_record then
if mib.Declarations.mind_finite then "rec"
else "corec"
else if mib.Declarations.mind_finite then "ind"
else "coind"
| ConstructRef _ -> "constr"
let remove_sections dir =
if is_dirpath_prefix_of dir (Lib.cwd ()) then
(* Not yet (fully) discharged *)
extract_dirpath_prefix (Lib.sections_depth ()) (Lib.cwd ())
else
(* Theorem/Lemma outside its outer section of definition *)
dir
let add_glob_gen loc sp lib_dp ty =
let mod_dp,id = repr_path sp in
let mod_dp = remove_sections mod_dp in
let mod_dp_trunc = drop_dirpath_prefix lib_dp mod_dp in
let filepath = string_of_dirpath lib_dp in
let modpath = string_of_dirpath mod_dp_trunc in
let ident = string_of_id id in
dump_string (Printf.sprintf "R%d %s %s %s %s\n"
(fst (unloc loc)) filepath modpath ident ty)
let add_glob loc ref =
let sp = Nametab.sp_of_global ref in
let lib_dp = Lib.library_part ref in
let ty = type_of_global_ref ref in
add_glob_gen loc sp lib_dp ty
let add_glob loc ref =
if !Flags.dump && loc <> dummy_loc then add_glob loc ref
let mp_of_kn kn =
let mp,sec,l = repr_kn kn in
MPdot (mp,l)
let add_glob_kn loc kn =
let sp = Nametab.sp_of_syntactic_definition kn in
let lib_dp = Lib.dp_of_mp (mp_of_kn kn) in
add_glob_gen loc sp lib_dp "syndef"
let add_glob_kn loc ref =
if !Flags.dump && loc <> dummy_loc then add_glob_kn loc ref
let add_local loc id = ()
(* let mod_dp,id = repr_path sp in *)
(* let mod_dp = remove_sections mod_dp in *)
(* let mod_dp_trunc = drop_dirpath_prefix lib_dp mod_dp in *)
(* let filepath = string_of_dirpath lib_dp in *)
(* let modpath = string_of_dirpath mod_dp_trunc in *)
(* let ident = string_of_id id in *)
(* dump_string (Printf.sprintf "R%d %s %s %s %s\n" *)
(* (fst (unloc loc)) filepath modpath ident ty) *)
let dump_binding loc id = ()
let loc_of_notation f loc args ntn =
if args=[] or ntn.[0] <> '_' then fst (unloc loc)
else snd (unloc (f (List.hd args)))
let ntn_loc = loc_of_notation constr_loc
let patntn_loc = loc_of_notation cases_pattern_expr_loc
let dump_notation_location pos ((path,df),sc) =
let rec next growing =
let loc = Lexer.location_function !token_number in
let (bp,_) = unloc loc in
if growing then if bp >= pos then loc else (incr token_number;next true)
else if bp = pos then loc
else if bp > pos then (decr token_number;next false)
else (incr token_number;next true) in
let loc = next (pos >= !last_pos) in
last_pos := pos;
let path = string_of_dirpath path in
let _sc = match sc with Some sc -> " "^sc | None -> "" in
dump_string (Printf.sprintf "R%d %s \"%s\" not\n" (fst (unloc loc)) path df)
(**********************************************************************)
(* Contracting "{ _ }" in notations *)
let rec wildcards ntn n =
if n = String.length ntn then []
else let l = spaces ntn (n+1) in if ntn.[n] = '_' then n::l else l
and spaces ntn n =
if n = String.length ntn then []
else if ntn.[n] = ' ' then wildcards ntn (n+1) else spaces ntn (n+1)
let expand_notation_string ntn n =
let pos = List.nth (wildcards ntn 0) n in
let hd = if pos = 0 then "" else String.sub ntn 0 pos in
let tl =
if pos = String.length ntn then ""
else String.sub ntn (pos+1) (String.length ntn - pos -1) in
hd ^ "{ _ }" ^ tl
(* This contracts the special case of "{ _ }" for sumbool, sumor notations *)
(* Remark: expansion of squash at definition is done in metasyntax.ml *)
let contract_notation ntn l =
let ntn' = ref ntn in
let rec contract_squash n = function
| [] -> []
| CNotation (_,"{ _ }",[a]) :: l ->
ntn' := expand_notation_string !ntn' n;
contract_squash n (a::l)
| a :: l ->
a::contract_squash (n+1) l in
let l = contract_squash 0 l in
(* side effect; don't inline *)
!ntn',l
let contract_pat_notation ntn l =
let ntn' = ref ntn in
let rec contract_squash n = function
| [] -> []
| CPatNotation (_,"{ _ }",[a]) :: l ->
ntn' := expand_notation_string !ntn' n;
contract_squash n (a::l)
| a :: l ->
a::contract_squash (n+1) l in
let l = contract_squash 0 l in
(* side effect; don't inline *)
!ntn',l
(**********************************************************************)
(* Remembering the parsing scope of variables in notations *)
let make_current_scope (tmp_scope,scopes) = Option.List.cons tmp_scope scopes
let set_var_scope loc id (_,scopt,scopes) varscopes =
let idscopes = List.assoc id varscopes in
if !idscopes <> None &
make_current_scope (Option.get !idscopes)
<> make_current_scope (scopt,scopes) then
user_err_loc (loc,"set_var_scope",
pr_id id ++ str " already occurs in a different scope")
else
idscopes := Some (scopt,scopes)
(**********************************************************************)
(* Syntax extensions *)
let traverse_binder subst (renaming,(ids,tmpsc,scopes as env)) id =
try
(* Binders bound in the notation are considered first-order objects *)
let _,id' = coerce_to_id (fst (List.assoc id subst)) in
(renaming,(Idset.add id' ids,tmpsc,scopes)), id'
with Not_found ->
(* Binders not bound in the notation do not capture variables *)
(* outside the notation (i.e. in the substitution) *)
let fvs1 = List.map (fun (_,(c,_)) -> free_vars_of_constr_expr c) subst in
let fvs2 = List.map snd renaming in
let fvs = List.flatten (List.map Idset.elements fvs1) @ fvs2 in
let id' = next_ident_away id fvs in
let renaming' = if id=id' then renaming else (id,id')::renaming in
(renaming',env), id'
let decode_constrlist_value = function
| CAppExpl (_,_,l) -> l
| _ -> anomaly "Ill-formed list argument of notation"
let rec subst_iterator y t = function
| RVar (_,id) as x -> if id = y then t else x
| x -> map_rawconstr (subst_iterator y t) x
let rec subst_aconstr_in_rawconstr loc interp subst (renaming,(ids,_,scopes)) =
function
| AVar id ->
begin
(* subst remembers the delimiters stack in the interpretation *)
(* of the notations *)
try
let (a,(scopt,subscopes)) = List.assoc id subst in
interp (ids,scopt,subscopes@scopes) a
with Not_found ->
try
RVar (loc,List.assoc id renaming)
with Not_found ->
(* Happens for local notation joint with inductive/fixpoint defs *)
RVar (loc,id)
end
| AList (x,_,iter,terminator,lassoc) ->
(try
(* All elements of the list are in scopes (scopt,subscopes) *)
let (a,(scopt,subscopes)) = List.assoc x subst in
let termin =
subst_aconstr_in_rawconstr loc interp subst
(renaming,(ids,None,scopes)) terminator in
let l = decode_constrlist_value a in
List.fold_right (fun a t ->
subst_iterator ldots_var t
(subst_aconstr_in_rawconstr loc interp
((x,(a,(scopt,subscopes)))::subst)
(renaming,(ids,None,scopes)) iter))
(if lassoc then List.rev l else l) termin
with Not_found ->
anomaly "Inconsistent substitution of recursive notation")
| t ->
rawconstr_of_aconstr_with_binders loc (traverse_binder subst)
(subst_aconstr_in_rawconstr loc interp subst)
(renaming,(ids,None,scopes)) t
let intern_notation intern (_,tmp_scope,scopes as env) loc ntn args =
let ntn,args = contract_notation ntn args in
let ((ids,c),df) = Notation.interp_notation loc ntn (tmp_scope,scopes) in
if !dump then dump_notation_location (ntn_loc loc args ntn) df;
let subst = List.map2 (fun (id,scl) a -> (id,(a,scl))) ids args in
subst_aconstr_in_rawconstr loc intern subst ([],env) c
let set_type_scope (ids,tmp_scope,scopes) =
(ids,Some Notation.type_scope,scopes)
let reset_tmp_scope (ids,tmp_scope,scopes) =
(ids,None,scopes)
let rec it_mkRProd env body =
match env with
(na, bk, _, t) :: tl -> it_mkRProd tl (RProd (dummy_loc, na, bk, t, body))
| [] -> body
let rec it_mkRLambda env body =
match env with
(na, bk, _, t) :: tl -> it_mkRLambda tl (RLambda (dummy_loc, na, bk, t, body))
| [] -> body
(**********************************************************************)
(* Discriminating between bound variables and global references *)
(* [vars1] is a set of name to avoid (used for the tactic language);
[vars2] is the set of global variables, env is the set of variables
abstracted until this point *)
let intern_var (env,_,_ as genv) (ltacvars,vars2,vars3,(_,impls)) loc id =
let (vars1,unbndltacvars) = ltacvars in
(* Is [id] an inductive type potentially with implicit *)
try
let l,impl,argsc = List.assoc id impls in
let l = List.map
(fun id -> CRef (Ident (loc,id)), Some (loc,ExplByName id)) l in
RVar (loc,id), impl, argsc, l
with Not_found ->
(* Is [id] bound in current env or is an ltac var bound to constr *)
if Idset.mem id env or List.mem id vars1
then
RVar (loc,id), [], [], []
(* Is [id] a notation variable *)
else if List.mem_assoc id vars3
then
(set_var_scope loc id genv vars3; RVar (loc,id), [], [], [])
else
(* Is [id] bound to a free name in ltac (this is an ltac error message) *)
try
match List.assoc id unbndltacvars with
| None -> user_err_loc (loc,"intern_var",
str "variable " ++ pr_id id ++ str " should be bound to a term")
| Some id0 -> Pretype_errors.error_var_not_found_loc loc id0
with Not_found ->
(* Is [id] a goal or section variable *)
let _ = Sign.lookup_named id vars2 in
try
(* [id] a section variable *)
(* Redundant: could be done in intern_qualid *)
let ref = VarRef id in
RRef (loc, ref), implicits_of_global ref, find_arguments_scope ref, []
with _ ->
(* [id] a goal variable *)
RVar (loc,id), [], [], []
let find_appl_head_data (_,_,_,(_,impls)) = function
| RRef (_,ref) as x -> x,implicits_of_global ref,find_arguments_scope ref,[]
| x -> x,[],[],[]
let error_not_enough_arguments loc =
user_err_loc (loc,"",str "Abbreviation is not applied enough")
let check_no_explicitation l =
let l = List.filter (fun (a,b) -> b <> None) l in
if l <> [] then
let loc = fst (Option.get (snd (List.hd l))) in
user_err_loc
(loc,"",str"Unexpected explicitation of the argument of an abbreviation")
(* Is it a global reference or a syntactic definition? *)
let intern_qualid loc qid intern env args =
try match Nametab.extended_locate qid with
| TrueGlobal ref ->
add_glob loc ref;
RRef (loc, ref), args
| SyntacticDef sp ->
add_glob_kn loc sp;
let (ids,c) = Syntax_def.search_syntactic_definition loc sp in
let nids = List.length ids in
if List.length args < nids then error_not_enough_arguments loc;
let args1,args2 = list_chop nids args in
check_no_explicitation args1;
let subst = List.map2 (fun (id,scl) a -> (id,(fst a,scl))) ids args1 in
subst_aconstr_in_rawconstr loc intern subst ([],env) c, args2
with Not_found ->
error_global_not_found_loc loc qid
(* Rule out section vars since these should have been found by intern_var *)
let intern_non_secvar_qualid loc qid intern env args =
match intern_qualid loc qid intern env args with
| RRef (loc, VarRef id),_ -> error_global_not_found_loc loc qid
| r -> r
let intern_applied_reference intern env lvar args = function
| Qualid (loc, qid) ->
let r,args2 = intern_qualid loc qid intern env args in
find_appl_head_data lvar r, args2
| Ident (loc, id) ->
try intern_var env lvar loc id, args
with Not_found ->
let qid = make_short_qualid id in
try
let r,args2 = intern_non_secvar_qualid loc qid intern env args in
find_appl_head_data lvar r, args2
with e ->
(* Extra allowance for non globalizing functions *)
if !interning_grammar then (RVar (loc,id), [], [], []),args
else raise e
let interp_reference vars r =
let (r,_,_,_),_ =
intern_applied_reference (fun _ -> error_not_enough_arguments dummy_loc)
(Idset.empty,None,[]) (vars,[],[],([],[])) [] r
in r
let apply_scope_env (ids,_,scopes) = function
| [] -> (ids,None,scopes), []
| sc::scl -> (ids,sc,scopes), scl
let rec adjust_scopes env scopes = function
| [] -> []
| a::args ->
let (enva,scopes) = apply_scope_env env scopes in
enva :: adjust_scopes env scopes args
let rec simple_adjust_scopes n = function
| [] -> if n=0 then [] else None :: simple_adjust_scopes (n-1) []
| sc::scopes -> sc :: simple_adjust_scopes (n-1) scopes
let find_remaining_constructor_scopes pl1 pl2 (ind,j as cstr) =
let (mib,mip) = Inductive.lookup_mind_specif (Global.env()) ind in
let npar = mib.Declarations.mind_nparams in
snd (list_chop (List.length pl1 + npar)
(simple_adjust_scopes (npar + List.length pl2)
(find_arguments_scope (ConstructRef cstr))))
(**********************************************************************)
(* Cases *)
let product_of_cases_patterns ids idspl =
List.fold_right (fun (ids,pl) (ids',ptaill) ->
(ids@ids',
(* Cartesian prod of the or-pats for the nth arg and the tail args *)
List.flatten (
List.map (fun (subst,p) ->
List.map (fun (subst',ptail) -> (subst@subst',p::ptail)) ptaill) pl)))
idspl (ids,[[],[]])
let simple_product_of_cases_patterns pl =
List.fold_right (fun pl ptaill ->
List.flatten (List.map (fun (subst,p) ->
List.map (fun (subst',ptail) -> (subst@subst',p::ptail)) ptaill) pl))
pl [[],[]]
(* Check linearity of pattern-matching *)
let rec has_duplicate = function
| [] -> None
| x::l -> if List.mem x l then (Some x) else has_duplicate l
let loc_of_lhs lhs =
join_loc (fst (List.hd lhs)) (fst (list_last lhs))
let check_linearity lhs ids =
match has_duplicate ids with
| Some id ->
raise (InternalisationError (loc_of_lhs lhs,NonLinearPattern id))
| None ->
()
(* Match the number of pattern against the number of matched args *)
let check_number_of_pattern loc n l =
let p = List.length l in
if n<>p then raise (InternalisationError (loc,BadPatternsNumber (n,p)))
let check_or_pat_variables loc ids idsl =
if List.exists (fun ids' -> not (list_eq_set ids ids')) idsl then
user_err_loc (loc, "", str
"The components of this disjunctive pattern must bind the same variables")
let check_constructor_length env loc cstr pl pl0 =
let n = List.length pl + List.length pl0 in
let nargs = Inductiveops.constructor_nrealargs env cstr in
let nhyps = Inductiveops.constructor_nrealhyps env cstr in
if n <> nargs && n <> nhyps (* i.e. with let's *) then
error_wrong_numarg_constructor_loc loc env cstr nargs
(* Manage multiple aliases *)
(* [merge_aliases] returns the sets of all aliases encountered at this
point and a substitution mapping extra aliases to the first one *)
let merge_aliases (ids,subst as _aliases) id =
ids@[id], if ids=[] then subst else (id, List.hd ids)::subst
let alias_of = function
| ([],_) -> Anonymous
| (id::_,_) -> Name id
let message_redundant_alias (id1,id2) =
if_verbose warning
("Alias variable "^(string_of_id id1)^" is merged with "^(string_of_id id2))
(* Expanding notations *)
let error_invalid_pattern_notation loc =
user_err_loc (loc,"",str "Invalid notation for pattern")
let chop_aconstr_constructor loc (ind,k) args =
let nparams = (fst (Global.lookup_inductive ind)).Declarations.mind_nparams in
let params,args = list_chop nparams args in
List.iter (function AHole _ -> ()
| _ -> error_invalid_pattern_notation loc) params;
args
let decode_patlist_value = function
| CPatCstr (_,_,l) -> l
| _ -> anomaly "Ill-formed list argument of notation"
let rec subst_pat_iterator y t (subst,p) = match p with
| PatVar (_,id) as x ->
if id = Name y then t else [subst,x]
| PatCstr (loc,id,l,alias) ->
let l' = List.map (fun a -> (subst_pat_iterator y t ([],a))) l in
let pl = simple_product_of_cases_patterns l' in
List.map (fun (subst',pl) -> subst'@subst,PatCstr (loc,id,pl,alias)) pl
let subst_cases_pattern loc alias intern subst scopes a =
let rec aux alias subst = function
| AVar id ->
begin
(* subst remembers the delimiters stack in the interpretation *)
(* of the notations *)
try
let (a,(scopt,subscopes)) = List.assoc id subst in
intern (subscopes@scopes) ([],[]) scopt a
with Not_found ->
if id = ldots_var then [], [[], PatVar (loc,Name id)] else
anomaly ("Unbound pattern notation variable: "^(string_of_id id))
(*
(* Happens for local notation joint with inductive/fixpoint defs *)
if aliases <> ([],[]) then
anomaly "Pattern notation without constructors";
[[id],[]], PatVar (loc,Name id)
*)
end
| ARef (ConstructRef c) ->
([],[[], PatCstr (loc,c, [], alias)])
| AApp (ARef (ConstructRef cstr),args) ->
let args = chop_aconstr_constructor loc cstr args in
let idslpll = List.map (aux Anonymous subst) args in
let ids',pll = product_of_cases_patterns [] idslpll in
let pl' = List.map (fun (subst,pl) ->
subst,PatCstr (loc,cstr,pl,alias)) pll in
ids', pl'
| AList (x,_,iter,terminator,lassoc) ->
(try
(* All elements of the list are in scopes (scopt,subscopes) *)
let (a,(scopt,subscopes)) = List.assoc x subst in
let termin = aux Anonymous subst terminator in
let l = decode_patlist_value a in
let idsl,v =
List.fold_right (fun a (tids,t) ->
let uids,u = aux Anonymous ((x,(a,(scopt,subscopes)))::subst) iter in
let pll = List.map (subst_pat_iterator ldots_var t) u in
tids@uids, List.flatten pll)
(if lassoc then List.rev l else l) termin in
idsl, List.map (fun ((subst, pl) as x) ->
match pl with PatCstr (loc, c, pl, Anonymous) -> (subst, PatCstr (loc, c, pl, alias)) | _ -> x) v
with Not_found ->
anomaly "Inconsistent substitution of recursive notation")
| t -> error_invalid_pattern_notation loc
in aux alias subst a
(* Differentiating between constructors and matching variables *)
type pattern_qualid_kind =
| ConstrPat of constructor * (identifier list *
((identifier * identifier) list * cases_pattern) list) list
| VarPat of identifier
let find_constructor ref f aliases pats scopes =
let (loc,qid) = qualid_of_reference ref in
let gref =
try extended_locate qid
with Not_found -> raise (InternalisationError (loc,NotAConstructor ref)) in
match gref with
| SyntacticDef sp ->
let (vars,a) = Syntax_def.search_syntactic_definition loc sp in
(match a with
| ARef (ConstructRef cstr) ->
assert (vars=[]);
cstr, [], pats
| AApp (ARef (ConstructRef cstr),args) ->
let args = chop_aconstr_constructor loc cstr args in
let nvars = List.length vars in
if List.length pats < nvars then error_not_enough_arguments loc;
let pats1,pats2 = list_chop nvars pats in
let subst = List.map2 (fun (id,scl) a -> (id,(a,scl))) vars pats1 in
let idspl1 = List.map (subst_cases_pattern loc (alias_of aliases) f subst scopes) args in
cstr, idspl1, pats2
| _ -> raise Not_found)
| TrueGlobal r ->
let rec unf = function
| ConstRef cst ->
let v = Environ.constant_value (Global.env()) cst in
unf (global_of_constr v)
| ConstructRef cstr ->
add_glob loc r;
cstr, [], pats
| _ -> raise Not_found
in unf r
let find_pattern_variable = function
| Ident (loc,id) -> id
| Qualid (loc,_) as x -> raise (InternalisationError(loc,NotAConstructor x))
let maybe_constructor ref f aliases scopes =
try
let c,idspl1,pl2 = find_constructor ref f aliases [] scopes in
assert (pl2 = []);
ConstrPat (c,idspl1)
with
(* patt var does not exists globally *)
| InternalisationError _ -> VarPat (find_pattern_variable ref)
(* patt var also exists globally but does not satisfy preconditions *)
| (Environ.NotEvaluableConst _ | Not_found) ->
if_verbose msg_warning (str "pattern " ++ pr_reference ref ++
str " is understood as a pattern variable");
VarPat (find_pattern_variable ref)
let mustbe_constructor loc ref f aliases patl scopes =
try find_constructor ref f aliases patl scopes
with (Environ.NotEvaluableConst _ | Not_found) ->
raise (InternalisationError (loc,NotAConstructor ref))
let rec intern_cases_pattern genv scopes (ids,subst as aliases) tmp_scope pat =
let intern_pat = intern_cases_pattern genv in
match pat with
| CPatAlias (loc, p, id) ->
let aliases' = merge_aliases aliases id in
intern_pat scopes aliases' tmp_scope p
| CPatCstr (loc, head, pl) ->
let c,idslpl1,pl2 = mustbe_constructor loc head intern_pat aliases pl scopes in
check_constructor_length genv loc c idslpl1 pl2;
let argscs2 = find_remaining_constructor_scopes idslpl1 pl2 c in
let idslpl2 = List.map2 (intern_pat scopes ([],[])) argscs2 pl2 in
let (ids',pll) = product_of_cases_patterns ids (idslpl1@idslpl2) in
let pl' = List.map (fun (subst,pl) ->
(subst, PatCstr (loc,c,pl,alias_of aliases))) pll in
ids',pl'
| CPatNotation (loc,"- _",[CPatPrim(_,Numeral p)])
when Bigint.is_strictly_pos p ->
intern_pat scopes aliases tmp_scope (CPatPrim(loc,Numeral(Bigint.neg p)))
| CPatNotation (_,"( _ )",[a]) ->
intern_pat scopes aliases tmp_scope a
| CPatNotation (loc, ntn, args) ->
let ntn,args = contract_pat_notation ntn args in
let ((ids',c),df) = Notation.interp_notation loc ntn (tmp_scope,scopes) in
if !dump then dump_notation_location (patntn_loc loc args ntn) df;
let subst = List.map2 (fun (id,scl) a -> (id,(a,scl))) ids' args in
let ids'',pl = subst_cases_pattern loc (alias_of aliases) intern_pat subst scopes
c
in ids@ids'', pl
| CPatPrim (loc, p) ->
let a = alias_of aliases in
let (c,df) = Notation.interp_prim_token_cases_pattern loc p a
(tmp_scope,scopes) in
if !dump then dump_notation_location (fst (unloc loc)) df;
(ids,[subst,c])
| CPatDelimiters (loc, key, e) ->
intern_pat (find_delimiters_scope loc key::scopes) aliases None e
| CPatAtom (loc, Some head) ->
(match maybe_constructor head intern_pat aliases scopes with
| ConstrPat (c,idspl) ->
check_constructor_length genv loc c idspl [];
let (ids',pll) = product_of_cases_patterns ids idspl in
(ids,List.map (fun (subst,pl) ->
(subst, PatCstr (loc,c,pl,alias_of aliases))) pll)
| VarPat id ->
let ids,subst = merge_aliases aliases id in
(ids,[subst, PatVar (loc,alias_of (ids,subst))]))
| CPatAtom (loc, None) ->
(ids,[subst, PatVar (loc,alias_of aliases)])
| CPatOr (loc, pl) ->
assert (pl <> []);
let pl' = List.map (intern_pat scopes aliases tmp_scope) pl in
let (idsl,pl') = List.split pl' in
let ids = List.hd idsl in
check_or_pat_variables loc ids (List.tl idsl);
(ids,List.flatten pl')
(**********************************************************************)
(* Fix and CoFix *)
(**********************************************************************)
(* Utilities for binders *)
let check_capture loc ty = function
| Name id when occur_var_constr_expr id ty ->
raise (InternalisationError (loc,VariableCapture id))
| _ ->
()
let locate_if_isevar loc na = function
| RHole _ ->
(try match na with
| Name id -> Reserve.find_reserved_type id
| Anonymous -> raise Not_found
with Not_found -> RHole (loc, Evd.BinderType na))
| x -> x
let check_hidden_implicit_parameters id (_,_,_,(indnames,_)) =
if List.mem id indnames then
errorlabstrm "" (str "A parameter or name of an inductive type " ++
pr_id id ++ str " must not be used as a bound variable in the type \
of its constructor")
let push_name_env lvar (ids,tmpsc,scopes as env) = function
| Anonymous -> env
| Name id ->
check_hidden_implicit_parameters id lvar;
(Idset.add id ids,tmpsc,scopes)
let push_loc_name_env lvar (ids,tmpsc,scopes as env) loc = function
| Anonymous -> env
| Name id ->
check_hidden_implicit_parameters id lvar;
dump_binding loc id;
(Idset.add id ids,tmpsc,scopes)
let intern_typeclass_binders intern_type lvar env bl =
List.fold_left
(fun ((ids,ts,sc) as env,bl) ((loc, na), bk, ty) ->
let env = push_loc_name_env lvar env loc na in
let ty = locate_if_isevar loc na (intern_type env ty) in
(env, (na,bk,None,ty)::bl))
env bl
let intern_typeclass_binder intern_type lvar (env,bl) na b ty =
let ctx = (na, b, ty) in
let (fvs, bind) = Implicit_quantifiers.generalize_class_binders_raw (pi1 env) [ctx] in
let env, ifvs = intern_typeclass_binders intern_type lvar (env,bl) fvs in
intern_typeclass_binders intern_type lvar (env,ifvs) bind
let intern_local_binder_aux intern intern_type lvar ((ids,ts,sc as env),bl) = function
| LocalRawAssum(nal,bk,ty) ->
(match bk with
| Default k ->
let (loc,na) = List.hd nal in
(* TODO: fail if several names with different implicit types *)
let ty = locate_if_isevar loc na (intern_type env ty) in
List.fold_left
(fun ((ids,ts,sc),bl) (_,na) ->
((name_fold Idset.add na ids,ts,sc), (na,k,None,ty)::bl))
(env,bl) nal
| TypeClass b ->
intern_typeclass_binder intern_type lvar (env,bl) (List.hd nal) b ty)
| LocalRawDef((loc,na),def) ->
((name_fold Idset.add na ids,ts,sc),
(na,Explicit,Some(intern env def),RHole(loc,Evd.BinderType na))::bl)
(**********************************************************************)
(* Utilities for application *)
let merge_impargs l args =
List.fold_right (fun a l ->
match a with
| (_,Some (_,(ExplByName id as x))) when
List.exists (function (_,Some (_,y)) -> x=y | _ -> false) args -> l
| _ -> a::l)
l args
let check_projection isproj nargs r =
match (r,isproj) with
| RRef (loc, ref), Some _ ->
(try
let n = Recordops.find_projection_nparams ref + 1 in
if nargs <> n then
user_err_loc (loc,"",str "Projection has not the right number of explicit parameters");
with Not_found ->
user_err_loc
(loc,"",pr_global_env Idset.empty ref ++ str " is not a registered projection"))
| _, Some _ -> user_err_loc (loc_of_rawconstr r, "", str "Not a projection")
| _, None -> ()
let get_implicit_name n imps =
Some (Impargs.name_of_implicit (List.nth imps (n-1)))
let set_hole_implicit i = function
| RRef (loc,r) -> (loc,Evd.ImplicitArg (r,i))
| RVar (loc,id) -> (loc,Evd.ImplicitArg (VarRef id,i))
| _ -> anomaly "Only refs have implicits"
let exists_implicit_name id =
List.exists (fun imp -> is_status_implicit imp & id = name_of_implicit imp)
let extract_explicit_arg imps args =
let rec aux = function
| [] -> [],[]
| (a,e)::l ->
let (eargs,rargs) = aux l in
match e with
| None -> (eargs,a::rargs)
| Some (loc,pos) ->
let id = match pos with
| ExplByName id ->
if not (exists_implicit_name id imps) then
user_err_loc (loc,"",str "Wrong argument name: " ++ pr_id id);
if List.mem_assoc id eargs then
user_err_loc (loc,"",str "Argument name " ++ pr_id id
++ str " occurs more than once");
id
| ExplByPos (p,_id) ->
let id =
try
let imp = List.nth imps (p-1) in
if not (is_status_implicit imp) then failwith "imp";
name_of_implicit imp
with Failure _ (* "nth" | "imp" *) ->
user_err_loc (loc,"",str"Wrong argument position: " ++ int p)
in
if List.mem_assoc id eargs then
user_err_loc (loc,"",str"Argument at position " ++ int p ++
str " is mentioned more than once");
id in
((id,(loc,a))::eargs,rargs)
in aux args
(**********************************************************************)
(* Main loop *)
let internalise sigma globalenv env allow_patvar lvar c =
let rec intern (ids,tmp_scope,scopes as env) = function
| CRef ref as x ->
let (c,imp,subscopes,l),_ =
intern_applied_reference intern env lvar [] ref in
(match intern_impargs c env imp subscopes l with
| [] -> c
| l -> RApp (constr_loc x, c, l))
| CFix (loc, (locid,iddef), dl) ->
let lf = List.map (fun ((_, id),_,_,_,_) -> id) dl in
let dl = Array.of_list dl in
let n =
try list_index0 iddef lf
with Not_found ->
raise (InternalisationError (locid,UnboundFixName (false,iddef)))
in
let idl = Array.map
(fun (id,(n,order),bl,ty,bd) ->
let intern_ro_arg c f =
let idx =
match n with
Some (loc, n) -> list_index0 (Name n) (List.map snd (names_of_local_assums bl))
| None -> 0
in
let before, after = list_chop idx bl in
let ((ids',_,_) as env',rbefore) =
List.fold_left intern_local_binder (env,[]) before in
let ro =
match c with
| None -> RStructRec
| Some c' -> f (intern (ids', tmp_scope, scopes) c')
in
let n' = Option.map (fun _ -> List.length before) n in
n', ro, List.fold_left intern_local_binder (env',rbefore) after
in
let n, ro, ((ids',_,_),rbl) =
(match order with
| CStructRec ->
intern_ro_arg None (fun _ -> RStructRec)
| CWfRec c ->
intern_ro_arg (Some c) (fun r -> RWfRec r)
| CMeasureRec c ->
intern_ro_arg (Some c) (fun r -> RMeasureRec r))
in
let ids'' = List.fold_right Idset.add lf ids' in
((n, ro), List.rev rbl,
intern_type (ids',tmp_scope,scopes) ty,
intern (ids'',None,scopes) bd)) dl in
RRec (loc,RFix
(Array.map (fun (ro,_,_,_) -> ro) idl,n),
Array.of_list lf,
Array.map (fun (_,bl,_,_) -> bl) idl,
Array.map (fun (_,_,ty,_) -> ty) idl,
Array.map (fun (_,_,_,bd) -> bd) idl)
| CCoFix (loc, (locid,iddef), dl) ->
let lf = List.map (fun ((_, id),_,_,_) -> id) dl in
let dl = Array.of_list dl in
let n =
try list_index0 iddef lf
with Not_found ->
raise (InternalisationError (locid,UnboundFixName (true,iddef)))
in
let idl = Array.map
(fun (id,bl,ty,bd) ->
let ((ids',_,_),rbl) =
List.fold_left intern_local_binder (env,[]) bl in
let ids'' = List.fold_right Idset.add lf ids' in
(List.rev rbl,
intern_type (ids',tmp_scope,scopes) ty,
intern (ids'',None,scopes) bd)) dl in
RRec (loc,RCoFix n,
Array.of_list lf,
Array.map (fun (bl,_,_) -> bl) idl,
Array.map (fun (_,ty,_) -> ty) idl,
Array.map (fun (_,_,bd) -> bd) idl)
| CArrow (loc,c1,c2) ->
RProd (loc, Anonymous, Explicit, intern_type env c1, intern_type env c2)
| CProdN (loc,[],c2) ->
intern_type env c2
| CProdN (loc,(nal,bk,ty)::bll,c2) ->
iterate_prod loc env bk ty (CProdN (loc, bll, c2)) nal
| CLambdaN (loc,[],c2) ->
intern env c2
| CLambdaN (loc,(nal,bk,ty)::bll,c2) ->
iterate_lam loc (reset_tmp_scope env) bk ty (CLambdaN (loc, bll, c2)) nal
| CLetIn (loc,(loc1,na),c1,c2) ->
RLetIn (loc, na, intern (reset_tmp_scope env) c1,
intern (push_loc_name_env lvar env loc1 na) c2)
| CNotation (loc,"- _",[CPrim (_,Numeral p)])
when Bigint.is_strictly_pos p ->
intern env (CPrim (loc,Numeral (Bigint.neg p)))
| CNotation (_,"( _ )",[a]) -> intern env a
| CNotation (loc,ntn,args) ->
intern_notation intern env loc ntn args
| CPrim (loc, p) ->
let c,df = Notation.interp_prim_token loc p (tmp_scope,scopes) in
if !dump then dump_notation_location (fst (unloc loc)) df;
c
| CDelimiters (loc, key, e) ->
intern (ids,None,find_delimiters_scope loc key::scopes) e
| CAppExpl (loc, (isproj,ref), args) ->
let (f,_,args_scopes,_),args =
let args = List.map (fun a -> (a,None)) args in
intern_applied_reference intern env lvar args ref in
check_projection isproj (List.length args) f;
RApp (loc, f, intern_args env args_scopes (List.map fst args))
| CApp (loc, (isproj,f), args) ->
let isproj,f,args = match f with
(* Compact notations like "t.(f args') args" *)
| CApp (_,(Some _,f), args') when isproj=None -> isproj,f,args'@args
(* Don't compact "(f args') args" to resolve implicits separately *)
| _ -> isproj,f,args in
let (c,impargs,args_scopes,l),args =
match f with
| CRef ref -> intern_applied_reference intern env lvar args ref
| CNotation (loc,ntn,[]) ->
let c = intern_notation intern env loc ntn [] in
find_appl_head_data lvar c, args
| x -> (intern env f,[],[],[]), args in
let args =
intern_impargs c env impargs args_scopes (merge_impargs l args) in
check_projection isproj (List.length args) c;
(match c with
(* Now compact "(f args') args" *)
| RApp (loc', f', args') -> RApp (join_loc loc' loc, f',args'@args)
| _ -> RApp (loc, c, args))
| CCases (loc, sty, rtnpo, tms, eqns) ->
let tms,env' = List.fold_right
(fun citm (inds,env) ->
let (tm,ind),nal = intern_case_item env citm in
(tm,ind)::inds,List.fold_left (push_name_env lvar) env nal)
tms ([],env) in
let rtnpo = Option.map (intern_type env') rtnpo in
let eqns' = List.map (intern_eqn (List.length tms) env) eqns in
RCases (loc, sty, rtnpo, tms, List.flatten eqns')
| CLetTuple (loc, nal, (na,po), b, c) ->
let env' = reset_tmp_scope env in
let ((b',(na',_)),ids) = intern_case_item env' (b,(na,None)) in
let env'' = List.fold_left (push_name_env lvar) env ids in
let p' = Option.map (intern_type env'') po in
RLetTuple (loc, nal, (na', p'), b',
intern (List.fold_left (push_name_env lvar) env nal) c)
| CIf (loc, c, (na,po), b1, b2) ->
let env' = reset_tmp_scope env in
let ((c',(na',_)),ids) = intern_case_item env' (c,(na,None)) in
let env'' = List.fold_left (push_name_env lvar) env ids in
let p' = Option.map (intern_type env'') po in
RIf (loc, c', (na', p'), intern env b1, intern env b2)
| CHole (loc, k) ->
RHole (loc, match k with Some k -> k | None -> Evd.QuestionMark true)
| CPatVar (loc, n) when allow_patvar ->
RPatVar (loc, n)
| CPatVar (loc, _) ->
raise (InternalisationError (loc,NegativeMetavariable))
| CEvar (loc, n, l) ->
REvar (loc, n, Option.map (List.map (intern env)) l)
| CSort (loc, s) ->
RSort(loc,s)
| CCast (loc, c1, CastConv (k, c2)) ->
RCast (loc,intern env c1, CastConv (k, intern_type env c2))
| CCast (loc, c1, CastCoerce) ->
RCast (loc,intern env c1, CastCoerce)
| CDynamic (loc,d) -> RDynamic (loc,d)
and intern_type env = intern (set_type_scope env)
and intern_local_binder env bind =
intern_local_binder_aux intern intern_type lvar env bind
(* Expands a multiple pattern into a disjunction of multiple patterns *)
and intern_multiple_pattern scopes n (loc,pl) =
let idsl_pll =
List.map (intern_cases_pattern globalenv scopes ([],[]) None) pl in
check_number_of_pattern loc n pl;
product_of_cases_patterns [] idsl_pll
(* Expands a disjunction of multiple pattern *)
and intern_disjunctive_multiple_pattern scopes loc n mpl =
assert (mpl <> []);
let mpl' = List.map (intern_multiple_pattern scopes n) mpl in
let (idsl,mpl') = List.split mpl' in
let ids = List.hd idsl in
check_or_pat_variables loc ids (List.tl idsl);
(ids,List.flatten mpl')
(* Expands a pattern-matching clause [lhs => rhs] *)
and intern_eqn n (ids,tmp_scope,scopes) (loc,lhs,rhs) =
let eqn_ids,pll = intern_disjunctive_multiple_pattern scopes loc n lhs in
(* Linearity implies the order in ids is irrelevant *)
check_linearity lhs eqn_ids;
let env_ids = List.fold_right Idset.add eqn_ids ids in
List.map (fun (subst,pl) ->
let rhs = replace_vars_constr_expr subst rhs in
List.iter message_redundant_alias subst;
let rhs' = intern (env_ids,tmp_scope,scopes) rhs in
(loc,eqn_ids,pl,rhs')) pll
and intern_case_item (vars,_,scopes as env) (tm,(na,t)) =
let tm' = intern env tm in
let ids,typ = match t with
| Some t ->
let tids = ids_of_cases_indtype t in
let tids = List.fold_right Idset.add tids Idset.empty in
let t = intern_type (tids,None,scopes) t in
let loc,ind,l = match t with
| RRef (loc,IndRef ind) -> (loc,ind,[])
| RApp (loc,RRef (_,IndRef ind),l) -> (loc,ind,l)
| _ -> error_bad_inductive_type (loc_of_rawconstr t) in
let nparams, nrealargs = inductive_nargs globalenv ind in
let nindargs = nparams + nrealargs in
if List.length l <> nindargs then
error_wrong_numarg_inductive_loc loc globalenv ind nindargs;
let nal = List.map (function
| RHole loc -> Anonymous
| RVar (_,id) -> Name id
| c -> user_err_loc (loc_of_rawconstr c,"",str "Not a name")) l in
let parnal,realnal = list_chop nparams nal in
if List.exists ((<>) Anonymous) parnal then
error_inductive_parameter_not_implicit loc;
realnal, Some (loc,ind,nparams,realnal)
| None ->
[], None in
let na = match tm', na with
| RVar (_,id), None when Idset.mem id vars -> Name id
| _, None -> Anonymous
| _, Some na -> na in
(tm',(na,typ)), na::ids
and iterate_prod loc2 env bk ty body nal =
let rec default env bk = function
| (loc1,na)::nal ->
if nal <> [] then check_capture loc1 ty na;
let body = default (push_loc_name_env lvar env loc1 na) bk nal in
let ty = locate_if_isevar loc1 na (intern_type env ty) in
RProd (join_loc loc1 loc2, na, bk, ty, body)
| [] -> intern_type env body
in
match bk with
| Default b -> default env b nal
| TypeClass b ->
let env, ibind = intern_typeclass_binder intern_type lvar
(env, []) (List.hd nal) b ty in
let body = intern_type env body in
it_mkRProd ibind body
and iterate_lam loc2 env bk ty body nal =
let rec default env bk = function
| (loc1,na)::nal ->
if nal <> [] then check_capture loc1 ty na;
let body = default (push_loc_name_env lvar env loc1 na) bk nal in
let ty = locate_if_isevar loc1 na (intern_type env ty) in
RLambda (join_loc loc1 loc2, na, bk, ty, body)
| [] -> intern env body
in match bk with
| Default b -> default env b nal
| TypeClass b ->
let env, ibind = intern_typeclass_binder intern_type lvar
(env, []) (List.hd nal) b ty in
let body = intern env body in
it_mkRLambda ibind body
and intern_impargs c env l subscopes args =
let eargs, rargs = extract_explicit_arg l args in
let rec aux n impl subscopes eargs rargs =
let (enva,subscopes') = apply_scope_env env subscopes in
match (impl,rargs) with
| (imp::impl', rargs) when is_status_implicit imp ->
begin try
let id = name_of_implicit imp in
let (_,a) = List.assoc id eargs in
let eargs' = List.remove_assoc id eargs in
intern enva a :: aux (n+1) impl' subscopes' eargs' rargs
with Not_found ->
if rargs=[] & eargs=[] & not (maximal_insertion_of imp) then
(* Less regular arguments than expected: complete *)
(* with implicit arguments if maximal insertion is set *)
[]
else
RHole (set_hole_implicit (n,get_implicit_name n l) c) ::
aux (n+1) impl' subscopes' eargs rargs
end
| (imp::impl', a::rargs') ->
intern enva a :: aux (n+1) impl' subscopes' eargs rargs'
| (imp::impl', []) ->
if eargs <> [] then
(let (id,(loc,_)) = List.hd eargs in
user_err_loc (loc,"",str "Not enough non implicit
arguments to accept the argument bound to " ++ pr_id id));
[]
| ([], rargs) ->
assert (eargs = []);
intern_args env subscopes rargs
in aux 1 l subscopes eargs rargs
and intern_args env subscopes = function
| [] -> []
| a::args ->
let (enva,subscopes) = apply_scope_env env subscopes in
(intern enva a) :: (intern_args env subscopes args)
in
try
intern env c
with
InternalisationError (loc,e) ->
user_err_loc (loc,"internalize",explain_internalisation_error e)
(**************************************************************************)
(* Functions to translate constr_expr into rawconstr *)
(**************************************************************************)
let extract_ids env =
List.fold_right Idset.add
(Termops.ids_of_rel_context (Environ.rel_context env))
Idset.empty
let intern_gen isarity sigma env
?(impls=([],[])) ?(allow_patvar=false) ?(ltacvars=([],[]))
c =
let tmp_scope =
if isarity then Some Notation.type_scope else None in
internalise sigma env (extract_ids env, tmp_scope,[])
allow_patvar (ltacvars,Environ.named_context env, [], impls) c
let intern_constr sigma env c = intern_gen false sigma env c
let intern_type sigma env c = intern_gen true sigma env c
let intern_pattern env patt =
try
intern_cases_pattern env [] ([],[]) None patt
with
InternalisationError (loc,e) ->
user_err_loc (loc,"internalize",explain_internalisation_error e)
let intern_ltac isarity ltacvars sigma env c =
intern_gen isarity sigma env ~ltacvars:ltacvars c
type manual_implicits = (explicitation * (bool * bool)) list
let implicits_of_rawterm l =
let rec aux i c =
match c with
RProd (loc, na, bk, t, b) | RLambda (loc, na, bk, t, b) ->
let rest = aux (succ i) b in
if bk = Implicit then
let name =
match na with
Name id -> Some id
| Anonymous -> None
in
(ExplByPos (i, name), (true, true)) :: rest
else rest
| RLetIn (loc, na, t, b) -> aux i b
| _ -> []
in aux 1 l
(*********************************************************************)
(* Functions to parse and interpret constructions *)
let interp_gen kind sigma env
?(impls=([],[])) ?(allow_patvar=false) ?(ltacvars=([],[]))
c =
let c = intern_gen (kind=IsType) ~impls ~allow_patvar ~ltacvars sigma env c in
Default.understand_gen kind sigma env c
let interp_constr sigma env c =
interp_gen (OfType None) sigma env c
let interp_type sigma env ?(impls=([],[])) c =
interp_gen IsType sigma env ~impls c
let interp_casted_constr sigma env ?(impls=([],[])) c typ =
interp_gen (OfType (Some typ)) sigma env ~impls c
let interp_open_constr sigma env c =
Default.understand_tcc sigma env (intern_constr sigma env c)
let interp_constr_judgment sigma env c =
Default.understand_judgment sigma env (intern_constr sigma env c)
let interp_constr_evars_gen_impls ?evdref
env ?(impls=([],[])) kind c =
match evdref with
| None ->
let c = intern_gen (kind=IsType) ~impls Evd.empty env c in
let imps = implicits_of_rawterm c in
Default.understand_gen kind Evd.empty env c, imps
| Some evdref ->
let c = intern_gen (kind=IsType) ~impls (Evd.evars_of !evdref) env c in
let imps = implicits_of_rawterm c in
Default.understand_tcc_evars evdref env kind c, imps
let interp_constr_evars_gen evdref env ?(impls=([],[])) kind c =
let c = intern_gen (kind=IsType) ~impls (Evd.evars_of !evdref) env c in
Default.understand_tcc_evars evdref env kind c
let interp_casted_constr_evars_impls ?evdref
env ?(impls=([],[])) c typ =
interp_constr_evars_gen_impls ?evdref env ~impls (OfType (Some typ)) c
let interp_type_evars_impls ?evdref env ?(impls=([],[])) c =
interp_constr_evars_gen_impls ?evdref env IsType ~impls c
let interp_constr_evars_impls ?evdref env ?(impls=([],[])) c =
interp_constr_evars_gen_impls ?evdref env (OfType None) ~impls c
let interp_casted_constr_evars evdref env ?(impls=([],[])) c typ =
interp_constr_evars_gen evdref env ~impls (OfType (Some typ)) c
let interp_type_evars evdref env ?(impls=([],[])) c =
interp_constr_evars_gen evdref env IsType ~impls c
let interp_constr_judgment_evars evdref env c =
Default.understand_judgment_tcc evdref env
(intern_constr (Evd.evars_of !evdref) env c)
type ltac_sign = identifier list * unbound_ltac_var_map
let interp_constrpattern sigma env c =
pattern_of_rawconstr (intern_gen false sigma env ~allow_patvar:true c)
let interp_aconstr impls vars a =
let env = Global.env () in
(* [vl] is intended to remember the scope of the free variables of [a] *)
let vl = List.map (fun id -> (id,ref None)) vars in
let c = internalise Evd.empty (Global.env()) (extract_ids env, None, [])
false (([],[]),Environ.named_context env,vl,([],impls)) a in
(* Translate and check that [c] has all its free variables bound in [vars] *)
let a = aconstr_of_rawconstr vars c in
(* Returns [a] and the ordered list of variables with their scopes *)
(* Variables occurring in binders have no relevant scope since bound *)
List.map
(fun (id,r) -> (id,match !r with None -> None,[] | Some (a,l) -> a,l)) vl,
a
(* Interpret binders and contexts *)
let interp_binder sigma env na t =
let t = intern_gen true sigma env t in
let t' = locate_if_isevar (loc_of_rawconstr t) na t in
Default.understand_type sigma env t'
let interp_binder_evars evdref env na t =
let t = intern_gen true (Evd.evars_of !evdref) env t in
let t' = locate_if_isevar (loc_of_rawconstr t) na t in
Default.understand_tcc_evars evdref env IsType t'
open Environ
open Term
let my_intern_constr sigma env lvar acc c =
internalise sigma env acc false lvar c
let my_intern_type sigma env lvar acc c = my_intern_constr sigma env lvar (set_type_scope acc) c
let intern_context sigma env params =
let lvar = (([],[]),Environ.named_context env, [], ([], [])) in
snd (List.fold_left
(intern_local_binder_aux (my_intern_constr sigma env lvar) (my_intern_type sigma env lvar) lvar)
((extract_ids env,None,[]), []) params)
let interp_context_gen understand_type understand_judgment env bl =
let (env, par, _, impls) =
List.fold_left
(fun (env,params,n,impls) (na, k, b, t) ->
match b with
None ->
let t' = locate_if_isevar (loc_of_rawconstr t) na t in
let t = understand_type env t' in
let d = (na,None,t) in
let impls =
if k = Implicit then
let na = match na with Name n -> Some n | Anonymous -> None in
(ExplByPos (n, na), (true, true)) :: impls
else impls
in
(push_rel d env, d::params, succ n, impls)
| Some b ->
let c = understand_judgment env b in
let d = (na, Some c.uj_val, c.uj_type) in
(push_rel d env,d::params, succ n, impls))
(env,[],1,[]) (List.rev bl)
in (env, par), impls
let interp_context sigma env params =
let bl = intern_context sigma env params in
interp_context_gen (Default.understand_type sigma)
(Default.understand_judgment sigma) env bl
let interp_context_evars evdref env params =
let bl = intern_context (Evd.evars_of !evdref) env params in
interp_context_gen (fun env t -> Default.understand_tcc_evars evdref env IsType t)
(Default.understand_judgment_tcc evdref) env bl
(**********************************************************************)
(* Locating reference, possibly via an abbreviation *)
let locate_reference qid =
match Nametab.extended_locate qid with
| TrueGlobal ref -> ref
| SyntacticDef kn ->
match Syntax_def.search_syntactic_definition dummy_loc kn with
| [],ARef ref -> ref
| _ -> raise Not_found
let is_global id =
try
let _ = locate_reference (make_short_qualid id) in true
with Not_found ->
false
let global_reference id =
constr_of_global (locate_reference (make_short_qualid id))
let construct_reference ctx id =
try
Term.mkVar (let _ = Sign.lookup_named id ctx in id)
with Not_found ->
global_reference id
let global_reference_in_absolute_module dir id =
constr_of_global (Nametab.absolute_reference (Libnames.make_path dir id))
|