1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Nameops
open Namegen
open Libnames
open Globnames
open Impargs
open Glob_term
open Glob_ops
open Patternops
open Pretyping
open Cases
open Constrexpr
open Constrexpr_ops
open Notation_term
open Notation_ops
open Topconstr
open Nametab
open Notation
open Inductiveops
open Decl_kinds
open Context.Rel.Declaration
(** constr_expr -> glob_constr translation:
- it adds holes for implicit arguments
- it replaces notations by their value (scopes stuff are here)
- it recognizes global vars from local ones
- it prepares pattern matching problems (a pattern becomes a tree
where nodes are constructor/variable pairs and leafs are variables)
All that at once, fasten your seatbelt!
*)
(* To interpret implicits and arg scopes of variables in inductive
types and recursive definitions and of projection names in records *)
type var_internalization_type =
| Inductive of Id.t list (* list of params *)
| Recursive
| Method
| Variable
type var_internalization_data =
(* type of the "free" variable, for coqdoc, e.g. while typing the
constructor of JMeq, "JMeq" behaves as a variable of type Inductive *)
var_internalization_type *
(* impargs to automatically add to the variable, e.g. for "JMeq A a B b"
in implicit mode, this is [A;B] and this adds (A:=A) and (B:=B) *)
Id.t list *
(* signature of impargs of the variable *)
Impargs.implicit_status list *
(* subscopes of the args of the variable *)
scope_name option list
type internalization_env =
(var_internalization_data) Id.Map.t
type glob_binder = (Name.t * binding_kind * glob_constr option * glob_constr)
type ltac_sign = {
ltac_vars : Id.Set.t;
ltac_bound : Id.Set.t;
}
let interning_grammar = ref false
(* Historically for parsing grammar rules, but in fact used only for
translator, v7 parsing, and unstrict tactic internalization *)
let for_grammar f x =
interning_grammar := true;
let a = f x in
interning_grammar := false;
a
(**********************************************************************)
(* Locating reference, possibly via an abbreviation *)
let locate_reference qid =
Smartlocate.global_of_extended_global (Nametab.locate_extended qid)
let is_global id =
try
let _ = locate_reference (qualid_of_ident id) in true
with Not_found ->
false
let global_reference_of_reference ref =
locate_reference (snd (qualid_of_reference ref))
let global_reference id =
Universes.constr_of_global (locate_reference (qualid_of_ident id))
let construct_reference ctx id =
try
Term.mkVar (let _ = Context.Named.lookup id ctx in id)
with Not_found ->
global_reference id
let global_reference_in_absolute_module dir id =
Universes.constr_of_global (Nametab.global_of_path (Libnames.make_path dir id))
(**********************************************************************)
(* Internalization errors *)
type internalization_error =
| VariableCapture of Id.t * Id.t
| IllegalMetavariable
| NotAConstructor of reference
| UnboundFixName of bool * Id.t
| NonLinearPattern of Id.t
| BadPatternsNumber of int * int
exception InternalizationError of Loc.t * internalization_error
let explain_variable_capture id id' =
pr_id id ++ str " is dependent in the type of " ++ pr_id id' ++
strbrk ": cannot interpret both of them with the same type"
let explain_illegal_metavariable =
str "Metavariables allowed only in patterns"
let explain_not_a_constructor ref =
str "Unknown constructor: " ++ pr_reference ref
let explain_unbound_fix_name is_cofix id =
str "The name" ++ spc () ++ pr_id id ++
spc () ++ str "is not bound in the corresponding" ++ spc () ++
str (if is_cofix then "co" else "") ++ str "fixpoint definition"
let explain_non_linear_pattern id =
str "The variable " ++ pr_id id ++ str " is bound several times in pattern"
let explain_bad_patterns_number n1 n2 =
str "Expecting " ++ int n1 ++ str (String.plural n1 " pattern") ++
str " but found " ++ int n2
let explain_internalization_error e =
let pp = match e with
| VariableCapture (id,id') -> explain_variable_capture id id'
| IllegalMetavariable -> explain_illegal_metavariable
| NotAConstructor ref -> explain_not_a_constructor ref
| UnboundFixName (iscofix,id) -> explain_unbound_fix_name iscofix id
| NonLinearPattern id -> explain_non_linear_pattern id
| BadPatternsNumber (n1,n2) -> explain_bad_patterns_number n1 n2
in pp ++ str "."
let error_bad_inductive_type ?loc =
user_err ?loc (str
"This should be an inductive type applied to patterns.")
let error_parameter_not_implicit ?loc =
user_err ?loc (str
"The parameters do not bind in patterns;" ++ spc () ++ str
"they must be replaced by '_'.")
let error_ldots_var ?loc =
user_err ?loc (str "Special token " ++ pr_id ldots_var ++
str " is for use in the Notation command.")
(**********************************************************************)
(* Pre-computing the implicit arguments and arguments scopes needed *)
(* for interpretation *)
let parsing_explicit = ref false
let empty_internalization_env = Id.Map.empty
let compute_explicitable_implicit imps = function
| Inductive params ->
(* In inductive types, the parameters are fixed implicit arguments *)
let sub_impl,_ = List.chop (List.length params) imps in
let sub_impl' = List.filter is_status_implicit sub_impl in
List.map name_of_implicit sub_impl'
| Recursive | Method | Variable ->
(* Unable to know in advance what the implicit arguments will be *)
[]
let compute_internalization_data env ty typ impl =
let impl = compute_implicits_with_manual env typ (is_implicit_args()) impl in
let expls_impl = compute_explicitable_implicit impl ty in
(ty, expls_impl, impl, compute_arguments_scope typ)
let compute_internalization_env env ty =
List.fold_left3
(fun map id typ impl -> Id.Map.add id (compute_internalization_data env ty typ impl) map)
empty_internalization_env
(**********************************************************************)
(* Contracting "{ _ }" in notations *)
let rec wildcards ntn n =
if Int.equal n (String.length ntn) then []
else let l = spaces ntn (n+1) in if ntn.[n] == '_' then n::l else l
and spaces ntn n =
if Int.equal n (String.length ntn) then []
else if ntn.[n] == ' ' then wildcards ntn (n+1) else spaces ntn (n+1)
let expand_notation_string ntn n =
let pos = List.nth (wildcards ntn 0) n in
let hd = if Int.equal pos 0 then "" else String.sub ntn 0 pos in
let tl =
if Int.equal pos (String.length ntn) then ""
else String.sub ntn (pos+1) (String.length ntn - pos -1) in
hd ^ "{ _ }" ^ tl
(* This contracts the special case of "{ _ }" for sumbool, sumor notations *)
(* Remark: expansion of squash at definition is done in metasyntax.ml *)
let contract_notation ntn (l,ll,bll) =
let ntn' = ref ntn in
let rec contract_squash n = function
| [] -> []
| CNotation (_,"{ _ }",([a],[],[])) :: l ->
ntn' := expand_notation_string !ntn' n;
contract_squash n (a::l)
| a :: l ->
a::contract_squash (n+1) l in
let l = contract_squash 0 l in
(* side effect; don't inline *)
!ntn',(l,ll,bll)
let contract_pat_notation ntn (l,ll) =
let ntn' = ref ntn in
let rec contract_squash n = function
| [] -> []
| CPatNotation (_,"{ _ }",([a],[]),[]) :: l ->
ntn' := expand_notation_string !ntn' n;
contract_squash n (a::l)
| a :: l ->
a::contract_squash (n+1) l in
let l = contract_squash 0 l in
(* side effect; don't inline *)
!ntn',(l,ll)
type intern_env = {
ids: Names.Id.Set.t;
unb: bool;
tmp_scope: Notation_term.tmp_scope_name option;
scopes: Notation_term.scope_name list;
impls: internalization_env }
(**********************************************************************)
(* Remembering the parsing scope of variables in notations *)
let make_current_scope tmp scopes = match tmp, scopes with
| Some tmp_scope, (sc :: _) when String.equal sc tmp_scope -> scopes
| Some tmp_scope, scopes -> tmp_scope :: scopes
| None, scopes -> scopes
let pr_scope_stack = function
| [] -> str "the empty scope stack"
| [a] -> str "scope " ++ str a
| l -> str "scope stack " ++
str "[" ++ prlist_with_sep pr_comma str l ++ str "]"
let error_inconsistent_scope ?loc id scopes1 scopes2 =
user_err ?loc ~hdr:"set_var_scope"
(pr_id id ++ str " is here used in " ++
pr_scope_stack scopes2 ++ strbrk " while it was elsewhere used in " ++
pr_scope_stack scopes1)
let error_expect_binder_notation_type ?loc id =
user_err ?loc
(pr_id id ++
str " is expected to occur in binding position in the right-hand side.")
let set_var_scope loc id istermvar env ntnvars =
try
let isonlybinding,idscopes,typ = Id.Map.find id ntnvars in
if istermvar then isonlybinding := false;
let () = if istermvar then
(* scopes have no effect on the interpretation of identifiers *)
begin match !idscopes with
| None -> idscopes := Some (env.tmp_scope, env.scopes)
| Some (tmp, scope) ->
let s1 = make_current_scope tmp scope in
let s2 = make_current_scope env.tmp_scope env.scopes in
if not (List.equal String.equal s1 s2) then error_inconsistent_scope ~loc id s1 s2
end
in
match typ with
| NtnInternTypeBinder ->
if istermvar then error_expect_binder_notation_type ~loc id
| NtnInternTypeConstr ->
(* We need sometimes to parse idents at a constr level for
factorization and we cannot enforce this constraint:
if not istermvar then error_expect_constr_notation_type loc id *)
()
| NtnInternTypeIdent -> ()
with Not_found ->
(* Not in a notation *)
()
let set_type_scope env = {env with tmp_scope = Notation.current_type_scope_name ()}
let reset_tmp_scope env = {env with tmp_scope = None}
let rec it_mkGProd loc2 env body =
match env with
(loc1, (na, bk, _, t)) :: tl -> it_mkGProd loc2 tl (GProd (Loc.merge loc1 loc2, na, bk, t, body))
| [] -> body
let rec it_mkGLambda loc2 env body =
match env with
(loc1, (na, bk, _, t)) :: tl -> it_mkGLambda loc2 tl (GLambda (Loc.merge loc1 loc2, na, bk, t, body))
| [] -> body
(**********************************************************************)
(* Utilities for binders *)
let build_impls = function
|Implicit -> (function
|Name id -> Some (id, Impargs.Manual, (true,true))
|Anonymous -> Some (Id.of_string "_", Impargs.Manual, (true,true)))
|Explicit -> fun _ -> None
let impls_type_list ?(args = []) =
let rec aux acc = function
|GProd (_,na,bk,_,c) -> aux ((build_impls bk na)::acc) c
|_ -> (Variable,[],List.append args (List.rev acc),[])
in aux []
let impls_term_list ?(args = []) =
let rec aux acc = function
|GLambda (_,na,bk,_,c) -> aux ((build_impls bk na)::acc) c
|GRec (_, fix_kind, nas, args, tys, bds) ->
let nb = match fix_kind with |GFix (_, n) -> n | GCoFix n -> n in
let acc' = List.fold_left (fun a (na, bk, _, _) -> (build_impls bk na)::a) acc args.(nb) in
aux acc' bds.(nb)
|_ -> (Variable,[],List.append args (List.rev acc),[])
in aux []
(* Check if in binder "(x1 x2 .. xn : t)", none of x1 .. xn-1 occurs in t *)
let rec check_capture ty = function
| (loc,Name id)::(_,Name id')::_ when occur_glob_constr id ty ->
raise (InternalizationError (loc,VariableCapture (id,id')))
| _::nal ->
check_capture ty nal
| [] ->
()
let locate_if_hole loc na = function
| GHole (_,_,naming,arg) ->
(try match na with
| Name id -> glob_constr_of_notation_constr loc
(Reserve.find_reserved_type id)
| Anonymous -> raise Not_found
with Not_found -> GHole (loc, Evar_kinds.BinderType na, naming, arg))
| x -> x
let reset_hidden_inductive_implicit_test env =
{ env with impls = Id.Map.map (function
| (Inductive _,b,c,d) -> (Inductive [],b,c,d)
| x -> x) env.impls }
let check_hidden_implicit_parameters id impls =
if Id.Map.exists (fun _ -> function
| (Inductive indparams,_,_,_) -> Id.List.mem id indparams
| _ -> false) impls
then
user_err (strbrk "A parameter of an inductive type " ++
pr_id id ++ strbrk " is not allowed to be used as a bound variable in the type of its constructor.")
let push_name_env ?(global_level=false) ntnvars implargs env =
function
| loc,Anonymous ->
if global_level then
user_err ~loc (str "Anonymous variables not allowed");
env
| loc,Name id ->
check_hidden_implicit_parameters id env.impls ;
if Id.Map.is_empty ntnvars && Id.equal id ldots_var
then error_ldots_var ~loc;
set_var_scope loc id false env ntnvars;
if global_level then Dumpglob.dump_definition (loc,id) true "var"
else Dumpglob.dump_binding loc id;
{env with ids = Id.Set.add id env.ids; impls = Id.Map.add id implargs env.impls}
let intern_generalized_binder ?(global_level=false) intern_type lvar
env (loc, na) b b' t ty =
let ids = (match na with Anonymous -> fun x -> x | Name na -> Id.Set.add na) env.ids in
let ty, ids' =
if t then ty, ids else
Implicit_quantifiers.implicit_application ids
Implicit_quantifiers.combine_params_freevar ty
in
let ty' = intern_type {env with ids = ids; unb = true} ty in
let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:ids ~allowed:ids' ty' in
let env' = List.fold_left
(fun env (x, l) -> push_name_env ~global_level lvar (Variable,[],[],[])(*?*) env (l, Name x))
env fvs in
let bl = List.map
(fun (id, loc) ->
(loc, (Name id, b, None, GHole (loc, Evar_kinds.BinderType (Name id), Misctypes.IntroAnonymous, None))))
fvs
in
let na = match na with
| Anonymous ->
if global_level then na
else
let name =
let id =
match ty with
| CApp (_, (_, CRef (Ident (loc,id),_)), _) -> id
| _ -> default_non_dependent_ident
in Implicit_quantifiers.make_fresh ids' (Global.env ()) id
in Name name
| _ -> na
in (push_name_env ~global_level lvar (impls_type_list ty')(*?*) env' (loc,na)), (loc,(na,b',None,ty')) :: List.rev bl
let intern_assumption intern lvar env nal bk ty =
let intern_type env = intern (set_type_scope env) in
match bk with
| Default k ->
let ty = intern_type env ty in
check_capture ty nal;
let impls = impls_type_list ty in
List.fold_left
(fun (env, bl) (loc, na as locna) ->
(push_name_env lvar impls env locna,
(loc,(na,k,None,locate_if_hole loc na ty))::bl))
(env, []) nal
| Generalized (b,b',t) ->
let env, b = intern_generalized_binder intern_type lvar env (List.hd nal) b b' t ty in
env, b
let rec free_vars_of_pat il =
function
| CPatCstr (loc, c, l1, l2) ->
let il = List.fold_left free_vars_of_pat il (Option.default [] l1) in
List.fold_left free_vars_of_pat il l2
| CPatAtom (loc, ro) ->
begin match ro with
| Some (Ident (loc, i)) -> (loc, i) :: il
| Some _ | None -> il
end
| CPatNotation (loc, n, l1, l2) ->
let il = List.fold_left free_vars_of_pat il (fst l1) in
List.fold_left (List.fold_left free_vars_of_pat) il (snd l1)
| _ -> anomaly (str "free_vars_of_pat")
let intern_local_pattern intern lvar env p =
List.fold_left
(fun env (loc, i) ->
let bk = Default Implicit in
let ty = CHole (loc, None, Misctypes.IntroAnonymous, None) in
let n = Name i in
let env, _ = intern_assumption intern lvar env [(loc, n)] bk ty in
env)
env (free_vars_of_pat [] p)
type binder_data =
| BDRawDef of (Loc.t * glob_binder)
| BDPattern of
(Loc.t * (cases_pattern * Id.t list) *
(bool ref *
(Notation_term.tmp_scope_name option *
Notation_term.tmp_scope_name list)
option ref * Notation_term.notation_var_internalization_type)
Names.Id.Map.t *
intern_env * constr_expr)
let intern_cases_pattern_fwd = ref (fun _ -> failwith "intern_cases_pattern_fwd")
let intern_local_binder_aux ?(global_level=false) intern lvar (env,bl) = function
| LocalRawAssum(nal,bk,ty) ->
let env, bl' = intern_assumption intern lvar env nal bk ty in
let bl' = List.map (fun a -> BDRawDef a) bl' in
env, bl' @ bl
| LocalRawDef((loc,na as locna),def) ->
let indef = intern env def in
let term, ty =
match indef with
| GCast (loc, b, Misctypes.CastConv t) -> b, t
| _ -> indef, GHole(loc,Evar_kinds.BinderType na,Misctypes.IntroAnonymous,None)
in
(push_name_env lvar (impls_term_list indef) env locna,
(BDRawDef ((loc,(na,Explicit,Some(term),ty))))::bl)
| LocalPattern (loc,p,ty) ->
let tyc =
match ty with
| Some ty -> ty
| None -> CHole(loc,None,Misctypes.IntroAnonymous,None)
in
let env = intern_local_pattern intern lvar env p in
let cp =
match !intern_cases_pattern_fwd (None,env.scopes) p with
| (_, [(_, cp)]) -> cp
| _ -> assert false
in
let il = List.map snd (free_vars_of_pat [] p) in
(env, BDPattern(loc,(cp,il),lvar,env,tyc) :: bl)
let intern_generalization intern env lvar loc bk ak c =
let c = intern {env with unb = true} c in
let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:env.ids c in
let env', c' =
let abs =
let pi = match ak with
| Some AbsPi -> true
| Some _ -> false
| None ->
match Notation.current_type_scope_name () with
| Some type_scope ->
let is_type_scope = match env.tmp_scope with
| None -> false
| Some sc -> String.equal sc type_scope
in
is_type_scope ||
String.List.mem type_scope env.scopes
| None -> false
in
if pi then
(fun (id, loc') acc ->
GProd (Loc.merge loc' loc, Name id, bk, GHole (loc', Evar_kinds.BinderType (Name id), Misctypes.IntroAnonymous, None), acc))
else
(fun (id, loc') acc ->
GLambda (Loc.merge loc' loc, Name id, bk, GHole (loc', Evar_kinds.BinderType (Name id), Misctypes.IntroAnonymous, None), acc))
in
List.fold_right (fun (id, loc as lid) (env, acc) ->
let env' = push_name_env lvar (Variable,[],[],[]) env (loc, Name id) in
(env', abs lid acc)) fvs (env,c)
in c'
(**********************************************************************)
(* Syntax extensions *)
let option_mem_assoc id = function
| Some (id',c) -> Id.equal id id'
| None -> false
let find_fresh_name renaming (terms,termlists,binders) avoid id =
let fold1 _ (c, _) accu = Id.Set.union (free_vars_of_constr_expr c) accu in
let fold2 _ (l, _) accu =
let fold accu c = Id.Set.union (free_vars_of_constr_expr c) accu in
List.fold_left fold accu l
in
let fold3 _ x accu = Id.Set.add x accu in
let fvs1 = Id.Map.fold fold1 terms avoid in
let fvs2 = Id.Map.fold fold2 termlists fvs1 in
let fvs3 = Id.Map.fold fold3 renaming fvs2 in
(* TODO binders *)
next_ident_away_from id (fun id -> Id.Set.mem id fvs3)
let traverse_binder (terms,_,_ as subst) avoid (renaming,env) = function
| Anonymous -> (renaming,env),Anonymous
| Name id ->
try
(* Binders bound in the notation are considered first-order objects *)
let _,na = coerce_to_name (fst (Id.Map.find id terms)) in
(renaming,{env with ids = name_fold Id.Set.add na env.ids}), na
with Not_found ->
(* Binders not bound in the notation do not capture variables *)
(* outside the notation (i.e. in the substitution) *)
let id' = find_fresh_name renaming subst avoid id in
let renaming' =
if Id.equal id id' then renaming else Id.Map.add id id' renaming
in
(renaming',env), Name id'
type letin_param =
| LPLetIn of Loc.t * (Name.t * glob_constr)
| LPCases of Loc.t * (cases_pattern * Id.t list) * Id.t
let make_letins =
List.fold_right
(fun a c ->
match a with
| LPLetIn (loc,(na,b)) ->
GLetIn(loc,na,b,c)
| LPCases (loc,(cp,il),id) ->
let tt = (GVar(loc,id),(Name id,None)) in
GCases(loc,Misctypes.LetPatternStyle,None,[tt],[(loc,il,[cp],c)]))
let rec subordinate_letins intern letins = function
(* binders come in reverse order; the non-let are returned in reverse order together *)
(* with the subordinated let-in in writing order *)
| BDRawDef (loc,(na,_,Some b,t))::l ->
subordinate_letins intern (LPLetIn (loc,(na,b))::letins) l
| BDRawDef (loc,(na,bk,None,t))::l ->
let letins',rest = subordinate_letins intern [] l in
letins',((loc,(na,bk,t)),letins)::rest
| BDPattern (loc,u,lvar,env,tyc) :: l ->
let ienv = Id.Set.elements env.ids in
let id = Namegen.next_ident_away (Id.of_string "pat") ienv in
let na = (loc, Name id) in
let bk = Default Explicit in
let _, bl' = intern_assumption intern lvar env [na] bk tyc in
let bl' = List.map (fun a -> BDRawDef a) bl' in
subordinate_letins intern (LPCases (loc,u,id)::letins) (bl'@ l)
| [] ->
letins,[]
let terms_of_binders bl =
let rec term_of_pat = function
| PatVar (loc,Name id) -> CRef (Ident (loc,id), None)
| PatVar (loc,Anonymous) -> error "Cannot turn \"_\" into a term."
| PatCstr (loc,c,l,_) ->
let r = Qualid (loc,qualid_of_path (path_of_global (ConstructRef c))) in
let hole = CHole (loc,None,Misctypes.IntroAnonymous,None) in
let params = List.make (Inductiveops.inductive_nparams (fst c)) hole in
CAppExpl (loc,(None,r,None),params @ List.map term_of_pat l) in
let rec extract_variables = function
| BDRawDef (loc,(Name id,_,None,_))::l -> CRef (Ident (loc,id), None) :: extract_variables l
| BDRawDef (loc,(Name id,_,Some _,_))::l -> extract_variables l
| BDRawDef (loc,(Anonymous,_,_,_))::l -> error "Cannot turn \"_\" into a term."
| BDPattern (loc,(u,_),lvar,env,tyc) :: l -> term_of_pat u :: extract_variables l
| [] -> [] in
extract_variables bl
let instantiate_notation_constr loc intern ntnvars subst infos c =
let (terms,termlists,binders) = subst in
(* when called while defining a notation, avoid capturing the private binders
of the expression by variables bound by the notation (see #3892) *)
let avoid = Id.Map.domain ntnvars in
let rec aux (terms,binderopt,terminopt as subst') (renaming,env) c =
let subinfos = renaming,{env with tmp_scope = None} in
match c with
| NVar id when Id.equal id ldots_var -> Option.get terminopt
| NVar id -> subst_var subst' (renaming, env) id
| NList (x,y,iter,terminator,lassoc) ->
let l,(scopt,subscopes) =
(* All elements of the list are in scopes (scopt,subscopes) *)
try
let l,scopes = Id.Map.find x termlists in
(if lassoc then List.rev l else l),scopes
with Not_found ->
try
let (bl,(scopt,subscopes)) = Id.Map.find x binders in
let env,bl' = List.fold_left (intern_local_binder_aux intern ntnvars) (env,[]) bl in
terms_of_binders (if lassoc then bl' else List.rev bl'),(None,[])
with Not_found ->
anomaly (Pp.str "Inconsistent substitution of recursive notation") in
let termin = aux (terms,None,None) subinfos terminator in
let fold a t =
let nterms = Id.Map.add y (a, (scopt, subscopes)) terms in
aux (nterms,None,Some t) subinfos iter
in
List.fold_right fold l termin
| NHole (knd, naming, arg) ->
let knd = match knd with
| Evar_kinds.BinderType (Name id as na) ->
let na =
try snd (coerce_to_name (fst (Id.Map.find id terms)))
with Not_found ->
try Name (Id.Map.find id renaming)
with Not_found -> na
in
Evar_kinds.BinderType na
| _ -> knd
in
let arg = match arg with
| None -> None
| Some arg ->
let mk_env (c, (tmp_scope, subscopes)) =
let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in
let gc = intern nenv c in
(gc, Some c)
in
let bindings = Id.Map.map mk_env terms in
Some (Genintern.generic_substitute_notation bindings arg)
in
GHole (loc, knd, naming, arg)
| NBinderList (x,y,iter,terminator) ->
(try
(* All elements of the list are in scopes (scopt,subscopes) *)
let (bl,(scopt,subscopes)) = Id.Map.find x binders in
let env,bl = List.fold_left (intern_local_binder_aux intern ntnvars) (env,[]) bl in
let letins,bl = subordinate_letins intern [] bl in
let termin = aux (terms,None,None) (renaming,env) terminator in
let res = List.fold_left (fun t binder ->
aux (terms,Some(y,binder),Some t) subinfos iter)
termin bl in
make_letins letins res
with Not_found ->
anomaly (Pp.str "Inconsistent substitution of recursive notation"))
| NProd (Name id, NHole _, c') when option_mem_assoc id binderopt ->
let a,letins = snd (Option.get binderopt) in
let e = make_letins letins (aux subst' infos c') in
let (loc,(na,bk,t)) = a in
GProd (loc,na,bk,t,e)
| NLambda (Name id,NHole _,c') when option_mem_assoc id binderopt ->
let a,letins = snd (Option.get binderopt) in
let (loc,(na,bk,t)) = a in
GLambda (loc,na,bk,t,make_letins letins (aux subst' infos c'))
(* Two special cases to keep binder name synchronous with BinderType *)
| NProd (na,NHole(Evar_kinds.BinderType na',naming,arg),c')
when Name.equal na na' ->
let subinfos,na = traverse_binder subst avoid subinfos na in
let ty = GHole (loc,Evar_kinds.BinderType na,naming,arg) in
GProd (loc,na,Explicit,ty,aux subst' subinfos c')
| NLambda (na,NHole(Evar_kinds.BinderType na',naming,arg),c')
when Name.equal na na' ->
let subinfos,na = traverse_binder subst avoid subinfos na in
let ty = GHole (loc,Evar_kinds.BinderType na,naming,arg) in
GLambda (loc,na,Explicit,ty,aux subst' subinfos c')
| t ->
glob_constr_of_notation_constr_with_binders loc
(traverse_binder subst avoid) (aux subst') subinfos t
and subst_var (terms, _binderopt, _terminopt) (renaming, env) id =
(* subst remembers the delimiters stack in the interpretation *)
(* of the notations *)
try
let (a,(scopt,subscopes)) = Id.Map.find id terms in
intern {env with tmp_scope = scopt;
scopes = subscopes @ env.scopes} a
with Not_found ->
try
GVar (loc, Id.Map.find id renaming)
with Not_found ->
(* Happens for local notation joint with inductive/fixpoint defs *)
GVar (loc,id)
in aux (terms,None,None) infos c
let split_by_type ids =
List.fold_right (fun (x,(scl,typ)) (l1,l2,l3) ->
match typ with
| NtnTypeConstr | NtnTypeOnlyBinder -> ((x,scl)::l1,l2,l3)
| NtnTypeConstrList -> (l1,(x,scl)::l2,l3)
| NtnTypeBinderList -> (l1,l2,(x,scl)::l3)) ids ([],[],[])
let make_subst ids l =
let fold accu (id, scl) a = Id.Map.add id (a, scl) accu in
List.fold_left2 fold Id.Map.empty ids l
let intern_notation intern env lvar loc ntn fullargs =
let ntn,(args,argslist,bll as fullargs) = contract_notation ntn fullargs in
let ((ids,c),df) = interp_notation loc ntn (env.tmp_scope,env.scopes) in
Dumpglob.dump_notation_location (ntn_loc loc fullargs ntn) ntn df;
let ids,idsl,idsbl = split_by_type ids in
let terms = make_subst ids args in
let termlists = make_subst idsl argslist in
let binders = make_subst idsbl bll in
instantiate_notation_constr loc intern lvar
(terms, termlists, binders) (Id.Map.empty, env) c
(**********************************************************************)
(* Discriminating between bound variables and global references *)
let string_of_ty = function
| Inductive _ -> "ind"
| Recursive -> "def"
| Method -> "meth"
| Variable -> "var"
let gvar (loc, id) us = match us with
| None -> GVar (loc, id)
| Some _ ->
user_err ~loc (str "Variable " ++ pr_id id ++
str " cannot have a universe instance")
let intern_var genv (ltacvars,ntnvars) namedctx loc id us =
(* Is [id] an inductive type potentially with implicit *)
try
let ty,expl_impls,impls,argsc = Id.Map.find id genv.impls in
let expl_impls = List.map
(fun id -> CRef (Ident (loc,id),None), Some (loc,ExplByName id)) expl_impls in
let tys = string_of_ty ty in
Dumpglob.dump_reference loc "<>" (Id.to_string id) tys;
gvar (loc,id) us, make_implicits_list impls, argsc, expl_impls
with Not_found ->
(* Is [id] bound in current term or is an ltac var bound to constr *)
if Id.Set.mem id genv.ids || Id.Set.mem id ltacvars.ltac_vars
then
gvar (loc,id) us, [], [], []
(* Is [id] a notation variable *)
else if Id.Map.mem id ntnvars
then
(set_var_scope loc id true genv ntnvars; gvar (loc,id) us, [], [], [])
(* Is [id] the special variable for recursive notations *)
else if Id.equal id ldots_var
then if Id.Map.is_empty ntnvars
then error_ldots_var ~loc
else gvar (loc,id) us, [], [], []
else if Id.Set.mem id ltacvars.ltac_bound then
(* Is [id] bound to a free name in ltac (this is an ltac error message) *)
user_err ~loc ~hdr:"intern_var"
(str "variable " ++ pr_id id ++ str " should be bound to a term.")
else
(* Is [id] a goal or section variable *)
let _ = Context.Named.lookup id namedctx in
try
(* [id] a section variable *)
(* Redundant: could be done in intern_qualid *)
let ref = VarRef id in
let impls = implicits_of_global ref in
let scopes = find_arguments_scope ref in
Dumpglob.dump_reference loc "<>" (string_of_qualid (Decls.variable_secpath id)) "var";
GRef (loc, ref, us), impls, scopes, []
with e when CErrors.noncritical e ->
(* [id] a goal variable *)
gvar (loc,id) us, [], [], []
let find_appl_head_data c =
match c with
| GRef (loc,ref,_) as x ->
let impls = implicits_of_global ref in
let scopes = find_arguments_scope ref in
x, impls, scopes, []
| GApp (_,GRef (_,ref,_),l) as x
when l != [] && Flags.version_strictly_greater Flags.V8_2 ->
let n = List.length l in
let impls = implicits_of_global ref in
let scopes = find_arguments_scope ref in
x, List.map (drop_first_implicits n) impls,
List.skipn_at_least n scopes,[]
| x -> x,[],[],[]
let error_not_enough_arguments loc =
user_err ~loc (str "Abbreviation is not applied enough.")
let check_no_explicitation l =
let is_unset (a, b) = match b with None -> false | Some _ -> true in
let l = List.filter is_unset l in
match l with
| [] -> ()
| (_, None) :: _ -> assert false
| (_, Some (loc, _)) :: _ ->
user_err ~loc (str"Unexpected explicitation of the argument of an abbreviation.")
let dump_extended_global loc = function
| TrueGlobal ref -> (*feedback_global loc ref;*) Dumpglob.add_glob loc ref
| SynDef sp -> Dumpglob.add_glob_kn loc sp
let intern_extended_global_of_qualid (loc,qid) =
let r = Nametab.locate_extended qid in dump_extended_global loc r; r
let intern_reference ref =
let qid = qualid_of_reference ref in
let r =
try intern_extended_global_of_qualid qid
with Not_found -> error_global_not_found ~loc:(fst qid) (snd qid)
in
Smartlocate.global_of_extended_global r
(* Is it a global reference or a syntactic definition? *)
let intern_qualid loc qid intern env lvar us args =
match intern_extended_global_of_qualid (loc,qid) with
| TrueGlobal ref -> GRef (loc, ref, us), true, args
| SynDef sp ->
let (ids,c) = Syntax_def.search_syntactic_definition sp in
let nids = List.length ids in
if List.length args < nids then error_not_enough_arguments loc;
let args1,args2 = List.chop nids args in
check_no_explicitation args1;
let terms = make_subst ids (List.map fst args1) in
let subst = (terms, Id.Map.empty, Id.Map.empty) in
let infos = (Id.Map.empty, env) in
let projapp = match c with NRef _ -> true | _ -> false in
let c = instantiate_notation_constr loc intern lvar subst infos c in
let c = match us, c with
| None, _ -> c
| Some _, GRef (loc, ref, None) -> GRef (loc, ref, us)
| Some _, GApp (loc, GRef (loc', ref, None), arg) ->
GApp (loc, GRef (loc', ref, us), arg)
| Some _, _ ->
user_err ~loc (str "Notation " ++ pr_qualid qid ++
str " cannot have a universe instance, its expanded head
does not start with a reference")
in
c, projapp, args2
(* Rule out section vars since these should have been found by intern_var *)
let intern_non_secvar_qualid loc qid intern env lvar us args =
match intern_qualid loc qid intern env lvar us args with
| GRef (_, VarRef _, _),_,_ -> raise Not_found
| r -> r
let intern_applied_reference intern env namedctx (_, ntnvars as lvar) us args = function
| Qualid (loc, qid) ->
let r,projapp,args2 =
try intern_qualid loc qid intern env ntnvars us args
with Not_found -> error_global_not_found ~loc qid
in
let x, imp, scopes, l = find_appl_head_data r in
(x,imp,scopes,l), args2
| Ident (loc, id) ->
try intern_var env lvar namedctx loc id us, args
with Not_found ->
let qid = qualid_of_ident id in
try
let r, projapp, args2 = intern_non_secvar_qualid loc qid intern env ntnvars us args in
let x, imp, scopes, l = find_appl_head_data r in
(x,imp,scopes,l), args2
with Not_found ->
(* Extra allowance for non globalizing functions *)
if !interning_grammar || env.unb then
(gvar (loc,id) us, [], [], []), args
else error_global_not_found ~loc qid
let interp_reference vars r =
let (r,_,_,_),_ =
intern_applied_reference (fun _ -> error_not_enough_arguments Loc.ghost)
{ids = Id.Set.empty; unb = false ;
tmp_scope = None; scopes = []; impls = empty_internalization_env} []
(vars, Id.Map.empty) None [] r
in r
(**********************************************************************)
(** {5 Cases } *)
(** {6 Elemtary bricks } *)
let apply_scope_env env = function
| [] -> {env with tmp_scope = None}, []
| sc::scl -> {env with tmp_scope = sc}, scl
let rec simple_adjust_scopes n scopes =
(* Note: they can be less scopes than arguments but also more scopes *)
(* than arguments because extra scopes are used in the presence of *)
(* coercions to funclass *)
if Int.equal n 0 then [] else match scopes with
| [] -> None :: simple_adjust_scopes (n-1) []
| sc::scopes -> sc :: simple_adjust_scopes (n-1) scopes
let find_remaining_scopes pl1 pl2 ref =
let impls_st = implicits_of_global ref in
let len_pl1 = List.length pl1 in
let len_pl2 = List.length pl2 in
let impl_list = if Int.equal len_pl1 0
then select_impargs_size len_pl2 impls_st
else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in
let allscs = find_arguments_scope ref in
let scope_list = List.skipn_at_least len_pl1 allscs in
let rec aux = function
|[],l -> l
|_,[] -> []
|h::t,_::tt when is_status_implicit h -> aux (t,tt)
|_::t,h::tt -> h :: aux (t,tt)
in ((try List.firstn len_pl1 allscs with Failure _ -> simple_adjust_scopes len_pl1 allscs),
simple_adjust_scopes len_pl2 (aux (impl_list,scope_list)))
let merge_subst s1 s2 = Id.Map.fold Id.Map.add s1 s2
let product_of_cases_patterns ids idspl =
List.fold_right (fun (ids,pl) (ids',ptaill) ->
(ids @ ids',
(* Cartesian prod of the or-pats for the nth arg and the tail args *)
List.flatten (
List.map (fun (subst,p) ->
List.map (fun (subst',ptail) -> (merge_subst subst subst',p::ptail)) ptaill) pl)))
idspl (ids,[Id.Map.empty,[]])
(* @return the first variable that occurs twice in a pattern
naive n^2 algo *)
let rec has_duplicate = function
| [] -> None
| x::l -> if Id.List.mem x l then (Some x) else has_duplicate l
let loc_of_lhs lhs =
Loc.merge (fst (List.hd lhs)) (fst (List.last lhs))
let check_linearity lhs ids =
match has_duplicate ids with
| Some id ->
raise (InternalizationError (loc_of_lhs lhs,NonLinearPattern id))
| None ->
()
(* Match the number of pattern against the number of matched args *)
let check_number_of_pattern loc n l =
let p = List.length l in
if not (Int.equal n p) then raise (InternalizationError (loc,BadPatternsNumber (n,p)))
let check_or_pat_variables loc ids idsl =
if List.exists (fun ids' -> not (List.eq_set Id.equal ids ids')) idsl then
user_err ~loc (str
"The components of this disjunctive pattern must bind the same variables.")
(** Use only when params were NOT asked to the user.
@return if letin are included *)
let check_constructor_length env loc cstr len_pl pl0 =
let n = len_pl + List.length pl0 in
if Int.equal n (Inductiveops.constructor_nallargs cstr) then false else
(Int.equal n (Inductiveops.constructor_nalldecls cstr) ||
(error_wrong_numarg_constructor ~loc env cstr
(Inductiveops.constructor_nrealargs cstr)))
let add_implicits_check_length fail nargs nargs_with_letin impls_st len_pl1 pl2 =
let impl_list = if Int.equal len_pl1 0
then select_impargs_size (List.length pl2) impls_st
else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in
let remaining_args = List.fold_left (fun i x -> if is_status_implicit x then i else succ i) in
let rec aux i = function
|[],l -> let args_len = List.length l + List.length impl_list + len_pl1 in
((if Int.equal args_len nargs then false
else Int.equal args_len nargs_with_letin || (fst (fail (nargs - List.length impl_list + i))))
,l)
|imp::q as il,[] -> if is_status_implicit imp && maximal_insertion_of imp
then let (b,out) = aux i (q,[]) in (b,RCPatAtom(Loc.ghost,None)::out)
else fail (remaining_args (len_pl1+i) il)
|imp::q,(hh::tt as l) -> if is_status_implicit imp
then let (b,out) = aux i (q,l) in (b,RCPatAtom(Loc.ghost,None)::out)
else let (b,out) = aux (succ i) (q,tt) in (b,hh::out)
in aux 0 (impl_list,pl2)
let add_implicits_check_constructor_length env loc c len_pl1 pl2 =
let nargs = Inductiveops.constructor_nallargs c in
let nargs' = Inductiveops.constructor_nalldecls c in
let impls_st = implicits_of_global (ConstructRef c) in
add_implicits_check_length (error_wrong_numarg_constructor ~loc env c)
nargs nargs' impls_st len_pl1 pl2
let add_implicits_check_ind_length env loc c len_pl1 pl2 =
let nallargs = inductive_nallargs_env env c in
let nalldecls = inductive_nalldecls_env env c in
let impls_st = implicits_of_global (IndRef c) in
add_implicits_check_length (error_wrong_numarg_inductive ~loc env c)
nallargs nalldecls impls_st len_pl1 pl2
(** Do not raise NotEnoughArguments thanks to preconditions*)
let chop_params_pattern loc ind args with_letin =
let nparams = if with_letin
then Inductiveops.inductive_nparamdecls ind
else Inductiveops.inductive_nparams ind in
assert (nparams <= List.length args);
let params,args = List.chop nparams args in
List.iter (function PatVar(_,Anonymous) -> ()
| PatVar (loc',_) | PatCstr(loc',_,_,_) -> error_parameter_not_implicit ~loc:loc') params;
args
let find_constructor loc add_params ref =
let (ind,_ as cstr) = match ref with
| ConstructRef cstr -> cstr
| IndRef _ ->
let error = str "There is an inductive name deep in a \"in\" clause." in
user_err ~loc ~hdr:"find_constructor" error
| ConstRef _ | VarRef _ ->
let error = str "This reference is not a constructor." in
user_err ~loc ~hdr:"find_constructor" error
in
cstr, match add_params with
| Some nb_args ->
let nb =
if Int.equal nb_args (Inductiveops.constructor_nrealdecls cstr)
then Inductiveops.inductive_nparamdecls ind
else Inductiveops.inductive_nparams ind
in
List.make nb ([], [(Id.Map.empty, PatVar(Loc.ghost,Anonymous))])
| None -> []
let find_pattern_variable = function
| Ident (loc,id) -> id
| Qualid (loc,_) as x -> raise (InternalizationError(loc,NotAConstructor x))
let check_duplicate loc fields =
let eq (ref1, _) (ref2, _) = eq_reference ref1 ref2 in
let dups = List.duplicates eq fields in
match dups with
| [] -> ()
| (r, _) :: _ ->
user_err ~loc (str "This record defines several times the field " ++
pr_reference r ++ str ".")
(** [sort_fields ~complete loc fields completer] expects a list
[fields] of field assignments [f = e1; g = e2; ...], where [f, g]
are fields of a record and [e1] are "values" (either terms, when
interning a record construction, or patterns, when intering record
pattern-matching). It will sort the fields according to the record
declaration order (which is important when type-checking them in
presence of dependencies between fields). If the parameter
[complete] is true, we require the assignment to be complete: all
the fields of the record must be present in the
assignment. Otherwise the record assignment may be partial
(in a pattern, we may match on some fields only), and we call the
function [completer] to fill the missing fields; the returned
field assignment list is always complete. *)
let sort_fields ~complete loc fields completer =
match fields with
| [] -> None
| (first_field_ref, first_field_value):: other_fields ->
let (first_field_glob_ref, record) =
try
let gr = global_reference_of_reference first_field_ref in
(gr, Recordops.find_projection gr)
with Not_found ->
user_err ~loc:(loc_of_reference first_field_ref) ~hdr:"intern"
(pr_reference first_field_ref ++ str": Not a projection")
in
(* the number of parameters *)
let nparams = record.Recordops.s_EXPECTEDPARAM in
(* the reference constructor of the record *)
let base_constructor =
let global_record_id = ConstructRef record.Recordops.s_CONST in
try Qualid (loc, shortest_qualid_of_global Id.Set.empty global_record_id)
with Not_found ->
anomaly (str "Environment corruption for records") in
let () = check_duplicate loc fields in
let (end_index, (* one past the last field index *)
first_field_index, (* index of the first field of the record *)
proj_list) (* list of projections *)
=
(* elimitate the first field from the projections,
but keep its index *)
let rec build_proj_list projs proj_kinds idx ~acc_first_idx acc =
match projs with
| [] -> (idx, acc_first_idx, acc)
| (Some name) :: projs ->
let field_glob_ref = ConstRef name in
let first_field = eq_gr field_glob_ref first_field_glob_ref in
begin match proj_kinds with
| [] -> anomaly (Pp.str "Number of projections mismatch")
| (_, regular) :: proj_kinds ->
(* "regular" is false when the field is defined
by a let-in in the record declaration
(its value is fixed from other fields). *)
if first_field && not regular && complete then
user_err ~loc (str "No local fields allowed in a record construction.")
else if first_field then
build_proj_list projs proj_kinds (idx+1) ~acc_first_idx:idx acc
else if not regular && complete then
(* skip non-regular fields *)
build_proj_list projs proj_kinds idx ~acc_first_idx acc
else
build_proj_list projs proj_kinds (idx+1) ~acc_first_idx
((idx, field_glob_ref) :: acc)
end
| None :: projs ->
if complete then
(* we don't want anonymous fields *)
user_err ~loc (str "This record contains anonymous fields.")
else
(* anonymous arguments don't appear in proj_kinds *)
build_proj_list projs proj_kinds (idx+1) ~acc_first_idx acc
in
build_proj_list record.Recordops.s_PROJ record.Recordops.s_PROJKIND 1 ~acc_first_idx:0 []
in
(* now we want to have all fields assignments indexed by their place in
the constructor *)
let rec index_fields fields remaining_projs acc =
match fields with
| (field_ref, field_value) :: fields ->
let field_glob_ref = try global_reference_of_reference field_ref
with Not_found ->
user_err ~loc:(loc_of_reference field_ref) ~hdr:"intern"
(str "The field \"" ++ pr_reference field_ref ++ str "\" does not exist.") in
let remaining_projs, (field_index, _) =
let the_proj (idx, glob_ref) = eq_gr field_glob_ref glob_ref in
try CList.extract_first the_proj remaining_projs
with Not_found ->
user_err ~loc
(str "This record contains fields of different records.")
in
index_fields fields remaining_projs ((field_index, field_value) :: acc)
| [] ->
(* the order does not matter as we sort them next,
List.rev_* is just for efficiency *)
let remaining_fields =
let complete_field (idx, _field_ref) = (idx, completer idx) in
List.rev_map complete_field remaining_projs in
List.rev_append remaining_fields acc
in
let unsorted_indexed_fields =
index_fields other_fields proj_list
[(first_field_index, first_field_value)] in
let sorted_indexed_fields =
let cmp_by_index (i, _) (j, _) = Int.compare i j in
List.sort cmp_by_index unsorted_indexed_fields in
let sorted_fields = List.map snd sorted_indexed_fields in
Some (nparams, base_constructor, sorted_fields)
(** {6 Manage multiple aliases} *)
type alias = {
alias_ids : Id.t list;
alias_map : Id.t Id.Map.t;
}
let empty_alias = {
alias_ids = [];
alias_map = Id.Map.empty;
}
(* [merge_aliases] returns the sets of all aliases encountered at this
point and a substitution mapping extra aliases to the first one *)
let merge_aliases aliases id =
let alias_ids = aliases.alias_ids @ [id] in
let alias_map = match aliases.alias_ids with
| [] -> aliases.alias_map
| id' :: _ -> Id.Map.add id id' aliases.alias_map
in
{ alias_ids; alias_map; }
let alias_of als = match als.alias_ids with
| [] -> Anonymous
| id :: _ -> Name id
(** {6 Expanding notations }
@returns a raw_case_pattern_expr :
- no notations and syntactic definition
- global reference and identifeir instead of reference
*)
let rec subst_pat_iterator y t p = match p with
| RCPatAtom (_,id) ->
begin match id with Some x when Id.equal x y -> t | _ -> p end
| RCPatCstr (loc,id,l1,l2) ->
RCPatCstr (loc,id,List.map (subst_pat_iterator y t) l1,
List.map (subst_pat_iterator y t) l2)
| RCPatAlias (l,p,a) -> RCPatAlias (l,subst_pat_iterator y t p,a)
| RCPatOr (l,pl) -> RCPatOr (l,List.map (subst_pat_iterator y t) pl)
let drop_notations_pattern looked_for =
(* At toplevel, Constructors and Inductives are accepted, in recursive calls
only constructor are allowed *)
let ensure_kind top loc g =
try
if top then looked_for g else
match g with ConstructRef _ -> () | _ -> raise Not_found
with Not_found ->
error_invalid_pattern_notation ~loc ()
in
let test_kind top =
if top then looked_for else function ConstructRef _ -> () | _ -> raise Not_found
in
let rec drop_syndef top scopes re pats =
let (loc,qid) = qualid_of_reference re in
try
match locate_extended qid with
| SynDef sp ->
let (vars,a) = Syntax_def.search_syntactic_definition sp in
(match a with
| NRef g ->
(* Convention: do not deactivate implicit arguments and scopes for further arguments *)
test_kind top g;
let () = assert (List.is_empty vars) in
let (_,argscs) = find_remaining_scopes [] pats g in
Some (g, [], List.map2 (in_pat_sc scopes) argscs pats)
| NApp (NRef g,[]) -> (* special case: Syndef for @Cstr, this deactivates *)
test_kind top g;
let () = assert (List.is_empty vars) in
Some (g, List.map (in_pat false scopes) pats, [])
| NApp (NRef g,args) ->
(* Convention: do not deactivate implicit arguments and scopes for further arguments *)
test_kind top g;
let nvars = List.length vars in
if List.length pats < nvars then error_not_enough_arguments loc;
let pats1,pats2 = List.chop nvars pats in
let subst = make_subst vars pats1 in
let idspl1 = List.map (in_not false loc scopes (subst, Id.Map.empty) []) args in
let (_,argscs) = find_remaining_scopes pats1 pats2 g in
Some (g, idspl1, List.map2 (in_pat_sc scopes) argscs pats2)
| _ -> raise Not_found)
| TrueGlobal g ->
test_kind top g;
Dumpglob.add_glob loc g;
let (_,argscs) = find_remaining_scopes [] pats g in
Some (g,[],List.map2 (fun x -> in_pat false (x,snd scopes)) argscs pats)
with Not_found -> None
and in_pat top scopes = function
| CPatAlias (loc, p, id) -> RCPatAlias (loc, in_pat top scopes p, id)
| CPatRecord (loc, l) ->
let sorted_fields =
sort_fields ~complete:false loc l (fun _idx -> (CPatAtom (loc, None))) in
begin match sorted_fields with
| None -> RCPatAtom (loc, None)
| Some (n, head, pl) ->
let pl =
if !asymmetric_patterns then pl else
let pars = List.make n (CPatAtom (loc, None)) in
List.rev_append pars pl in
match drop_syndef top scopes head pl with
|Some (a,b,c) -> RCPatCstr(loc, a, b, c)
|None -> raise (InternalizationError (loc,NotAConstructor head))
end
| CPatCstr (loc, head, None, pl) ->
begin
match drop_syndef top scopes head pl with
| Some (a,b,c) -> RCPatCstr(loc, a, b, c)
| None -> raise (InternalizationError (loc,NotAConstructor head))
end
| CPatCstr (loc, r, Some expl_pl, pl) ->
let g = try locate (snd (qualid_of_reference r))
with Not_found ->
raise (InternalizationError (loc,NotAConstructor r)) in
if expl_pl == [] then
(* Convention: (@r) deactivates all further implicit arguments and scopes *)
RCPatCstr (loc, g, List.map (in_pat false scopes) pl, [])
else
(* Convention: (@r expl_pl) deactivates implicit arguments in expl_pl and in pl *)
(* but not scopes in expl_pl *)
let (argscs1,_) = find_remaining_scopes expl_pl pl g in
RCPatCstr (loc, g, List.map2 (in_pat_sc scopes) argscs1 expl_pl @ List.map (in_pat false scopes) pl, [])
| CPatNotation (loc,"- _",([CPatPrim(_,Numeral p)],[]),[])
when Bigint.is_strictly_pos p ->
fst (Notation.interp_prim_token_cases_pattern_expr loc (ensure_kind false loc) (Numeral (Bigint.neg p)) scopes)
| CPatNotation (_,"( _ )",([a],[]),[]) ->
in_pat top scopes a
| CPatNotation (loc, ntn, fullargs,extrargs) ->
let ntn,(args,argsl as fullargs) = contract_pat_notation ntn fullargs in
let ((ids',c),df) = Notation.interp_notation loc ntn scopes in
let (ids',idsl',_) = split_by_type ids' in
Dumpglob.dump_notation_location (patntn_loc loc fullargs ntn) ntn df;
let substlist = make_subst idsl' argsl in
let subst = make_subst ids' args in
in_not top loc scopes (subst,substlist) extrargs c
| CPatDelimiters (loc, key, e) ->
in_pat top (None,find_delimiters_scope loc key::snd scopes) e
| CPatPrim (loc,p) -> fst (Notation.interp_prim_token_cases_pattern_expr loc (test_kind false) p scopes)
| CPatAtom (loc, Some id) ->
begin
match drop_syndef top scopes id [] with
|Some (a,b,c) -> RCPatCstr (loc, a, b, c)
|None -> RCPatAtom (loc, Some (find_pattern_variable id))
end
| CPatAtom (loc,None) -> RCPatAtom (loc,None)
| CPatOr (loc, pl) ->
RCPatOr (loc,List.map (in_pat top scopes) pl)
| CPatCast _ ->
assert false
and in_pat_sc scopes x = in_pat false (x,snd scopes)
and in_not top loc scopes (subst,substlist as fullsubst) args = function
| NVar id ->
let () = assert (List.is_empty args) in
begin
(* subst remembers the delimiters stack in the interpretation *)
(* of the notations *)
try
let (a,(scopt,subscopes)) = Id.Map.find id subst in
in_pat top (scopt,subscopes@snd scopes) a
with Not_found ->
if Id.equal id ldots_var then RCPatAtom (loc,Some id) else
anomaly (str "Unbound pattern notation variable: " ++ Id.print id)
end
| NRef g ->
ensure_kind top loc g;
let (_,argscs) = find_remaining_scopes [] args g in
RCPatCstr (loc, g, [], List.map2 (in_pat_sc scopes) argscs args)
| NApp (NRef g,pl) ->
ensure_kind top loc g;
let (argscs1,argscs2) = find_remaining_scopes pl args g in
RCPatCstr (loc, g,
List.map2 (fun x -> in_not false loc (x,snd scopes) fullsubst []) argscs1 pl @
List.map (in_pat false scopes) args, [])
| NList (x,y,iter,terminator,lassoc) ->
if not (List.is_empty args) then user_err ~loc
(strbrk "Application of arguments to a recursive notation not supported in patterns.");
(try
(* All elements of the list are in scopes (scopt,subscopes) *)
let (l,(scopt,subscopes)) = Id.Map.find x substlist in
let termin = in_not top loc scopes fullsubst [] terminator in
List.fold_right (fun a t ->
let nsubst = Id.Map.add y (a, (scopt, subscopes)) subst in
let u = in_not false loc scopes (nsubst, substlist) [] iter in
subst_pat_iterator ldots_var t u)
(if lassoc then List.rev l else l) termin
with Not_found ->
anomaly (Pp.str "Inconsistent substitution of recursive notation"))
| NHole _ ->
let () = assert (List.is_empty args) in
RCPatAtom (loc, None)
| t -> error_invalid_pattern_notation ~loc ()
in in_pat true
let rec intern_pat genv aliases pat =
let intern_cstr_with_all_args loc c with_letin idslpl1 pl2 =
let idslpl2 = List.map (intern_pat genv empty_alias) pl2 in
let (ids',pll) = product_of_cases_patterns aliases.alias_ids (idslpl1@idslpl2) in
let pl' = List.map (fun (asubst,pl) ->
(asubst, PatCstr (loc,c,chop_params_pattern loc (fst c) pl with_letin,alias_of aliases))) pll in
ids',pl' in
match pat with
| RCPatAlias (loc, p, id) ->
let aliases' = merge_aliases aliases id in
intern_pat genv aliases' p
| RCPatCstr (loc, head, expl_pl, pl) ->
if !asymmetric_patterns then
let len = if List.is_empty expl_pl then Some (List.length pl) else None in
let c,idslpl1 = find_constructor loc len head in
let with_letin =
check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in
intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl)
else
let c,idslpl1 = find_constructor loc None head in
let with_letin, pl2 =
add_implicits_check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in
intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl2)
| RCPatAtom (loc, Some id) ->
let aliases = merge_aliases aliases id in
(aliases.alias_ids,[aliases.alias_map, PatVar (loc, alias_of aliases)])
| RCPatAtom (loc, None) ->
let { alias_ids = ids; alias_map = asubst; } = aliases in
(ids, [asubst, PatVar (loc, alias_of aliases)])
| RCPatOr (loc, pl) ->
assert (not (List.is_empty pl));
let pl' = List.map (intern_pat genv aliases) pl in
let (idsl,pl') = List.split pl' in
let ids = List.hd idsl in
check_or_pat_variables loc ids (List.tl idsl);
(ids,List.flatten pl')
(* [check_no_patcast p] raises an error if [p] contains a cast. This code is a
bit ad-hoc, and is due to current restrictions on casts in patterns. We
support them only in local binders and only at top level. In fact, they are
currently eliminated by the parser. The only reason why they are in the
[cases_pattern_expr] type is that the parser needs to factor the "(c : t)"
notation with user defined notations (such as the pair). In the long term, we
will try to support such casts everywhere, and use them to print the domains
of lambdas in the encoding of match in constr. We put this check here and not
in the parser because it would require to duplicate the levels of the
[pattern] rule. *)
let rec check_no_patcast = function
| CPatCast (loc,_,_) ->
CErrors.user_err ~loc ~hdr:"check_no_patcast"
(Pp.strbrk "Casts are not supported here.")
| CPatDelimiters(_,_,p)
| CPatAlias(_,p,_) -> check_no_patcast p
| CPatCstr(_,_,opl,pl) ->
Option.iter (List.iter check_no_patcast) opl;
List.iter check_no_patcast pl
| CPatOr(_,pl) ->
List.iter check_no_patcast pl
| CPatNotation(_,_,subst,pl) ->
check_no_patcast_subst subst;
List.iter check_no_patcast pl
| CPatRecord(_,prl) ->
List.iter (fun (_,p) -> check_no_patcast p) prl
| CPatAtom _ | CPatPrim _ -> ()
and check_no_patcast_subst (pl,pll) =
List.iter check_no_patcast pl;
List.iter (List.iter check_no_patcast) pll
let intern_cases_pattern genv scopes aliases pat =
check_no_patcast pat;
intern_pat genv aliases
(drop_notations_pattern (function ConstructRef _ -> () | _ -> raise Not_found) scopes pat)
let _ =
intern_cases_pattern_fwd :=
fun scopes p -> intern_cases_pattern (Global.env ()) scopes empty_alias p
let intern_ind_pattern genv scopes pat =
check_no_patcast pat;
let no_not =
try
drop_notations_pattern (function (IndRef _ | ConstructRef _) -> () | _ -> raise Not_found) scopes pat
with InternalizationError(loc,NotAConstructor _) -> error_bad_inductive_type ~loc
in
match no_not with
| RCPatCstr (loc, head, expl_pl, pl) ->
let c = (function IndRef ind -> ind | _ -> error_bad_inductive_type ~loc) head in
let with_letin, pl2 = add_implicits_check_ind_length genv loc c
(List.length expl_pl) pl in
let idslpl1 = List.rev_map (intern_pat genv empty_alias) expl_pl in
let idslpl2 = List.map (intern_pat genv empty_alias) pl2 in
(with_letin,
match product_of_cases_patterns [] (List.rev_append idslpl1 idslpl2) with
| _,[_,pl] -> (c,chop_params_pattern loc c pl with_letin)
| _ -> error_bad_inductive_type ~loc)
| x -> error_bad_inductive_type ~loc:(raw_cases_pattern_expr_loc x)
(**********************************************************************)
(* Utilities for application *)
let merge_impargs l args =
let test x = function
| (_, Some (_, y)) -> explicitation_eq x y
| _ -> false
in
List.fold_right (fun a l ->
match a with
| (_,Some (_,(ExplByName id as x))) when
List.exists (test x) args -> l
| _ -> a::l)
l args
let get_implicit_name n imps =
Some (Impargs.name_of_implicit (List.nth imps (n-1)))
let set_hole_implicit i b = function
| GRef (loc,r,_) | GApp (_,GRef (loc,r,_),_) -> (loc,Evar_kinds.ImplicitArg (r,i,b),Misctypes.IntroAnonymous,None)
| GVar (loc,id) -> (loc,Evar_kinds.ImplicitArg (VarRef id,i,b),Misctypes.IntroAnonymous,None)
| _ -> anomaly (Pp.str "Only refs have implicits")
let exists_implicit_name id =
List.exists (fun imp -> is_status_implicit imp && Id.equal id (name_of_implicit imp))
let extract_explicit_arg imps args =
let rec aux = function
| [] -> Id.Map.empty, []
| (a,e)::l ->
let (eargs,rargs) = aux l in
match e with
| None -> (eargs,a::rargs)
| Some (loc,pos) ->
let id = match pos with
| ExplByName id ->
if not (exists_implicit_name id imps) then
user_err ~loc
(str "Wrong argument name: " ++ pr_id id ++ str ".");
if Id.Map.mem id eargs then
user_err ~loc (str "Argument name " ++ pr_id id
++ str " occurs more than once.");
id
| ExplByPos (p,_id) ->
let id =
try
let imp = List.nth imps (p-1) in
if not (is_status_implicit imp) then failwith "imp";
name_of_implicit imp
with Failure _ (* "nth" | "imp" *) ->
user_err ~loc
(str"Wrong argument position: " ++ int p ++ str ".")
in
if Id.Map.mem id eargs then
user_err ~loc (str"Argument at position " ++ int p ++
str " is mentioned more than once.");
id in
(Id.Map.add id (loc, a) eargs, rargs)
in aux args
(**********************************************************************)
(* Main loop *)
let internalize globalenv env allow_patvar (_, ntnvars as lvar) c =
let rec intern env = function
| CRef (ref,us) as x ->
let (c,imp,subscopes,l),_ =
intern_applied_reference intern env (Environ.named_context globalenv)
lvar us [] ref
in
apply_impargs c env imp subscopes l (constr_loc x)
| CFix (loc, (locid,iddef), dl) ->
let lf = List.map (fun ((_, id),_,_,_,_) -> id) dl in
let dl = Array.of_list dl in
let n =
try List.index0 Id.equal iddef lf
with Not_found ->
raise (InternalizationError (locid,UnboundFixName (false,iddef)))
in
let idl_temp = Array.map
(fun (id,(n,order),bl,ty,_) ->
let intern_ro_arg f =
let before, after = split_at_annot bl n in
let (env',rbefore) = List.fold_left intern_local_binder (env,[]) before in
let rbefore = List.map (function BDRawDef a -> a | BDPattern _ -> assert false) rbefore in
let ro = f (intern env') in
let n' = Option.map (fun _ -> List.count (fun (_,(_,_,b,_)) -> (* remove let-ins *) b = None) rbefore) n in
let rbefore = List.map (fun a -> BDRawDef a) rbefore in
n', ro, List.fold_left intern_local_binder (env',rbefore) after
in
let n, ro, (env',rbl) =
match order with
| CStructRec ->
intern_ro_arg (fun _ -> GStructRec)
| CWfRec c ->
intern_ro_arg (fun f -> GWfRec (f c))
| CMeasureRec (m,r) ->
intern_ro_arg (fun f -> GMeasureRec (f m, Option.map f r))
in
let bl =
List.rev_map
(function
| BDRawDef a -> a
| BDPattern (loc,_,_,_,_) ->
Loc.raise ~loc (Stream.Error "pattern with quote not allowed after fix")) rbl in
((n, ro), bl, intern_type env' ty, env')) dl in
let idl = Array.map2 (fun (_,_,_,_,bd) (a,b,c,env') ->
let env'' = List.fold_left_i (fun i en name ->
let (_,bli,tyi,_) = idl_temp.(i) in
let fix_args = (List.map (fun (_,(na, bk, _, _)) -> (build_impls bk na)) bli) in
push_name_env ntnvars (impls_type_list ~args:fix_args tyi)
en (Loc.ghost, Name name)) 0 env' lf in
(a,b,c,intern {env'' with tmp_scope = None} bd)) dl idl_temp in
GRec (loc,GFix
(Array.map (fun (ro,_,_,_) -> ro) idl,n),
Array.of_list lf,
Array.map (fun (_,bl,_,_) -> List.map snd bl) idl,
Array.map (fun (_,_,ty,_) -> ty) idl,
Array.map (fun (_,_,_,bd) -> bd) idl)
| CCoFix (loc, (locid,iddef), dl) ->
let lf = List.map (fun ((_, id),_,_,_) -> id) dl in
let dl = Array.of_list dl in
let n =
try List.index0 Id.equal iddef lf
with Not_found ->
raise (InternalizationError (locid,UnboundFixName (true,iddef)))
in
let idl_tmp = Array.map
(fun ((loc,id),bl,ty,_) ->
let (env',rbl) = List.fold_left intern_local_binder (env,[]) bl in
let rbl = List.map (function BDRawDef a -> a | BDPattern _ -> assert false) rbl in
(List.rev rbl,
intern_type env' ty,env')) dl in
let idl = Array.map2 (fun (_,_,_,bd) (b,c,env') ->
let env'' = List.fold_left_i (fun i en name ->
let (bli,tyi,_) = idl_tmp.(i) in
let cofix_args = List.map (fun (_, (na, bk, _, _)) -> (build_impls bk na)) bli in
push_name_env ntnvars (impls_type_list ~args:cofix_args tyi)
en (Loc.ghost, Name name)) 0 env' lf in
(b,c,intern {env'' with tmp_scope = None} bd)) dl idl_tmp in
GRec (loc,GCoFix n,
Array.of_list lf,
Array.map (fun (bl,_,_) -> List.map snd bl) idl,
Array.map (fun (_,ty,_) -> ty) idl,
Array.map (fun (_,_,bd) -> bd) idl)
| CProdN (loc,[],c2) ->
intern_type env c2
| CProdN (loc,(nal,bk,ty)::bll,c2) ->
iterate_prod loc env bk ty (CProdN (loc, bll, c2)) nal
| CLambdaN (loc,[],c2) ->
intern env c2
| CLambdaN (loc,(nal,bk,ty)::bll,c2) ->
iterate_lam loc (reset_tmp_scope env) bk ty (CLambdaN (loc, bll, c2)) nal
| CLetIn (loc,na,c1,c2) ->
let inc1 = intern (reset_tmp_scope env) c1 in
GLetIn (loc, snd na, inc1,
intern (push_name_env ntnvars (impls_term_list inc1) env na) c2)
| CNotation (loc,"- _",([CPrim (_,Numeral p)],[],[]))
when Bigint.is_strictly_pos p ->
intern env (CPrim (loc,Numeral (Bigint.neg p)))
| CNotation (_,"( _ )",([a],[],[])) -> intern env a
| CNotation (loc,ntn,args) ->
intern_notation intern env ntnvars loc ntn args
| CGeneralization (loc,b,a,c) ->
intern_generalization intern env ntnvars loc b a c
| CPrim (loc, p) ->
fst (Notation.interp_prim_token loc p (env.tmp_scope,env.scopes))
| CDelimiters (loc, key, e) ->
intern {env with tmp_scope = None;
scopes = find_delimiters_scope loc key :: env.scopes} e
| CAppExpl (loc, (isproj,ref,us), args) ->
let (f,_,args_scopes,_),args =
let args = List.map (fun a -> (a,None)) args in
intern_applied_reference intern env (Environ.named_context globalenv)
lvar us args ref
in
(* Rem: GApp(_,f,[]) stands for @f *)
GApp (loc, f, intern_args env args_scopes (List.map fst args))
| CApp (loc, (isproj,f), args) ->
let f,args = match f with
(* Compact notations like "t.(f args') args" *)
| CApp (_,(Some _,f), args') when not (Option.has_some isproj) ->
f,args'@args
(* Don't compact "(f args') args" to resolve implicits separately *)
| _ -> f,args in
let (c,impargs,args_scopes,l),args =
match f with
| CRef (ref,us) ->
intern_applied_reference intern env
(Environ.named_context globalenv) lvar us args ref
| CNotation (loc,ntn,([],[],[])) ->
let c = intern_notation intern env ntnvars loc ntn ([],[],[]) in
let x, impl, scopes, l = find_appl_head_data c in
(x,impl,scopes,l), args
| x -> (intern env f,[],[],[]), args in
apply_impargs c env impargs args_scopes
(merge_impargs l args) loc
| CRecord (loc, fs) ->
let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in
let fields =
sort_fields ~complete:true loc fs
(fun _idx -> CHole (loc, Some (Evar_kinds.QuestionMark st),
Misctypes.IntroAnonymous, None))
in
begin
match fields with
| None -> user_err ~loc ~hdr:"intern" (str"No constructor inference.")
| Some (n, constrname, args) ->
let pars = List.make n (CHole (loc, None, Misctypes.IntroAnonymous, None)) in
let app = CAppExpl (loc, (None, constrname,None), List.rev_append pars args) in
intern env app
end
| CCases (loc, sty, rtnpo, tms, eqns) ->
let as_in_vars = List.fold_left (fun acc (_,na,inb) ->
Option.fold_left (fun acc tt -> Id.Set.union (ids_of_cases_indtype tt) acc)
(Option.fold_left (fun acc (_,y) -> name_fold Id.Set.add y acc) acc na)
inb) Id.Set.empty tms in
(* as, in & return vars *)
let forbidden_vars = Option.cata free_vars_of_constr_expr as_in_vars rtnpo in
let tms,ex_ids,match_from_in = List.fold_right
(fun citm (inds,ex_ids,matchs) ->
let ((tm,ind),extra_id,match_td) = intern_case_item env forbidden_vars citm in
(tm,ind)::inds, Option.fold_right Id.Set.add extra_id ex_ids, List.rev_append match_td matchs)
tms ([],Id.Set.empty,[]) in
let env' = Id.Set.fold
(fun var bli -> push_name_env ntnvars (Variable,[],[],[]) bli (Loc.ghost,Name var))
(Id.Set.union ex_ids as_in_vars) (reset_hidden_inductive_implicit_test env) in
(* PatVars before a real pattern do not need to be matched *)
let stripped_match_from_in =
let rec aux = function
| [] -> []
| (_,PatVar _) :: q -> aux q
| l -> l
in aux match_from_in in
let rtnpo = match stripped_match_from_in with
| [] -> Option.map (intern_type env') rtnpo (* Only PatVar in "in" clauses *)
| l ->
(* Build a return predicate by expansion of the patterns of the "in" clause *)
let thevars,thepats = List.split l in
let sub_rtn = (* Some (GSort (Loc.ghost,GType None)) *) None in
let sub_tms = List.map (fun id -> GVar (Loc.ghost,id),(Name id,None)) thevars (* "match v1,..,vn" *) in
let main_sub_eqn =
(Loc.ghost,[],thepats, (* "|p1,..,pn" *)
Option.cata (intern_type env')
(GHole(Loc.ghost,Evar_kinds.CasesType false,Misctypes.IntroAnonymous,None))
rtnpo) (* "=> P" if there were a return predicate P, and "=> _" otherwise *) in
let catch_all_sub_eqn =
if List.for_all (irrefutable globalenv) thepats then [] else
[Loc.ghost,[],List.make (List.length thepats) (PatVar(Loc.ghost,Anonymous)), (* "|_,..,_" *)
GHole(Loc.ghost,Evar_kinds.ImpossibleCase,Misctypes.IntroAnonymous,None)] (* "=> _" *) in
Some (GCases(Loc.ghost,Term.RegularStyle,sub_rtn,sub_tms,main_sub_eqn::catch_all_sub_eqn))
in
let eqns' = List.map (intern_eqn (List.length tms) env) eqns in
GCases (loc, sty, rtnpo, tms, List.flatten eqns')
| CLetTuple (loc, nal, (na,po), b, c) ->
let env' = reset_tmp_scope env in
(* "in" is None so no match to add *)
let ((b',(na',_)),_,_) = intern_case_item env' Id.Set.empty (b,na,None) in
let p' = Option.map (fun u ->
let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env')
(Loc.ghost,na') in
intern_type env'' u) po in
GLetTuple (loc, List.map snd nal, (na', p'), b',
intern (List.fold_left (push_name_env ntnvars (Variable,[],[],[])) (reset_hidden_inductive_implicit_test env) nal) c)
| CIf (loc, c, (na,po), b1, b2) ->
let env' = reset_tmp_scope env in
let ((c',(na',_)),_,_) = intern_case_item env' Id.Set.empty (c,na,None) in (* no "in" no match to ad too *)
let p' = Option.map (fun p ->
let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env)
(Loc.ghost,na') in
intern_type env'' p) po in
GIf (loc, c', (na', p'), intern env b1, intern env b2)
| CHole (loc, k, naming, solve) ->
let k = match k with
| None ->
let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in
Evar_kinds.QuestionMark st
| Some k -> k
in
let solve = match solve with
| None -> None
| Some gen ->
let (ltacvars, ntnvars) = lvar in
let ntnvars = Id.Map.domain ntnvars in
let lvars = Id.Set.union ltacvars.ltac_bound ltacvars.ltac_vars in
let lvars = Id.Set.union lvars ntnvars in
let lvars = Id.Set.union lvars env.ids in
let ist = {
Genintern.ltacvars = lvars;
genv = globalenv;
} in
let (_, glb) = Genintern.generic_intern ist gen in
Some glb
in
GHole (loc, k, naming, solve)
(* Parsing pattern variables *)
| CPatVar (loc, n) when allow_patvar ->
GPatVar (loc, (true,n))
| CEvar (loc, n, []) when allow_patvar ->
GPatVar (loc, (false,n))
(* end *)
(* Parsing existential variables *)
| CEvar (loc, n, l) ->
GEvar (loc, n, List.map (on_snd (intern env)) l)
| CPatVar (loc, _) ->
raise (InternalizationError (loc,IllegalMetavariable))
(* end *)
| CSort (loc, s) ->
GSort(loc,s)
| CCast (loc, c1, c2) ->
GCast (loc,intern env c1, Miscops.map_cast_type (intern_type env) c2)
and intern_type env = intern (set_type_scope env)
and intern_local_binder env bind =
intern_local_binder_aux intern ntnvars env bind
(* Expands a multiple pattern into a disjunction of multiple patterns *)
and intern_multiple_pattern env n (loc,pl) =
let idsl_pll = List.map (intern_cases_pattern globalenv (None,env.scopes) empty_alias) pl in
check_number_of_pattern loc n pl;
product_of_cases_patterns [] idsl_pll
(* Expands a disjunction of multiple pattern *)
and intern_disjunctive_multiple_pattern env loc n mpl =
assert (not (List.is_empty mpl));
let mpl' = List.map (intern_multiple_pattern env n) mpl in
let (idsl,mpl') = List.split mpl' in
let ids = List.hd idsl in
check_or_pat_variables loc ids (List.tl idsl);
(ids,List.flatten mpl')
(* Expands a pattern-matching clause [lhs => rhs] *)
and intern_eqn n env (loc,lhs,rhs) =
let eqn_ids,pll = intern_disjunctive_multiple_pattern env loc n lhs in
(* Linearity implies the order in ids is irrelevant *)
check_linearity lhs eqn_ids;
let env_ids = List.fold_right Id.Set.add eqn_ids env.ids in
List.map (fun (asubst,pl) ->
let rhs = replace_vars_constr_expr asubst rhs in
let rhs' = intern {env with ids = env_ids} rhs in
(loc,eqn_ids,pl,rhs')) pll
and intern_case_item env forbidden_names_for_gen (tm,na,t) =
(* the "match" part *)
let tm' = intern env tm in
(* the "as" part *)
let extra_id,na = match tm', na with
| GVar (loc,id), None when not (Id.Map.mem id (snd lvar)) -> Some id,(loc,Name id)
| GRef (loc, VarRef id, _), None -> Some id,(loc,Name id)
| _, None -> None,(Loc.ghost,Anonymous)
| _, Some (loc,na) -> None,(loc,na) in
(* the "in" part *)
let match_td,typ = match t with
| Some t ->
let with_letin,(ind,l) = intern_ind_pattern globalenv (None,env.scopes) t in
let (mib,mip) = Inductive.lookup_mind_specif globalenv ind in
let nparams = (List.length (mib.Declarations.mind_params_ctxt)) in
(* for "in Vect n", we answer (["n","n"],[(loc,"n")])
for "in Vect (S n)", we answer ((match over "m", relevant branch is "S
n"), abstract over "m") = ([("m","S n")],[(loc,"m")]) where "m" is
generated from the canonical name of the inductive and outside of
{forbidden_names_for_gen} *)
let (match_to_do,nal) =
let rec canonize_args case_rel_ctxt arg_pats forbidden_names match_acc var_acc =
let add_name l = function
| _,Anonymous -> l
| loc,(Name y as x) -> (y,PatVar(loc,x)) :: l in
match case_rel_ctxt,arg_pats with
(* LetIn in the rel_context *)
| LocalDef _ :: t, l when not with_letin ->
canonize_args t l forbidden_names match_acc ((Loc.ghost,Anonymous)::var_acc)
| [],[] ->
(add_name match_acc na, var_acc)
| _::t,PatVar (loc,x)::tt ->
canonize_args t tt forbidden_names
(add_name match_acc (loc,x)) ((loc,x)::var_acc)
| (LocalAssum (cano_name,ty) | LocalDef (cano_name,_,ty)) :: t, c::tt ->
let fresh =
Namegen.next_name_away_with_default_using_types "iV" cano_name forbidden_names ty in
canonize_args t tt (fresh::forbidden_names)
((fresh,c)::match_acc) ((cases_pattern_loc c,Name fresh)::var_acc)
| _ -> assert false in
let _,args_rel =
List.chop nparams (List.rev mip.Declarations.mind_arity_ctxt) in
canonize_args args_rel l (Id.Set.elements forbidden_names_for_gen) [] [] in
match_to_do, Some (cases_pattern_expr_loc t,ind,List.rev_map snd nal)
| None ->
[], None in
(tm',(snd na,typ)), extra_id, match_td
and iterate_prod loc2 env bk ty body nal =
let env, bl = intern_assumption intern ntnvars env nal bk ty in
it_mkGProd loc2 bl (intern_type env body)
and iterate_lam loc2 env bk ty body nal =
let env, bl = intern_assumption intern ntnvars env nal bk ty in
it_mkGLambda loc2 bl (intern env body)
and intern_impargs c env l subscopes args =
let eargs, rargs = extract_explicit_arg l args in
if !parsing_explicit then
if Id.Map.is_empty eargs then intern_args env subscopes rargs
else error "Arguments given by name or position not supported in explicit mode."
else
let rec aux n impl subscopes eargs rargs =
let (enva,subscopes') = apply_scope_env env subscopes in
match (impl,rargs) with
| (imp::impl', rargs) when is_status_implicit imp ->
begin try
let id = name_of_implicit imp in
let (_,a) = Id.Map.find id eargs in
let eargs' = Id.Map.remove id eargs in
intern enva a :: aux (n+1) impl' subscopes' eargs' rargs
with Not_found ->
if List.is_empty rargs && Id.Map.is_empty eargs && not (maximal_insertion_of imp) then
(* Less regular arguments than expected: complete *)
(* with implicit arguments if maximal insertion is set *)
[]
else
GHole (set_hole_implicit (n,get_implicit_name n l) (force_inference_of imp) c) ::
aux (n+1) impl' subscopes' eargs rargs
end
| (imp::impl', a::rargs') ->
intern enva a :: aux (n+1) impl' subscopes' eargs rargs'
| (imp::impl', []) ->
if not (Id.Map.is_empty eargs) then
(let (id,(loc,_)) = Id.Map.choose eargs in
user_err ~loc (str "Not enough non implicit \
arguments to accept the argument bound to " ++
pr_id id ++ str"."));
[]
| ([], rargs) ->
assert (Id.Map.is_empty eargs);
intern_args env subscopes rargs
in aux 1 l subscopes eargs rargs
and apply_impargs c env imp subscopes l loc =
let imp = select_impargs_size (List.length (List.filter (fun (_,x) -> x == None) l)) imp in
let l = intern_impargs c env imp subscopes l in
smart_gapp c loc l
and smart_gapp f loc = function
| [] -> f
| l -> match f with
| GApp (loc', g, args) -> GApp (Loc.merge loc' loc, g, args@l)
| _ -> GApp (Loc.merge (loc_of_glob_constr f) loc, f, l)
and intern_args env subscopes = function
| [] -> []
| a::args ->
let (enva,subscopes) = apply_scope_env env subscopes in
(intern enva a) :: (intern_args env subscopes args)
in
try
intern env c
with
InternalizationError (loc,e) ->
user_err ~loc ~hdr:"internalize"
(explain_internalization_error e)
(**************************************************************************)
(* Functions to translate constr_expr into glob_constr *)
(**************************************************************************)
let extract_ids env =
List.fold_right Id.Set.add
(Termops.ids_of_rel_context (Environ.rel_context env))
Id.Set.empty
let scope_of_type_kind = function
| IsType -> Notation.current_type_scope_name ()
| OfType typ -> compute_type_scope (EConstr.Unsafe.to_constr typ)
| WithoutTypeConstraint -> None
let empty_ltac_sign = {
ltac_vars = Id.Set.empty;
ltac_bound = Id.Set.empty;
}
let intern_gen kind env
?(impls=empty_internalization_env) ?(allow_patvar=false) ?(ltacvars=empty_ltac_sign)
c =
let tmp_scope = scope_of_type_kind kind in
internalize env {ids = extract_ids env; unb = false;
tmp_scope = tmp_scope; scopes = [];
impls = impls}
allow_patvar (ltacvars, Id.Map.empty) c
let intern_constr env c = intern_gen WithoutTypeConstraint env c
let intern_type env c = intern_gen IsType env c
let intern_pattern globalenv patt =
try
intern_cases_pattern globalenv (None,[]) empty_alias patt
with
InternalizationError (loc,e) ->
user_err ~loc ~hdr:"internalize" (explain_internalization_error e)
(*********************************************************************)
(* Functions to parse and interpret constructions *)
(* All evars resolved *)
let interp_gen kind env sigma ?(impls=empty_internalization_env) c =
let c = intern_gen kind ~impls env c in
understand ~expected_type:kind env sigma c
let interp_constr env sigma ?(impls=empty_internalization_env) c =
interp_gen WithoutTypeConstraint env sigma c
let interp_type env sigma ?(impls=empty_internalization_env) c =
interp_gen IsType env sigma ~impls c
let interp_casted_constr env sigma ?(impls=empty_internalization_env) c typ =
interp_gen (OfType typ) env sigma ~impls c
(* Not all evars expected to be resolved *)
let interp_open_constr env sigma c =
understand_tcc env sigma (intern_constr env c)
(* Not all evars expected to be resolved and computation of implicit args *)
let interp_constr_evars_gen_impls env evdref
?(impls=empty_internalization_env) expected_type c =
let c = intern_gen expected_type ~impls env c in
let imps = Implicit_quantifiers.implicits_of_glob_constr ~with_products:(expected_type == IsType) c in
understand_tcc_evars env evdref ~expected_type c, imps
let interp_constr_evars_impls env evdref ?(impls=empty_internalization_env) c =
interp_constr_evars_gen_impls env evdref ~impls WithoutTypeConstraint c
let interp_casted_constr_evars_impls env evdref ?(impls=empty_internalization_env) c typ =
interp_constr_evars_gen_impls env evdref ~impls (OfType typ) c
let interp_type_evars_impls env evdref ?(impls=empty_internalization_env) c =
interp_constr_evars_gen_impls env evdref ~impls IsType c
(* Not all evars expected to be resolved, with side-effect on evars *)
let interp_constr_evars_gen env evdref ?(impls=empty_internalization_env) expected_type c =
let c = intern_gen expected_type ~impls env c in
understand_tcc_evars env evdref ~expected_type c
let interp_constr_evars env evdref ?(impls=empty_internalization_env) c =
interp_constr_evars_gen env evdref WithoutTypeConstraint ~impls c
let interp_casted_constr_evars env evdref ?(impls=empty_internalization_env) c typ =
interp_constr_evars_gen env evdref ~impls (OfType (EConstr.of_constr typ)) c
let interp_type_evars env evdref ?(impls=empty_internalization_env) c =
interp_constr_evars_gen env evdref IsType ~impls c
(* Miscellaneous *)
let intern_constr_pattern env ?(as_type=false) ?(ltacvars=empty_ltac_sign) c =
let c = intern_gen (if as_type then IsType else WithoutTypeConstraint)
~allow_patvar:true ~ltacvars env c in
pattern_of_glob_constr c
let interp_notation_constr ?(impls=empty_internalization_env) nenv a =
let env = Global.env () in
(* [vl] is intended to remember the scope of the free variables of [a] *)
let vl = Id.Map.map (fun typ -> (ref true, ref None, typ)) nenv.ninterp_var_type in
let c = internalize (Global.env()) {ids = extract_ids env; unb = false;
tmp_scope = None; scopes = []; impls = impls}
false (empty_ltac_sign, vl) a in
(* Translate and check that [c] has all its free variables bound in [vars] *)
let a, reversible = notation_constr_of_glob_constr nenv c in
(* Splits variables into those that are binding, bound, or both *)
(* binding and bound *)
let out_scope = function None -> None,[] | Some (a,l) -> a,l in
let vars = Id.Map.map (fun (isonlybinding, sc, typ) ->
(!isonlybinding, out_scope !sc, typ)) vl in
(* Returns [a] and the ordered list of variables with their scopes *)
vars, a, reversible
(* Interpret binders and contexts *)
let interp_binder env sigma na t =
let t = intern_gen IsType env t in
let t' = locate_if_hole (loc_of_glob_constr t) na t in
understand ~expected_type:IsType env sigma t'
let interp_binder_evars env evdref na t =
let t = intern_gen IsType env t in
let t' = locate_if_hole (loc_of_glob_constr t) na t in
understand_tcc_evars env evdref ~expected_type:IsType t'
open Environ
let my_intern_constr env lvar acc c =
internalize env acc false lvar c
let intern_context global_level env impl_env binders =
try
let lvar = (empty_ltac_sign, Id.Map.empty) in
let lenv, bl = List.fold_left
(fun (lenv, bl) b ->
let bl = List.map (fun a -> BDRawDef a) bl in
let (env, bl) = intern_local_binder_aux ~global_level (my_intern_constr env lvar) Id.Map.empty (lenv, bl) b in
let bl =
List.map
(function
| BDRawDef a -> a
| BDPattern (loc,_,_,_,_) ->
Loc.raise ~loc (Stream.Error "pattern with quote not allowed here")) bl in
(env, bl))
({ids = extract_ids env; unb = false;
tmp_scope = None; scopes = []; impls = impl_env}, []) binders in
(lenv.impls, List.map snd bl)
with InternalizationError (loc,e) ->
user_err ~loc ~hdr:"internalize" (explain_internalization_error e)
let interp_rawcontext_evars env evdref k bl =
let open EConstr in
let (env, par, _, impls) =
List.fold_left
(fun (env,params,n,impls) (na, k, b, t) ->
let t' =
if Option.is_empty b then locate_if_hole (loc_of_glob_constr t) na t
else t
in
let t = understand_tcc_evars env evdref ~expected_type:IsType t' in
match b with
None ->
let d = LocalAssum (na,t) in
let impls =
if k == Implicit then
let na = match na with Name n -> Some n | Anonymous -> None in
(ExplByPos (n, na), (true, true, true)) :: impls
else impls
in
(push_rel d env, d::params, succ n, impls)
| Some b ->
let c = understand_tcc_evars env evdref ~expected_type:(OfType t) b in
let d = LocalDef (na, c, t) in
(push_rel d env, d::params, n, impls))
(env,[],k+1,[]) (List.rev bl)
in (env, par), impls
let interp_context_evars ?(global_level=false) ?(impl_env=empty_internalization_env) ?(shift=0) env evdref params =
let int_env,bl = intern_context global_level env impl_env params in
let x = interp_rawcontext_evars env evdref shift bl in
int_env, x
|