aboutsummaryrefslogtreecommitdiffhomepage
path: root/interp/constrextern.ml
blob: e0b5a99cdb009acf9238e180603ae8602118e4d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

(*i*)
open Pp
open Util
open Univ
open Names
open Nameops
open Term
open Termops
open Inductive
open Sign
open Environ
open Libnames
open Impargs
open Topconstr
open Rawterm
open Pattern
open Nametab
open Symbols
open Reserve
(*i*)

(* Translation from rawconstr to front constr *)

(**********************************************************************)
(* Parametrization                                                    *)

(* This governs printing of local context of references *)
let print_arguments = ref false

(* If true, prints local context of evars, whatever print_arguments *)
let print_evar_arguments = ref false

(* This governs printing of implicit arguments.  When
   [print_implicits] is on then [print_implicits_explicit_args] tells
   how implicit args are printed. If on, implicit args are printed
   prefixed by "!" otherwise the function and not the arguments is
   prefixed by "!" *)
let print_implicits = ref false
let print_implicits_explicit_args = ref false

(* This forces printing of coercions *)
let print_coercions = ref false

(* This forces printing universe names of Type{.} *)
let print_universes = ref false

(* This suppresses printing of numeral and symbols *)
let print_no_symbol = ref false

(* This governs printing of projections using the dot notation symbols *)
let print_projections = ref false

let print_meta_as_hole = ref false

let with_arguments f = Options.with_option print_arguments f
let with_implicits f = Options.with_option print_implicits f
let with_coercions f = Options.with_option print_coercions f
let with_universes f = Options.with_option print_universes f
let without_symbols f = Options.with_option print_no_symbol f
let with_meta_as_hole f = Options.with_option print_meta_as_hole f

(* For the translator *)
let temporary_implicits_out = ref []
let set_temporary_implicits_out l = temporary_implicits_out := l
let get_temporary_implicits_out id =
  try List.assoc id !temporary_implicits_out
  with Not_found -> []

(**********************************************************************)
(* Various externalisation functions *)

let insert_delimiters e = function
  | None -> e
  | Some sc -> CDelimiters (dummy_loc,sc,e)

let insert_pat_delimiters e = function
  | None -> e
  | Some sc -> CPatDelimiters (dummy_loc,sc,e)

(**********************************************************************)
(* conversion of references                                           *)

let ids_of_ctxt ctxt =
  Array.to_list
    (Array.map
       (function c -> match kind_of_term c with
	  | Var id -> id
	  | _ ->
       error
       "Termast: arbitrary substitution of references not yet implemented")
     ctxt)

let idopt_of_name = function 
  | Name id -> Some id
  | Anonymous -> None

let extern_evar loc n =
(*
  msgerrnl (str 
    "Warning: existential variable turned into meta-variable during externalization");
  CPatVar (loc,(false,make_ident "META" (Some n)))
*)
  CEvar (loc,n)

let raw_string_of_ref = function
  | ConstRef kn -> 
      "CONST("^(string_of_kn kn)^")"
  | IndRef (kn,i) ->
      "IND("^(string_of_kn kn)^","^(string_of_int i)^")"
  | ConstructRef ((kn,i),j) -> 
      "CONSTRUCT("^
      (string_of_kn kn)^","^(string_of_int i)^","^(string_of_int j)^")"
  | VarRef id -> 
      "SECVAR("^(string_of_id id)^")"

(* v7->v8 translation *)

let name_app f = function
  | Name id -> Name (f id)
  | Anonymous -> Anonymous

let rec translate_ident_string = function
    (* translate keyword *)
  | ("at" | "IF" | "forall" | "fun" | "match" | "fix" | "cofix" | "for" | "let"
    | "if"  | "then" | "else" | "return" | "mod" | "where" 
    | "exists" | "exists2" | "using" as s) ->
      let s' = s^"_" in
      msgerrnl
      (str ("Warning: '"^
          s^"' is now a keyword; it has been translated to '"^s'^"'"));
      s'
(* Le conflit est en fait surtout avec Eval dans Definition et c'est gere dans
   Ppconstrnew
  | "eval" as s ->
      let s' = s^"_" in
      msgerrnl
      (str ("Warning: '"^
          s^"' is a conflicting ident; it has been translated to '"^s'^"'"));
      s'
*)

  (* avoid _ *)
  | "_" -> 
      msgerrnl (str 
        "Warning: '_' is no longer an ident; it has been translated to 'x_'");
      "x_"
  (* avoid @ *)
  | s when String.contains s '@' ->
      let n = String.index s '@' in 
      translate_ident_string
      (String.sub s 0 n ^ "'at'" ^ String.sub s (n+1) (String.length s -n-1))
  | s -> s

let translate_ident id =
  id_of_string (translate_ident_string (string_of_id id))

let is_coq_root d =
  let d = repr_dirpath d in d <> [] & string_of_id (list_last d) = "Coq"

let is_dir dir s =
  let d = repr_dirpath dir in
  d <> [] & string_of_id (List.hd d) = s

let is_module m = is_dir (Lib.library_dp()) m

let bp = ["BinPos"]
let bz = ["BinInt"]
let bn = ["BinNat"]
let pn = ["nat"]
let zc = ["Zcompare"]
let lo = ["Logic"]
let da = ["Datatypes"]
let zabs = ["Zabs"]
let zo = ["Zorder"]
let zn = ["Znat"]
let wz = ["Wf_Z"]
let mu = ["Mult"]
let pl = ["Plus"]
let mi = ["Minus"]
let le = ["Le"]
let gt = ["Gt"]
let lt = ["Lt"]
let be = ["Between"]
let bo = ["Bool"]
let c dir = 
  let d = repr_dirpath dir in
  if d = [] then [] else [string_of_id (List.hd d)]

let translation_table = [
  (* ZArith *)
"double_moins_un", (bp,"Pdouble_minus_one");
"double_moins_deux", (bp,"Pdouble_minus_two");
"is_double_moins_un", (bp,"Psucc_o_double_minus_one_eq_xO");
"double_moins_un_add_un_xI", (bp,"Pdouble_minus_one_o_succ_eq_xI");
"add_un_Zs", (bz,"Zpos_succ_morphism");
"entier", (bn,"N");
"entier_of_Z", (bz,"Zabs_N");
"Z_of_entier", (bz,"Z_of_N");
"SUPERIEUR", (da,"Gt");
"EGAL", (da,"Eq");
"INFERIEUR", (da,"Lt");
"add", (bp,"Pplus");
"add_carry", (bp,"Pplus_carry");
"add_assoc", (bp,"Pplus_assoc");
"add_sym", (bp,"Pplus_comm");
"add_x_x", (bp,"Pplus_diag");
"add_carry_add", (bp,"Pplus_carry_plus");
"simpl_add_r", (bp,"Pplus_reg_r");
"simpl_add_l", (bp,"Pplus_reg_l");
"simpl_add_carry_r", (bp,"Pplus_carry_reg_r");
"simpl_add_carry_l", (bp,"Pplus_carry_reg_l");
"simpl_times_r", (bp,"Pmult_reg_r");
"simpl_times_l", (bp,"Pmult_reg_l");
(*
"xO_xI_add_double_moins_un", (bp,"xO_xI_plus_double_minus_one");
*)
"double_moins_un_plus_xO_double_moins_un",
  (bp,"Pdouble_minus_one_plus_xO_double_minus_one");
"add_xI_double_moins_un", (bp,"Pplus_xI_double_minus_one");
"add_xO_double_moins_un", (bp,"Pplus_xO_double_minus_one");
"iter_pos_add", (bp,"iter_pos_plus");
"add_no_neutral", (bp,"Pplus_no_neutral");
"add_carry_not_add_un", (bp,"Pplus_carry_no_neutral");
"times_add_distr", (bp,"Pmult_plus_distr_l");
"times_add_distr_l", (bp,"Pmult_plus_distr_r");
"times_true_sub_distr", (bp,"Pmult_minus_distr_l");
"times_sym", (bp,"Pmult_comm");
"times_assoc", (bp,"Pmult_assoc");
"times_convert", (bp,"nat_of_P_mult_morphism");
"true_sub", (bp,"Pminus");
"times_x_1", (bp,"Pmult_1_r");
"times_x_double", (bp,"Pmult_xO_permute_r"); 
   (* Changer en Pmult_xO_distrib_r_reverse *)
"times_x_double_plus_one", (bp,"Pmult_xI_permute_r"); (* Changer ? *)
"times_discr_xO_xI", (bp,"Pmult_xI_mult_xO_discr");
"times_discr_xO", (bp,"Pmult_xO_discr");
"times_one_inversion_l", (bp,"Pmult_1_inversion_l");
"true_sub_convert", (bp,"nat_of_P_minus_morphism");
"compare_true_sub_right", (bp,"Pcompare_minus_r");
"compare_true_sub_left", (bp,"Pcompare_minus_l");
"sub_add", (bp,"Pplus_minus" (* similar to le_plus_minus in Arith *));
"sub_add_one", (bp,"Ppred_succ");
"add_sub_one", (bp,"Psucc_pred");
"add_un", (bp,"Psucc");
"add_un_discr", (bp,"Psucc_discr");
"add_un_not_un", (bp,"Psucc_not_one");
"add_un_inj", (bp,"Psucc_inj");
"xI_add_un_xO", (bp,"xI_succ_xO");
"ZL12", (bp,"Pplus_one_succ_r");
"ZL12bis", (bp,"Pplus_one_succ_l");
"ZL13", (bp,"Pplus_carry_spec");
      (* Changer en Pplus_succ_distrib_r_reverse ? *)
"ZL14", (bp,"Pplus_succ_permute_r");
      (* Changer en Plus_succ_distrib_l_reverse *)
"ZL14bis", (bp,"Pplus_succ_permute_l");
"sub_un", (bp,"Ppred");
"sub_pos", (bp,"Pminus_mask");
"sub_pos_x_x", (bp,"Pminus_mask_diag");
(*"sub_pos_x_x", (bp,"Pminus_mask_diag");*)
"sub_pos_SUPERIEUR", (bp,"Pminus_mask_Gt");
"sub_neg", (bp,"Pminus_mask_carry");
"Zdiv2_pos", (bp,"Pdiv2");
"Pdiv2", (["Zbinary"],"Zdiv2_ge_compat");
"ZERO", (bz,"Z0");
"POS", (bz,"Zpos");
"NEG", (bz,"Zneg");
"Nul", (bn,"N0");
"Pos", (bn,"Npos");
"Un_suivi_de", (bn,"Ndouble_plus_one");
"Zero_suivi_de", (bn,"Ndouble");
"Un_suivi_de_mask", (bp,"Pdouble_plus_one_mask");
"Zero_suivi_de_mask", (bp,"Pdouble_mask");
"ZS", (bp,"double_eq_zero_inversion");
"US", (bp,"double_plus_one_zero_discr");
"USH", (bp,"double_plus_one_eq_one_inversion");
"ZSH", (bp,"double_eq_one_discr");
"ZPminus_add_un_permute", (bz,"ZPminus_succ_permute");
"ZPminus_add_un_permute_Zopp", (bz,"ZPminus_succ_permute_opp");
"ZPminus_double_moins_un_xO_add_un", (bz,"ZPminus_double_minus_one_xO_succ");
"ZL1", (bp,"xO_succ_permute");  (* ?? *)
"Zplus_assoc_r", (bz,"Zplus_assoc_reverse");
"Zplus_sym", (bz,"Zplus_comm");
"Zero_left", (bz,"Zplus_0_l");
"Zero_right", (bz,"Zplus_0_r");
"Zplus_n_O", (bz,"Zplus_0_r_reverse");
"Zplus_unit_left", (bz,"Zplus_0_simpl_l");
"Zplus_unit_right", (bz,"Zplus_0_simpl_l_reverse");
"Zplus_Zopp_expand", (bz,"Zplus_opp_expand");
"Zn_Sn", (bz,"Zsucc_discr");
"Zs", (bz,"Zsucc");
"Psucc_Zs", (bz,"Zpos_succ_permute");
"Zs_pred", (bz,"Zsucc_pred");
"Zpred_Sn", (bz,"Zpred_succ");
"Zminus_n_O", (bz,"Zminus_0_l_reverse");
"Zminus_n_n", (bz,"Zminus_diag_reverse");
"Zminus_Sn_m", (bz,"Zminus_succ_l");
"Zeq_Zminus", (bz,"Zeq_minus");
"Zminus_Zeq", (bz,"Zminus_eq");
"Zplus_minus", (bz,"Zplus_minus_eq");
"Zminus_plus", (bz,"Zminus_plus");
"Zminus_plus_simpl", (bz,"Zminus_plus_simpl_l_reverse");
"Zminus_Zplus_compatible", (bz,"Zminus_plus_simpl_r");
"Zle_plus_minus", (bz,"Zplus_minus");
"Zopp_Zplus", (bz,"Zopp_plus_distr");
"Zopp_Zopp", (bz,"Zopp_involutive");
"Zopp_NEG", (bz,"Zopp_neg");
"Zopp_Zdouble", (bz,"Zopp_double");
"Zopp_Zdouble_plus_one", (bz,"Zopp_double_plus_one");
"Zopp_Zdouble_minus_one", (bz,"Zopp_double_minus_one");
"Zplus_inverse_r", (bz,"Zplus_opp_r");
"Zplus_inverse_l", (bz,"Zplus_opp_l");
"Zplus_S_n", (bz,"Zplus_succ_l");
"Zplus_n_Sm", (bz,"Zplus_succ_r");
"Zplus_Snm_nSm", (bz,"Zplus_succ_comm");
"Zmult_assoc_r", (bz,"Zmult_assoc_reverse");
"Zmult_sym", (bz,"Zmult_comm");
"Zmult_eq", (bz,"Zmult_integral_l");
"Zmult_zero", (bz,"Zmult_integral");
"Zero_mult_left", (bz,"Zmult_0_l");
"Zero_mult_right", (bz,"Zmult_0_r");
"Zmult_1_n", (bz,"Zmult_1_l");
"Zmult_n_1", (bz,"Zmult_1_r");
"Zmult_n_O", (bz,"Zmult_0_r_reverse");
"Zopp_one", (bz,"Zopp_eq_mult_neg_1");
"Zopp_Zmult", (bz,"Zopp_mult_distr_l_reverse");
"Zopp_Zmult_r", (bz,"Zopp_mult_distr_r");
"Zopp_Zmult_l", (bz,"Zopp_mult_distr_l");
"Zmult_Zopp_Zopp", (bz,"Zmult_opp_opp");
"Zmult_Zopp_left", (bz,"Zmult_opp_comm");
"Zmult_Zplus_distr", (bz,"Zmult_plus_distr_r");
"Zmult_plus_distr", (bz,"Zmult_plus_distr_r");
"Zmult_Zminus_distr_r", (bz,"Zmult_minus_distr_l");
"Zmult_Zminus_distr_l", (bz,"Zmult_minus_distr_r");
"Zcompare_Zplus_compatible", (zc,"Zcompare_plus_compat");
"Zcompare_Zplus_compatible2", (zc,"Zplus_compare_compat");
"Zcompare_Zmult_compatible", (zc,"Zcompare_mult_compat");
"inject_nat", (bz,"Z_of_nat");
"inject_nat_complete", (wz,"Z_of_nat_complete");
"inject_nat_complete_inf", (wz,"Z_of_nat_complete_inf");
"inject_nat_prop", (wz,"Z_of_nat_prop");
"inject_nat_set", (wz,"Z_of_nat_set");
"convert", (bp,"nat_of_P");
"anti_convert", (bp,"P_of_succ_nat");
"positive_to_nat", (bp,"Pmult_nat");
"Zopp_intro", (bz,"Zopp_inj");
"plus_iter_add", (bp,"plus_iter_eq_plus");
"compare", (bp,"Pcompare");
"iter_convert", (["Zmisc"],"iter_nat_of_P");
"ZLSI", (bp,"Pcompare_Gt_Lt");
"ZLIS", (bp,"Pcompare_Lt_Gt");
"ZLII", (bp,"Pcompare_Lt_Lt");
"ZLSS", (bp,"Pcompare_Gt_Gt");
  (* Pnat *)
"convert_intro", (pn,"nat_of_P_inj");
"convert_add", (pn,"nat_of_P_plus_morphism");
"convert_add_un", (pn,"Pmult_nat_succ_morphism");
"cvt_add_un", (pn,"nat_of_P_succ_morphism");
"convert_add_carry", (pn,"Pmult_nat_plus_carry_morphism");
"compare_convert_O", (pn,"lt_O_nat_of_P");
"add_verif", (pn,"Pmult_nat_l_plus_morphism");
"ZL2", (pn,"Pmult_nat_r_plus_morphism");
"compare_positive_to_nat_O", (pn,"le_Pmult_nat");
(* Trop spécifique ?
"ZL6", (pn,"Pmult_nat_plus_shift_morphism");
*)
"ZL15", (pn,"Pplus_carry_pred_eq_plus");
"cvt_carry", (pn,"nat_of_P_plus_carry_morphism");
"compare_convert1", (pn,"Pcompare_not_Eq");
"compare_convert_INFERIEUR", (pn,"nat_of_P_lt_Lt_compare_morphism");
"compare_convert_SUPERIEUR", (pn,"nat_of_P_gt_Gt_compare_morphism");
"compare_convert_EGAL", (pn,"Pcompare_Eq_eq");
"convert_compare_INFERIEUR", (pn,"nat_of_P_lt_Lt_compare_complement_morphism");
"convert_compare_SUPERIEUR", (pn,"nat_of_P_gt_Gt_compare_complement_morphism");
"convert_compare_EGAL", (pn,"Pcompare_refl");
"bij1", (pn,"nat_of_P_o_P_of_succ_nat_eq_succ");
"bij2", (pn,"P_of_succ_nat_o_nat_of_P_eq_succ");
"bij3", (pn,"pred_o_P_of_succ_nat_o_nat_of_P_eq_id");
  (* Zcompare *)
"Zcompare_EGAL", (zc,"Zcompare_Eq_iff_eq");
"Zcompare_EGAL_eq", (zc,"Zcompare_Eq_eq");
"Zcompare_x_x", (zc,"Zcompare_refl");
"Zcompare_et_un", (zc,"Zcompare_Gt_not_Lt");
"Zcompare_trans_SUPERIEUR", (zc,"Zcompare_Gt_trans");
"Zcompare_n_S", (zc,"Zcompare_succ_compat");
"SUPERIEUR_POS", (zc,"Zcompare_Gt_spec");
"Zcompare_ANTISYM", (zc,"Zcompare_Gt_Lt_antisym");
"Zcompare_Zs_SUPERIEUR", (zc,"Zcompare_succ_Gt");
"Zcompare_Zopp", (zc,"Zcompare_opp");
"POS_inject", (zn,"Zpos_eq_Z_of_nat_o_nat_of_P");
"absolu", (bz,"Zabs_nat");
"absolu_lt", (zabs,"Zabs_nat_lt" (* "Zabs_nat_lt_morphism_pos" ? *));
"Zeq_add_S", (bz,"Zsucc_inj");
"Znot_eq_S", (bz,"Zsucc_inj_contrapositive");
"Zeq_S", (bz,"Zsucc_eq_compat");
"Zsimpl_plus_l", (bz,"Zplus_reg_l");
"Zplus_simpl", (bz,"Zplus_eq_compat");
"POS_gt_ZERO", (zo,"Zgt_pos_0");
"ZERO_le_POS", (zo,"Zle_0_pos");
"ZERO_le_inj", (zo,"Zle_0_nat");
"NEG_lt_ZERO", (zo,"Zlt_neg_0");
"Zlt_ZERO_pred_le_ZERO", (zo,"Zlt_0_le_0_pred");
"POS_xI", (bz,"Zpos_xI");
"POS_xO", (bz,"Zpos_xO");
"NEG_xI", (bz,"Zneg_xI");
"NEG_xO", (bz,"Zneg_xO");
"POS_add", (bz,"Zpos_plus_distr");
"NEG_add", (bz,"Zneg_plus_distr");
  (* Z Orders *)
"not_Zge", (zo,"Znot_ge_lt");
"not_Zlt", (zo,"Znot_lt_ge");
"not_Zle", (zo,"Znot_le_gt");
"not_Zgt", (zo,"Znot_gt_le");
"Zgt_not_sym", (zo,"Zgt_asym");
"Zlt_not_sym", (zo,"Zlt_asym");
"Zlt_n_n", (zo,"Zlt_irrefl");
"Zgt_antirefl", (zo,"Zgt_irrefl");
"Zgt_reg_l", (zo,"Zplus_gt_compat_l");
"Zgt_reg_r", (zo,"Zplus_gt_compat_r");
"Zlt_reg_l", (zo,"Zplus_lt_compat_l");
"Zlt_reg_r", (zo,"Zplus_lt_compat_r");
"Zle_reg_l", (zo,"Zplus_le_compat_l");
"Zle_reg_r", (zo,"Zplus_le_compat_r");
"Zlt_le_reg", (zo,"Zplus_lt_le_compat");
"Zle_lt_reg", (zo,"Zplus_le_lt_compat");
"Zle_plus_plus", (zo,"Zplus_le_compat");
"Zlt_Zplus", (zo,"Zplus_lt_compat");
"Zle_O_plus", (zo,"Zplus_le_0_compat");
"Zle_mult_simpl", (zo,"Zmult_le_reg_r");
"Zge_mult_simpl", (zo,"Zmult_ge_reg_r");
"Zgt_mult_simpl", (zo,"Zmult_gt_reg_r");
"Zsimpl_gt_plus_l", (zo,"Zplus_gt_reg_l");
"Zsimpl_gt_plus_r", (zo,"Zplus_gt_reg_r");
"Zsimpl_le_plus_l", (zo,"Zplus_le_reg_l");
"Zsimpl_le_plus_r", (zo,"Zplus_le_reg_r");
"Zsimpl_lt_plus_l", (zo,"Zplus_lt_reg_l");
"Zsimpl_lt_plus_r", (zo,"Zplus_lt_reg_r");
"Zlt_Zmult_right2", (zo,"Zmult_gt_0_lt_reg_r");
"Zlt_Zmult_right", (zo,"Zmult_gt_0_lt_compat_r");
"Zle_Zmult_right2", (zo,"Zmult_gt_0_le_reg_r");
"Zle_Zmult_right", (zo,"Zmult_gt_0_le_compat_r");
"Zgt_Zmult_right", (zo,"Zmult_gt_compat_r");
"Zgt_Zmult_left", (zo,"Zmult_gt_compat_l");
"Zlt_Zmult_left", (zo,"Zmult_gt_0_lt_compat_l");
"Zcompare_Zmult_right", (zc,"Zmult_compare_compat_r");
"Zcompare_Zmult_left", (zc,"Zmult_compare_compat_l");
"Zplus_Zmult_2", (bz,"Zplus_diag_eq_mult_2");
"Zmult_Sm_n", (bz,"Zmult_succ_l_reverse");
"Zmult_n_Sm", (bz,"Zmult_succ_r_reverse");
"Zmult_le", (zo,"Zmult_le_0_reg_r");
"Zmult_reg_left", (bz,"Zmult_reg_l");
"Zmult_reg_right", (bz,"Zmult_reg_r");
"Zle_ZERO_mult", (zo,"Zmult_le_0_compat");
"Zgt_ZERO_mult", (zo,"Zmult_gt_0_compat");
"Zle_mult", (zo,"Zmult_gt_0_le_0_compat");
"Zmult_lt", (zo,"Zmult_gt_0_lt_0_reg_r");
"Zmult_gt", (zo,"Zmult_gt_0_reg_l");
"Zle_Zmult_pos_right", (zo,"Zmult_le_compat_r");
"Zle_Zmult_pos_left", (zo,"Zmult_le_compat_l");
"Zge_Zmult_pos_right", (zo,"Zmult_ge_compat_r");
"Zge_Zmult_pos_left", (zo,"Zmult_ge_compat_l");
"Zge_Zmult_pos_compat", (zo,"Zmult_ge_compat");
"Zlt_Zcompare", (zo,"Zlt_compare");
"Zle_Zcompare", (zo,"Zle_compare");
"Zgt_Zcompare", (zo,"Zgt_compare");
"Zge_Zcompare", (zo,"Zge_compare");
  (* ex-IntMap *)
"convert_xH", (pn,"nat_of_P_xH");
"convert_xO", (pn,"nat_of_P_xO");
"convert_xI", (pn,"nat_of_P_xI");
"positive_to_nat_mult", (pn,"Pmult_nat_mult_permute");
"positive_to_nat_2", (pn,"Pmult_nat_2_mult_2_permute");
"positive_to_nat_4", (pn,"Pmult_nat_4_mult_2_permute");
  (* ZArith and Arith orders *)
"Zle_refl", (zo,"Zeq_le");
"Zle_n", (zo,"Zle_refl");
"Zle_trans_S", (zo,"Zle_succ_le");
"Zgt_trans_S", (zo,"Zge_trans_succ");
"Zgt_S", (zo,"Zgt_succ_gt_or_eq");
"Zle_Sn_n", (zo,"Znot_le_succ");
"Zlt_n_Sn", (zo,"Zlt_succ");
"Zlt_S", (zo,"Zlt_lt_succ");
"Zlt_n_S", (zo,"Zsucc_lt_compat");
"Zle_n_S", (zo,"Zsucc_le_compat");
"Zgt_n_S", (zo,"Zsucc_gt_compat");
"Zlt_S_n", (zo,"Zsucc_lt_reg");
"Zgt_S_n", (zo,"Zsucc_gt_reg");
"Zle_S_n", (zo,"Zsucc_le_reg");
"Zle_0_plus", (zo,"Zplus_le_0_compat");
"Zgt_Sn_n", (zo,"Zgt_succ");
"Zgt_le_S", (zo,"Zgt_le_succ");
"Zgt_S_le", (zo,"Zgt_succ_le");
"Zle_S_gt", (zo,"Zlt_succ_gt");
"Zle_gt_S", (zo,"Zlt_gt_succ");
"Zgt_pred", (zo,"Zgt_succ_pred");
"Zlt_pred", (zo,"Zlt_succ_pred");
"Zgt0_le_pred", (zo,"Zgt_0_le_0_pred");
"Z_O_1", (zo,"Zlt_0_1");
"Zle_NEG_POS", (zo,"Zle_neg_pos");
"Zle_n_Sn", (zo,"Zle_succ");
"Zle_pred_n", (zo,"Zle_pred");
"Zlt_pred_n_n", (zo,"Zlt_pred");
"Zlt_le_S", (zo,"Zlt_le_succ");
"Zlt_n_Sm_le", (zo,"Zlt_succ_le");
"Zle_lt_n_Sm", (zo,"Zle_lt_succ");
"Zle_le_S", (zo,"Zle_le_succ");
"Zlt_minus", (zo,"Zlt_minus_simpl_swap");
"le_trans_S", (le,"le_Sn_le");
(* Znumtheory *)
"Zdivide_Zmod", ([],"Zdivide_mod");
"Zmod_Zdivide", ([],"Zmod_divide");
"Zdivide_mult_left", ([],"Zmult_divide_compat_l");
"Zdivide_mult_right", ([],"Zmult_divide_compat_r");
"Zdivide_opp", ([],"Zdivide_opp_r");
"Zdivide_opp_rev", ([],"Zdivide_opp_r_rev");
"Zdivide_opp_left", ([],"Zdivide_opp_l");
"Zdivide_opp_left_rev", ([],"Zdivide_opp_l_rev");
"Zdivide_right", ([],"Zdivide_mult_r");
"Zdivide_left", ([],"Zdivide_mult_l");
"Zdivide_plus", ([],"Zdivide_plus_r");
"Zdivide_minus", ([],"Zdivide_minus_l");
"Zdivide_a_ab", ([],"Zdivide_factor_r");
"Zdivide_a_ba", ([],"Zdivide_factor_l");
(* Arith *)
(* Peano.v
"plus_n_O", ("plus_0_r_reverse");
"plus_O_n", ("plus_0_l");
*)
"plus_assoc_l", (pl,"plus_assoc");
"plus_assoc_r", (pl,"plus_assoc_reverse");
"plus_sym", (pl,"plus_comm");
"mult_sym", (mu,"mult_comm");
"max_sym", (["Max"],"max_comm");
"min_sym", (["Min"],"min_comm");
"gt_not_sym", (gt,"gt_asym");
"lt_not_sym", (lt,"lt_asym");
"gt_antirefl", (gt,"gt_irrefl");
"lt_n_n", (lt,"lt_irrefl");
(* Trop utilisé dans CoqBook | "le_n" -> "le_refl"*)
"simpl_plus_l", (pl,"plus_reg_l");
"simpl_plus_r", (pl,"plus_reg_r");
"fact_growing", (["Factorial"],"fact_le");
"mult_assoc_l", (mu,"mult_assoc");
"mult_assoc_r", (mu,"mult_assoc_reverse");
"mult_plus_distr", (mu,"mult_plus_distr_r");
"mult_plus_distr_r", (mu,"mult_plus_distr_l");
"mult_minus_distr", (mu,"mult_minus_distr_r");
"mult_1_n", (mu,"mult_1_l");
"mult_n_1", (mu,"mult_1_r");
(* Peano.v
"mult_n_O", ("mult_O_r_reverse");
"mult_n_Sm", ("mult_S_r_reverse");
*)
"mult_le", (mu,"mult_le_compat_l");
"le_mult_right", (mu,"mult_le_compat_r");
"le_mult_mult", (mu,"mult_le_compat");
"mult_lt", (mu,"mult_S_lt_compat_l");
"lt_mult_right", (mu,"mult_lt_compat_r");
"mult_le_conv_1", (mu,"mult_S_le_reg_l");
"exists", (be,"exists_between");
"IHexists", ([],"IHexists_between");
(* Peano.v
"pred_Sn", ("pred_S");
*)
"inj_minus_aux", (mi,"not_le_minus_0");
"minus_x_x", (mi,"minus_diag");
"minus_plus_simpl", (mi,"minus_plus_simpl_l_reverse");
"gt_reg_l", (gt,"plus_gt_compat_l");
"le_reg_l", (pl,"plus_le_compat_l");
"le_reg_r", (pl,"plus_le_compat_r");
"lt_reg_l", (pl,"plus_lt_compat_l");
"lt_reg_r", (pl,"plus_lt_compat_r");
"le_plus_plus", (pl,"plus_le_compat");
"le_lt_plus_plus", (pl,"plus_le_lt_compat");
"lt_le_plus_plus", (pl,"plus_lt_le_compat");
"lt_plus_plus", (pl,"plus_lt_compat");
"plus_simpl_l", (pl,"plus_reg_l");
"simpl_gt_plus_l", (pl,"plus_gt_reg_l");
"simpl_le_plus_l", (pl,"plus_le_reg_l");
"simpl_lt_plus_l", (pl,"plus_lt_reg_l");
(* Noms sur le principe de ceux de Z
"le_n_S", ("S_le_compat");
"le_n_Sn", ("le_S");
(*"le_O_n", ("??" *));
"le_pred_n", ("le_pred");
"le_trans_S", ("le_S_le");
"le_S_n", ("S_le_reg");
"le_Sn_O", ("not_le_S_O");
"le_Sn_n", ("not_le_S");
*)
  (* Init *)
"IF", (lo,"IF_then_else");
  (* Lists *)
"idempot_rev", (["List"],"rev_involutive");
"forall", (["Streams"],"HereAndFurther");
  (* Bool *)
"orb_sym", (bo,"orb_comm");
"andb_sym", (bo,"andb_comm");
  (* Ring *)
"SR_plus_sym", (["Ring_theory"],"SR_plus_comm");
"SR_mult_sym", (["Ring_theory"],"SR_mult_comm");
"Th_plus_sym", (["Ring_theory"],"Th_plus_comm");
"Th_mul_sym", (["Ring_theory"],"Th_mult_comm");
"SSR_plus_sym", (["Setoid_ring_theory"],"SSR_plus_comm");
"SSR_mult_sym", (["Setoid_ring_theory"],"SSR_mult_comm");
"STh_plus_sym", (["Setoid_ring_theory"],"STh_plus_comm");
"STh_mul_sym", (["Setoid_ring_theory"],"STh_mult_comm");
  (* Reals *)
(*
"Rabsolu", ("Rabs");
"Rabsolu_pos_lt", ("Rabs_pos_lt");
"Rabsolu_no_R0", ("Rabs_no_R0");
"Rabsolu_Rabsolu", ("Rabs_Rabs");
"Rabsolu_mult", ("Rabs_mult");
"Rabsolu_triang", ("Rabs_triang");
"Rabsolu_Ropp", ("Rabs_Ropp");
"Rabsolu_right", ("Rabs_right");
...
"case_Rabsolu", ("case_Rabs");
"Pow_Rabsolu", ("Pow_Rabs");
...
*)
(* Raxioms *)
"complet", ([],"completeness");
"complet_weak", ([],"completeness_weak");
"Rle_sym1", ([],"Rle_ge");
"Rmin_sym", ([],"Rmin_comm");
"Rplus_sym", ([],"Rplus_comm");
"Rmult_sym", ([],"Rmult_comm");
"Rsqr_times", ([],"Rsqr_mult");
"sqrt_times", ([],"sqrt_mult");
"Rmult_1l", ([],"Rmult_1_l");
"Rplus_Ol", ([],"Rplus_0_l");
"Rplus_Ropp_r", ([],"Rplus_opp_r");
"Rmult_Rplus_distr", ([],"Rmult_plus_distr_l");
"Rlt_antisym", ([],"Rlt_asym");
(* RIneq *)
"Rlt_antirefl", ([],"Rlt_irrefl");
"Rlt_compatibility", ([],"Rplus_lt_compat_l");
"Rgt_plus_plus_r", ([],"Rplus_gt_compat_l");
"Rgt_r_plus_plus", ([],"Rplus_gt_reg_l");
"Rge_plus_plus_r", ([],"Rplus_ge_compat_l");
"Rge_r_plus_plus", ([],"Rplus_ge_reg_l");
(* Si on en change un, il faut changer tous les autres R*_monotony *)
"Rlt_monotony", ([],"Rmult_lt_compat_l");
"Rlt_monotony_r", ([],"Rmult_lt_compat_r");
"Rlt_monotony_contra", ([],"Rmult_lt_reg_l");
(*"Rlt_monotony_rev", ([],"Rmult_lt_reg_l");*)
"Rlt_anti_monotony", ([],"Rmult_lt_gt_compat_neg_l");
"Rle_monotony", ([],"Rmult_le_compat_l");
"Rle_monotony_r", ([],"Rmult_le_compat_r");
"Rle_monotony_contra", ([],"Rmult_le_reg_l");
"Rle_anti_monotony1", ([],"Rmult_le_compat_neg_l");
"Rle_anti_monotony", ([],"Rmult_le_ge_compat_neg_l");
"Rge_monotony", ([],"Rmult_ge_compat_r");
"Rge_ge_eq", ([],"Rge_antisym");
(* Le reste de RIneq *)
"imp_not_Req", ([],"Rlt_dichotomy_converse");
"Req_EM", ([],"Req_dec");
"total_order", ([],"Rtotal_order");
"not_Req", ([],"Rdichotomy");
(* "Rlt_le" -> c dir,"Rlt_le_weak" ? *)
"not_Rle", ([],"Rnot_le_lt");
"not_Rge", ([],"Rnot_ge_lt");
"Rlt_le_not", ([],"Rlt_not_le");
"Rle_not", ([],"Rgt_not_le");
"Rle_not_lt", ([],"Rle_not_lt");
"Rlt_ge_not", ([],"Rlt_not_ge");
"eq_Rle", ([],"Req_le");
"eq_Rge", ([],"Req_ge");
"eq_Rle_sym", ([],"Req_le_sym");
"eq_Rge_sym", ([],"Req_ge_sym");
(* "Rle_le_eq" -> ?   x<=y/\y<=x <-> x=y *)
"Rlt_rew", ([],"Rlt_eq_compat");
"total_order_Rlt", ([],"Rlt_dec");
"total_order_Rle", ([],"Rle_dec");
"total_order_Rgt", ([],"Rgt_dec");
"total_order_Rge", ([],"Rge_dec");
"total_order_Rlt_Rle", ([],"Rlt_le_dec");
(* "Rle_or_lt" -> c dir,"Rle_or_lt"*)
"total_order_Rle_Rlt_eq", ([],"Rle_lt_or_eq_dec");
(* "inser_trans_R" -> c dir,"Rle_lt_inser_trans" ?*)
(* "Rplus_ne" -> c dir,"Rplus_0_r_l" ? *)
"Rplus_Or", ([],"Rplus_0_r");
"Rplus_Ropp_l", ([],"Rplus_opp_l");
"Rplus_Ropp", ([],"Rplus_opp_r_uniq");
"Rplus_plus_r", ([],"Rplus_eq_compat_l");
"r_Rplus_plus", ([],"Rplus_eq_reg_l");
"Rplus_ne_i", ([],"Rplus_0_r_uniq");
"Rmult_Or", ([],"Rmult_0_r");
"Rmult_Ol", ([],"Rmult_0_l");
(* "Rmult_ne" -> c dir,"Rmult_1_l_r" ? *)
"Rmult_1r", ([],"Rmult_1_r");
"Rmult_mult_r", ([],"Rmult_eq_compat_l");
"r_Rmult_mult", ([],"Rmult_eq_reg_l");
"without_div_Od", ([],"Rmult_integral");
"without_div_Oi", ([],"Rmult_eq_0_compat");
"without_div_Oi1", ([],"Rmult_eq_0_compat_r");
"without_div_Oi2", ([],"Rmult_eq_0_compat_l");
"without_div_O_contr", ([],"Rmult_neq_0_reg");
"mult_non_zero", ([],"Rmult_integral_contrapositive");
"Rmult_Rplus_distrl", ([],"Rmult_plus_distr_r");
"Rsqr_O", ([],"Rsqr_0");
"Rsqr_r_R0", ([],"Rsqr_0_uniq");
"eq_Ropp", ([],"Ropp_eq_compat");
"Ropp_O", ([],"Ropp_0");
"eq_RoppO", ([],"Ropp_eq_0_compat");
"Ropp_Ropp", ([],"Ropp_involutive");
"Ropp_neq", ([],"Ropp_neq_0_compat");
"Ropp_distr1", ([],"Ropp_plus_distr");
"Ropp_mul1", ([],"Ropp_mult_distr_l_reverse");
"Ropp_mul2", ([],"Rmult_opp_opp");
"Ropp_mul3", ([],"Ropp_mult_distr_r_reverse");
"minus_R0", ([],"Rminus_0_r");
"Rminus_Ropp", ([],"Rminus_0_l");
"Ropp_distr2", ([],"Ropp_minus_distr");
"Ropp_distr3", ([],"Ropp_minus_distr'");
"eq_Rminus", ([],"Rminus_diag_eq");
"Rminus_eq", ([],"Rminus_diag_uniq");
"Rminus_eq_right", ([],"Rminus_diag_uniq_sym");
"Rplus_Rminus", ([],"Rplus_minus");
(*
"Rminus_eq_contra", ([],"Rminus_diag_neq");
"Rminus_not_eq", ([],"Rminus_neq_diag_sym");
 "Rminus_not_eq_right" -> ?
*)
"Rminus_distr", ([],"Rmult_minus_distr_l");
"Rinv_R1", ([],"Rinv_1");
"Rinv_neq_R0", ([],"Rinv_neq_0_compat");
"Rinv_Rinv", ([],"Rinv_involutive");
"Rinv_Rmult", ([],"Rinv_mult_distr");
"Ropp_Rinv", ([],"Ropp_inv_permute");
(* "Rinv_r_simpl_r" -> OK ? *)
(* "Rinv_r_simpl_l" -> OK ? *)
(* "Rinv_r_simpl_m" -> OK ? *)
"Rinv_Rmult_simpl", ([],"Rinv_mult_simpl"); (* ? *)
"Rlt_compatibility_r", ([],"Rplus_lt_compat_r");
"Rlt_anti_compatibility", ([],"Rplus_lt_reg_r");
"Rle_compatibility", ([],"Rplus_le_compat_l");
"Rle_compatibility_r", ([],"Rplus_le_compat_r");
"Rle_anti_compatibility", ([],"Rplus_le_reg_l");
(* "sum_inequa_Rle_lt" -> ? *)
"Rplus_lt", ([],"Rplus_lt_compat");
"Rplus_le", ([],"Rplus_le_compat");
"Rplus_lt_le_lt", ([],"Rplus_lt_le_compat");
"Rplus_le_lt_lt", ([],"Rplus_le_lt_compat");
"Rgt_Ropp", ([],"Ropp_gt_lt_contravar");
"Rlt_Ropp", ([],"Ropp_lt_gt_contravar");
"Ropp_Rlt", ([],"Ropp_lt_cancel");  (* ?? *)
"Rlt_Ropp1", ([],"Ropp_lt_contravar");
"Rle_Ropp", ([],"Ropp_le_ge_contravar");
"Ropp_Rle", ([],"Ropp_le_cancel");
"Rle_Ropp1", ([],"Ropp_le_contravar");
"Rge_Ropp", ([],"Ropp_ge_le_contravar");
"Rlt_RO_Ropp", ([],"Ropp_0_lt_gt_contravar");
"Rgt_RO_Ropp", ([],"Ropp_0_gt_lt_contravar");
"Rle_RO_Ropp", ([],"Ropp_0_le_ge_contravar");
"Rge_RO_Ropp", ([],"Ropp_0_ge_le_contravar");
(* ... cf plus haut pour les lemmes intermediaires *)
"Rle_Rmult_comp", ([],"Rmult_le_compat");
   (* Expliciter que la contrainte est r2>0 dans r1<r2 et non 0<r1 ce
      qui est plus général mais différent de Rmult_le_compat ? *)
"Rmult_lt", ([],"Rmult_gt_0_lt_compat"); (* Hybride aussi *)
"Rmult_lt_0", ([],"Rmult_ge_0_gt_0_lt_compat"); (* Un truc hybride *)
(*
 "Rlt_minus" -> 
 "Rle_minus" -> 
 "Rminus_lt" -> 
 "Rminus_le" -> 
 "tech_Rplus" -> 
*)
"pos_Rsqr", ([],"Rle_0_sqr");
"pos_Rsqr1", ([],"Rlt_0_sqr");
"Rlt_R0_R1", ([],"Rlt_0_1");
"Rle_R0_R1", ([],"Rle_0_1");
"Rlt_Rinv", ([],"Rinv_0_lt_compat");
"Rlt_Rinv2", ([],"Rinv_lt_0_compat");
"Rinv_lt", ([],"Rinv_lt_contravar");
"Rlt_Rinv_R1", ([],"Rinv_1_lt_contravar");
"Rlt_not_ge", ([],"Rnot_lt_ge");
"Rgt_not_le", ([],"Rnot_gt_le");
(*
 "Rgt_ge" -> "Rgt_ge_weak" ?
*)
"Rlt_sym", ([],"Rlt_gt_iff");
(* | "Rle_sym1" -> c dir,"Rle_ge" OK *)
"Rle_sym2", ([],"Rge_le");
"Rle_sym", ([],"Rle_ge_iff");
(*
 "Rge_gt_trans" -> OK
 "Rgt_ge_trans" -> OK
 "Rgt_trans" -> OK
 "Rge_trans" -> OK
*)
"Rgt_RoppO", ([],"Ropp_lt_gt_0_contravar");
"Rlt_RoppO", ([],"Ropp_gt_lt_0_contravar");
"Rlt_r_plus_R1", ([],"Rle_lt_0_plus_1");
"Rlt_r_r_plus_R1", ([],"Rlt_plus_1");
(* "tech_Rgt_minus" -> ? *)
(* OK, cf plus haut
"Rgt_r_plus_plus", ([],"Rplus_gt_reg_l");
"Rgt_plus_plus_r", ([],"Rplus_gt_compat_l");
"Rge_plus_plus_r", ([],"Rplus_ge_compat_l");
"Rge_r_plus_plus", ([],"Rplus_ge_reg_l");
"Rge_monotony" ->  *)
(*
 "Rgt_minus" -> 
 "minus_Rgt" -> 
 "Rge_minus" -> 
 "minus_Rge" -> 
*)
"Rmult_gt", ([],"Rmult_gt_0_compat");
"Rmult_lt_pos", ([],"Rmult_lt_0_compat");  (* lt_0 ou 0_lt ?? *)
"Rplus_eq_R0_l", ([],"Rplus_eq_0_l"); (* ? *)
"Rplus_eq_R0", ([],"Rplus_eq_R0");
"Rplus_Rsr_eq_R0_l", ([],"Rplus_sqr_eq_0_l");
"Rplus_Rsr_eq_R0", ([],"Rplus_sqr_eq_0");
(*
 "S_INR" -> 
 "S_O_plus_INR" -> 
 "plus_INR" -> 
 "minus_INR" -> 
 "mult_INR" -> 
 "lt_INR_0" -> 
 "lt_INR" -> 
 "INR_lt_1" -> 
 "INR_pos" -> 
 "pos_INR" -> 
 "INR_lt" -> 
 "le_INR" -> 
 "not_INR_O" -> 
 "not_O_INR" -> 
 "not_nm_INR" -> 
 "INR_eq" -> 
 "INR_le" -> 
 "not_1_INR" -> 
 "IZN" -> 
 "INR_IZR_INZ" -> 
 "plus_IZR_NEG_POS" -> 
 "plus_IZR" -> 
 "mult_IZR" -> 
 "Ropp_Ropp_IZR" -> 
 "Z_R_minus" -> 
 "lt_O_IZR" -> 
 "lt_IZR" -> 
 "eq_IZR_R0" -> 
 "eq_IZR" -> 
 "not_O_IZR" -> 
 "le_O_IZR" -> 
 "le_IZR" -> 
 "le_IZR_R1" -> 
 "IZR_ge" -> 
 "IZR_le" -> 
 "IZR_lt" -> 
 "one_IZR_lt1" -> 
 "one_IZR_r_R1" -> 
 "single_z_r_R1" -> 
 "tech_single_z_r_R1" -> 
 "prod_neq_R0" -> 
 "Rmult_le_pos" -> 
 "double" -> 
 "double_var" -> 
*)
"gt0_plus_gt0_is_gt0", ([],"Rplus_lt_0_compat");
"ge0_plus_gt0_is_gt0", ([],"Rplus_le_lt_0_compat");
"gt0_plus_ge0_is_gt0", ([],"Rplus_lt_le_0_compat");
"ge0_plus_ge0_is_ge0", ([],"Rplus_le_le_0_compat");
(*
 "plus_le_is_le" -> ?
 "plus_lt_is_lt" -> ?
*)
"Rmult_lt2", ([],"Rmult_le_0_lt_compat");
(* "Rge_ge_eq" -> c dir,"Rge_antisym" OK *)
]

let translate_v7_string dir s =
  try
    let d,s' = List.assoc s translation_table in
    (if d=[] then c dir else d),s'
  with Not_found ->
  (* Special cases *)
  match s with
  (* Init *)
  | "relation" when is_module "Datatypes" or is_dir dir "Datatypes"
      -> da,"comparison"
  | "Op" when is_module "Datatypes" or is_dir dir "Datatypes"
      -> da,"CompOpp"
  (* BinPos *)
  | "times" when not (is_module "Mapfold") -> bp,"Pmult"
  (* Reals *)
  | s when String.length s >= 7 & (String.sub s 0 7 = "Rabsolu") ->
      c dir,
      "Rabs"^(String.sub s 7 (String.length s - 7))
  | s when String.length s >= 7 &
      (String.sub s (String.length s - 7) 7 = "Rabsolu") -> c dir,
      "R"^(String.sub s 0 (String.length s - 7))^"abs"
  | s when String.length s >= 7 & 
      let s' = String.sub s 0 7 in
      (s' = "unicite" or s' = "unicity") -> c dir,
      "uniqueness"^(String.sub s 7 (String.length s - 7))
  | s when String.length s >= 3 &
      let s' = String.sub s 0 3 in
      s' = "gcd" -> c dir, "Zis_gcd"^(String.sub s 3 (String.length s - 3))
  (* Default *)
  | x -> [],x


let id_of_v7_string s =
  id_of_string (if !Options.v7 then s else snd (translate_v7_string empty_dirpath s))

let v7_to_v8_dir_id dir id =
  if Options.do_translate() then
    let s = string_of_id id in
    let dir',s =
      if (is_coq_root (Lib.library_dp()) or is_coq_root dir)
      then translate_v7_string dir s else [], s in
    dir',id_of_string (translate_ident_string s)
  else [],id

let v7_to_v8_id id = snd (v7_to_v8_dir_id empty_dirpath id)

let short_names =
  List.map (fun x -> snd (snd x)) translation_table

let is_new_name s =
  Options.do_translate () &
  (List.mem s short_names or
  s = "comparison" or s = "CompOpp" or s = "Pmult" or
  (String.length s >= 4 & String.sub s 0 4 = "Rabs") or
  (String.length s >= 4 & String.sub s (String.length s - 3) 3 = "abs"
                        & s.[0] = 'R') or
  (String.length s >= 10 & String.sub s 0 10 = "uniqueness"))

let v7_to_v8_dir fulldir dir =
  if Options.do_translate () & dir <> empty_dirpath then
    let update s =
      let l = List.map string_of_id (repr_dirpath dir) in
      make_dirpath (List.map id_of_string (s :: List.tl l))
    in
    let l = List.map string_of_id (repr_dirpath fulldir) in
    if l = [ "List"; "Lists"; "Coq" ] then update "MonoList"
    else if l = [ "PolyList"; "Lists"; "Coq" ] then update "List"
    else dir
  else dir

let shortest_qualid_of_v7_global ctx ref =
  let fulldir,_ = repr_path (sp_of_global ref) in
  let dir,id = repr_qualid (shortest_qualid_of_global ctx ref) in
  let dir',id = v7_to_v8_dir_id fulldir id in
  let dir'' =
    if dir' = [] then
      (* A name that is not renamed *)
      if dir = empty_dirpath & is_new_name (string_of_id id)
      then 
        (* An unqualified name that is not renamed but which coincides *)
        (* with a new name: force qualification unless it is a variable *)
        if fulldir <> empty_dirpath & not (is_coq_root fulldir)
        then make_dirpath [List.hd (repr_dirpath fulldir)] 
        else empty_dirpath
      else v7_to_v8_dir fulldir dir
    else
      (* A stdlib name that has been renamed *)
      try
        let d,_ = repr_path (Nametab.full_name_cci (make_short_qualid id)) in
        if not (is_coq_root d) then 
          (* The user has defined id, then we qualify the new name *)
          v7_to_v8_dir fulldir (make_dirpath (List.map id_of_string dir'))
        else empty_dirpath
      with Not_found -> v7_to_v8_dir fulldir dir in
  make_qualid dir'' id

let extern_reference loc vars r =
  try Qualid (loc,shortest_qualid_of_v7_global vars r)
  with Not_found ->
    (* happens in debugger *)
    Ident (loc,id_of_string (raw_string_of_ref r))

(***********************************************************************)
(* Equality up to location (useful for translator v8) *)

let rec check_same_pattern p1 p2 =
  match p1, p2 with
    | CPatAlias(_,a1,i1), CPatAlias(_,a2,i2) when i1=i2 ->
        check_same_pattern a1 a2
    | CPatCstr(_,c1,a1), CPatCstr(_,c2,a2) when c1=c2 ->
        List.iter2 check_same_pattern a1 a2
    | CPatAtom(_,r1), CPatAtom(_,r2) when r1=r2 -> ()
    | CPatNumeral(_,i1), CPatNumeral(_,i2) when i1=i2 -> ()
    | CPatDelimiters(_,s1,e1), CPatDelimiters(_,s2,e2) when s1=s2 ->
        check_same_pattern e1 e2
    | _ -> failwith "not same pattern"

let check_same_ref r1 r2 =
  match r1,r2 with
  | Qualid(_,q1), Qualid(_,q2) when q1=q2 -> ()
  | Ident(_,i1), Ident(_,i2) when i1=i2 -> ()
  | _ -> failwith "not same ref"

let rec check_same_type ty1 ty2 =
  match ty1, ty2 with
  | CRef r1, CRef r2 -> check_same_ref r1 r2
  | CFix(_,(_,id1),fl1), CFix(_,(_,id2),fl2) when id1=id2 ->
      List.iter2 (fun (id1,i1,bl1,a1,b1) (id2,i2,bl2,a2,b2) ->
        if id1<>id2 || i1<>i2 then failwith "not same fix";
        check_same_fix_binder bl1 bl2;
        check_same_type a1 a2;
        check_same_type b1 b2)
        fl1 fl2
  | CCoFix(_,(_,id1),fl1), CCoFix(_,(_,id2),fl2) when id1=id2 ->
      List.iter2 (fun (id1,bl1,a1,b1) (id2,bl2,a2,b2) ->
        if id1<>id2 then failwith "not same fix";
        check_same_fix_binder bl1 bl2;
        check_same_type a1 a2;
        check_same_type b1 b2)
        fl1 fl2
  | CArrow(_,a1,b1), CArrow(_,a2,b2) ->
      check_same_type a1 a2;
      check_same_type b1 b2
  | CProdN(_,bl1,a1), CProdN(_,bl2,a2) ->
      List.iter2 check_same_binder bl1 bl2;
      check_same_type a1 a2
  | CLambdaN(_,bl1,a1), CLambdaN(_,bl2,a2) ->
      List.iter2 check_same_binder bl1 bl2;
      check_same_type a1 a2
  | CLetIn(_,(_,na1),a1,b1), CLetIn(_,(_,na2),a2,b2) when na1=na2 ->
      check_same_type a1 a2;
      check_same_type b1 b2
  | CAppExpl(_,r1,al1), CAppExpl(_,r2,al2) when r1=r2 ->
      List.iter2 check_same_type al1 al2
  | CApp(_,(_,e1),al1), CApp(_,(_,e2),al2) ->
      check_same_type e1 e2;
      List.iter2 (fun (a1,e1) (a2,e2) ->
                    if e1<>e2 then failwith "not same expl";
                    check_same_type a1 a2) al1 al2
  | CCases(_,_,a1,brl1), CCases(_,_,a2,brl2) ->
      List.iter2 (fun (tm1,_) (tm2,_) -> check_same_type tm1 tm2) a1 a2;
      List.iter2 (fun (_,pl1,r1) (_,pl2,r2) ->
        List.iter2 check_same_pattern pl1 pl2;
        check_same_type r1 r2) brl1 brl2
  | COrderedCase(_,_,_,a1,bl1), COrderedCase(_,_,_,a2,bl2) ->
      check_same_type a1 a2;
      List.iter2 check_same_type bl1 bl2
  | CHole _, CHole _ -> ()
  | CPatVar(_,i1), CPatVar(_,i2) when i1=i2 -> ()
  | CSort(_,s1), CSort(_,s2) when s1=s2 -> ()
  | CCast(_,a1,b1), CCast(_,a2,b2) ->
      check_same_type a1 a2;
      check_same_type b1 b2
  | CNotation(_,n1,e1), CNotation(_,n2,e2) when n1=n2 ->
      List.iter2 check_same_type e1 e2
  | CNumeral(_,i1), CNumeral(_,i2) when i1=i2 -> ()
  | CDelimiters(_,s1,e1), CDelimiters(_,s2,e2) when s1=s2 ->
      check_same_type e1 e2
  | _ when ty1=ty2 -> ()
  | _ -> failwith "not same type"

and check_same_binder (nal1,e1) (nal2,e2) =
  List.iter2 (fun (_,na1) (_,na2) ->
    if na1<>na2 then failwith "not same name") nal1 nal2;
  check_same_type e1 e2

and check_same_fix_binder bl1 bl2 =
  List.iter2 (fun b1 b2 ->
    match b1,b2 with
        LocalRawAssum(nal1,ty1), LocalRawAssum(nal2,ty2) ->
          check_same_binder (nal1,ty1) (nal2,ty2)
      | LocalRawDef(na1,def1), LocalRawDef(na2,def2) ->
          check_same_binder ([na1],def1) ([na2],def2)          
      | _ -> failwith "not same binder") bl1 bl2

let same c d = try check_same_type c d; true with _ -> false

(* Idem for rawconstr *)
let option_iter2 f o1 o2 = 
  match o1, o2 with
      Some o1, Some o2 -> f o1 o2
    | None, None -> ()
    | _ -> failwith "option"

let array_iter2 f v1 v2 =
  List.iter2 f (Array.to_list v1) (Array.to_list v2)

let rec same_patt p1 p2 =
  match p1, p2 with
      PatVar(_,na1), PatVar(_,na2) -> if na1<>na2 then failwith "PatVar"
    | PatCstr(_,c1,pl1,al1), PatCstr(_,c2,pl2,al2) ->
        if c1<>c2 || al1 <> al2 then failwith "PatCstr";
        List.iter2 same_patt pl1 pl2
    | _ -> failwith "same_patt"

let rec same_raw c d =
  match c,d with
   | RRef(_,gr1), RRef(_,gr2) -> if gr1<>gr2 then failwith "RRef"
   | RVar(_,id1), RVar(_,id2) -> if id1<>id2 then failwith "RVar"
   | REvar(_,e1,a1), REvar(_,e2,a2) ->
       if e1 <> e2 then failwith "REvar";
       option_iter2(List.iter2 same_raw) a1 a2
  | RPatVar(_,pv1), RPatVar(_,pv2) -> if pv1<>pv2 then failwith "RPatVar"
  | RApp(_,f1,a1), RApp(_,f2,a2) ->
      List.iter2 same_raw (f1::a1) (f2::a2)
  | RLambda(_,na1,t1,m1), RLambda(_,na2,t2,m2) ->
      if na1 <> na2 then failwith "RLambda";
      same_raw t1 t2; same_raw m1 m2
  | RProd(_,na1,t1,m1), RProd(_,na2,t2,m2) ->
      if na1 <> na2 then failwith "RProd";
      same_raw t1 t2; same_raw m1 m2
  | RLetIn(_,na1,t1,m1), RLetIn(_,na2,t2,m2) ->
      if na1 <> na2 then failwith "RLetIn";
      same_raw t1 t2; same_raw m1 m2
  | RCases(_,_,c1,b1), RCases(_,_,c2,b2) ->
      List.iter2
        (fun (t1,{contents=(al1,oind1)}) (t2,{contents=(al2,oind2)}) ->
          same_raw t1 t2;
          if al1 <> al2 then failwith "RCases";
          option_iter2(fun (_,i1,nl1) (_,i2,nl2) ->
            if i1<>i2 || nl1 <> nl2 then failwith "RCases") oind1 oind2) c1 c2;
      List.iter2 (fun (_,_,pl1,b1) (_,_,pl2,b2) ->
        List.iter2 same_patt pl1 pl2;
        same_raw b1 b2) b1 b2
  | ROrderedCase(_,_,_,c1,v1,_), ROrderedCase(_,_,_,c2,v2,_) ->
      same_raw c1 c2;
      array_iter2 same_raw v1 v2
  | RLetTuple(_,nl1,_,b1,c1), RLetTuple(_,nl2,_,b2,c2) ->
      if nl1<>nl2 then failwith "RLetTuple";
      same_raw b1 b2;
      same_raw c1 c2
  | RIf(_,b1,_,t1,e1),RIf(_,b2,_,t2,e2) ->
      same_raw b1 b2; same_raw t1 t2; same_raw e1 e2
  | RRec(_,fk1,na1,bl1,ty1,def1), RRec(_,fk2,na2,bl2,ty2,def2) ->
      if fk1 <> fk2 || na1 <> na2 then failwith "RRec";
      array_iter2
        (List.iter2 (fun (na1,bd1,ty1) (na2,bd2,ty2) ->
          if na1<>na2 then failwith "RRec";
          option_iter2 same_raw bd1 bd2;
          same_raw ty1 ty2)) bl1 bl2;
      array_iter2 same_raw ty1 ty2;
      array_iter2 same_raw def1 def2
  | RSort(_,s1), RSort(_,s2) -> if s1<>s2 then failwith "RSort"
  | RHole _, _ -> ()
  | _, RHole _ -> ()
  | RCast(_,c1,_),r2 -> same_raw c1 r2
  | r1, RCast(_,c2,_) -> same_raw r1 c2
  | RDynamic(_,d1), RDynamic(_,d2) -> if d1<>d2 then failwith"RDynamic"
  | _ -> failwith "same_raw"
     
let same_rawconstr c d = 
  try same_raw c d; true
  with Failure _ | Invalid_argument _ -> false

(**********************************************************************)
(* mapping patterns to cases_pattern_expr                                *)

let make_current_scopes (scopt,scopes) = 
  option_fold_right push_scope scopt scopes

let has_curly_brackets ntn =
  String.length ntn >= 6 & (String.sub ntn 0 6 = "{ _ } " or
    String.sub ntn (String.length ntn - 6) 6 = " { _ }" or
    string_string_contains ntn " { _ } ")

let rec wildcards ntn n =
  if n = String.length ntn then []
  else let l = spaces ntn (n+1) in if ntn.[n] = '_' then n::l else l
and spaces ntn n =
  if n = String.length ntn then []
  else if ntn.[n] = ' ' then wildcards ntn (n+1) else spaces ntn (n+1)

let expand_curly_brackets make_ntn ntn l =
  let ntn' = ref ntn in
  let rec expand_ntn i =
    function
    | [] -> []
    | a::l ->
        let a' = 
          let p = List.nth (wildcards !ntn' 0) i - 2 in
          if p>=0 & p+5 <= String.length !ntn' & String.sub !ntn' p 5 = "{ _ }"
          then begin
            ntn' := 
              String.sub !ntn' 0 p ^ "_" ^ 
              String.sub !ntn' (p+5) (String.length !ntn' -p-5);
            make_ntn "{ _ }" [a] end
          else a in
        a' :: expand_ntn (i+1) l in
  let l = expand_ntn 0 l in
  (* side effect *)
  make_ntn !ntn' l

let make_notation loc ntn l =
  if has_curly_brackets ntn
  then expand_curly_brackets (fun n l -> CNotation (loc,n,l)) ntn l
  else match ntn,l with
    (* Special case to avoid writing "- 3" for e.g. (Zopp 3) *)
    | "- _", [CNumeral(_,Bignat.POS p)] ->
        CNotation (loc,ntn,[CNotation(loc,"( _ )",l)])
    | _ -> CNotation (loc,ntn,l)

let make_pat_notation loc ntn l =
  if has_curly_brackets ntn
  then expand_curly_brackets (fun n l -> CPatNotation (loc,n,l)) ntn l
  else match ntn,l with
    (* Special case to avoid writing "- 3" for e.g. (Zopp 3) *)
    | "- _", [CPatNumeral(_,Bignat.POS p)] ->
        CPatNotation (loc,ntn,[CPatNotation(loc,"( _ )",l)])
    | _ -> CPatNotation (loc,ntn,l)


(*
let rec cases_pattern_expr_of_constr_expr = function
  | CRef r -> CPatAtom (dummy_loc,Some r)
  | CHole loc -> CPatAtom (loc,None)
  | CApp (loc,(proj,CRef c),l) when proj = None ->
      let l,e = List.split l in
      if not (List.for_all ((=) None) e) then
	anomaly "Unexpected explicitation in pattern";
      CPatCstr (loc,c,List.map cases_pattern_expr_of_constr_expr l)
  | CNotation (loc,ntn,l) ->
      CPatNotation (loc,ntn,List.map cases_pattern_expr_of_constr_expr l)
  | CNumeral (loc,n) -> CPatNumeral (loc,n)
  | CDelimiters (loc,s,e) -> 
      CPatDelimiters (loc,s,cases_pattern_expr_of_constr_expr e)	
  | _ -> anomaly "Constrextern: not a pattern"

let rec rawconstr_of_cases_pattern = function
  | PatVar (loc,Name id) -> RVar (loc,id)
  | PatVar (loc,Anonymous) -> RHole (loc,InternalHole)
  | PatCstr (loc,(ind,_ as c),args,_) -> 
      let nparams = (snd (Global.lookup_inductive ind)).Declarations.mind_nparams in
      let params = list_tabulate (fun _ -> RHole (loc,InternalHole)) nparams in
      let args = params @ List.map rawconstr_of_cases_pattern args in
      let f = RRef (loc,ConstructRef c) in
      if args = [] then f else RApp (loc,f,args)
*)

let bind_env sigma var v =
  try
    let vvar = List.assoc var sigma in
    if v=vvar then sigma else raise No_match
  with Not_found ->
    (* TODO: handle the case of multiple occs in different scopes *)
    (var,v)::sigma

let rec match_cases_pattern metas sigma a1 a2 = match (a1,a2) with
  | r1, AVar id2 when List.mem id2 metas -> bind_env sigma id2 r1
  | PatVar (_,Anonymous), AHole _ -> sigma
  | a, AHole _ when not(Options.do_translate()) -> sigma
  | PatCstr (loc,(ind,_ as r1),args1,Anonymous), _ ->
      let nparams =
	(snd (Global.lookup_inductive ind)).Declarations.mind_nparams in
      let l2 =
        match a2 with
	  | ARef (ConstructRef r2) when r1 = r2 -> []
	  | AApp (ARef (ConstructRef r2),l2)  when r1 = r2 -> l2
          | _ -> raise No_match in
      if List.length l2 <> nparams + List.length args1
      then raise No_match
      else
        let (p2,args2) = list_chop nparams l2 in
        (* All parameters must be _ *)
        List.iter (function AHole _ -> () | _ -> raise No_match) p2;
	List.fold_left2 (match_cases_pattern metas) sigma args1 args2
  | _ -> raise No_match

let match_aconstr_cases_pattern c (metas_scl,pat) =
  let subst = match_cases_pattern (List.map fst metas_scl) [] c pat in
  (* Reorder canonically the substitution *)
  let find x subst =
    try List.assoc x subst
    with Not_found -> anomaly "match_aconstr_cases_pattern" in
  List.map (fun (x,scl) -> (find x subst,scl)) metas_scl

 (* Better to use extern_rawconstr composed with injection/retraction ?? *)
let rec extern_cases_pattern_in_scope scopes vars pat =
  try 
    if !Options.raw_print or !print_no_symbol then raise No_match;
    let (sc,n) = Symbols.uninterp_cases_numeral pat in
    match Symbols.availability_of_numeral sc (make_current_scopes scopes) with
    | None -> raise No_match
    | Some key ->
        let loc = pattern_loc pat in
        insert_pat_delimiters (CPatNumeral (loc,n)) key
  with No_match ->
  try 
    if !Options.raw_print or !print_no_symbol then raise No_match;
    extern_symbol_pattern scopes vars pat
      (Symbols.uninterp_cases_pattern_notations pat)
  with No_match ->
  match pat with
  | PatVar (loc,Name id) -> CPatAtom (loc,Some (Ident (loc,v7_to_v8_id id)))
  | PatVar (loc,Anonymous) -> CPatAtom (loc, None) 
  | PatCstr(loc,cstrsp,args,na) ->
      let args = List.map (extern_cases_pattern_in_scope scopes vars) args in
      let p = CPatCstr
        (loc,extern_reference loc vars (ConstructRef cstrsp),args) in
      (match na with
	| Name id -> CPatAlias (loc,p,v7_to_v8_id id)
	| Anonymous -> p)
	
and extern_symbol_pattern (tmp_scope,scopes as allscopes) vars t = function
  | [] -> raise No_match
  | (keyrule,pat,n as rule)::rules ->
      try
	(* Check the number of arguments expected by the notation *)
	let loc = match t,n with
	  | PatCstr (_,f,l,_), Some n when List.length l > n ->
	      raise No_match
	  | PatCstr (loc,_,_,_),_ -> loc
	  | PatVar (loc,_),_ -> loc in
	(* Try matching ... *)
	let subst = match_aconstr_cases_pattern t pat in
	(* Try availability of interpretation ... *)
        match keyrule with
          | NotationRule (sc,ntn) ->
	      let scopes' = make_current_scopes (tmp_scope, scopes) in
	      (match Symbols.availability_of_notation (sc,ntn) scopes' with
                  (* Uninterpretation is not allowed in current context *)
              | None -> raise No_match
                  (* Uninterpretation is allowed in current context *)
	      | Some (scopt,key) ->
	          let scopes = make_current_scopes (scopt, scopes) in
	          let l =
		    List.map (fun (c,(scopt,scl)) ->
		      extern_cases_pattern_in_scope 
		        (scopt,List.fold_right push_scope scl scopes) vars c)
                      subst in
		  insert_pat_delimiters (make_pat_notation loc ntn l) key)
          | SynDefRule kn ->
 	      CPatAtom (loc,Some (Qualid (loc, shortest_qualid_of_syndef kn)))
      with
	  No_match -> extern_symbol_pattern allscopes vars t rules

(**********************************************************************)
(* Externalising applications *)

let occur_name na aty =
  match na with
    | Name id -> occur_var_constr_expr id aty
    | Anonymous -> false

let is_projection nargs = function
  | Some r when not !Options.raw_print & !print_projections ->
      (try 
	let n = Recordops.find_projection_nparams r + 1 in
	if n <= nargs then Some n else None
      with Not_found -> None)
  | _ -> None

let is_nil = function
  | [CRef ref] -> snd (repr_qualid (snd (qualid_of_reference ref))) = id_of_string "nil"
  | _ -> false

let stdlib_but_length args = function
  | Some r -> 
      let dir,id = repr_path (sp_of_global r) in
      (is_coq_root (Lib.library_dp()) or is_coq_root dir)
      && not (List.mem (string_of_id id) ["Zlength";"length"] && is_nil args)
      && not (List.mem (string_of_id id) ["In"] && List.length args >= 2
              && is_nil (List.tl args))
  | None -> false

let explicit_code imp q =
  dummy_loc,
  if !Options.v7 & not (Options.do_translate()) then ExplByPos q
  else ExplByName (name_of_implicit imp)

let is_hole = function CHole _ -> true | _ -> false

let is_significant_implicit a impl tail =
  not (is_hole a) or (tail = [] & not (List.for_all is_status_implicit impl))

(* Implicit args indexes are in ascending order *)
(* inctx is useful only if there is a last argument to be deduced from ctxt *)
let explicitize loc inctx impl (cf,f) args =
  let n = List.length args in
  let rec exprec q = function
    | a::args, imp::impl when is_status_implicit imp ->
        let tail = exprec (q+1) (args,impl) in
        let visible =
          !Options.raw_print or
          (!print_implicits & !print_implicits_explicit_args) or 
	  (is_significant_implicit a impl tail &
	  (not (is_inferable_implicit inctx n imp) or
	    (Options.do_translate() & not (stdlib_but_length args cf))))
	in
        if visible then (a,Some (explicit_code imp q)) :: tail else tail
    | a::args, _::impl -> (a,None) :: exprec (q+1) (args,impl)
    | args, [] -> List.map (fun a -> (a,None)) args (*In case of polymorphism*)
    | [], _ -> [] in
  match is_projection (List.length args) cf with
    | Some i as ip ->
	if impl <> [] & is_status_implicit (List.nth impl (i-1)) then
	  let f' = match f with CRef f -> f | _ -> assert false in
	  CAppExpl (loc,(ip,f'),args)
	else
	  let (args1,args2) = list_chop i args in
	  let (impl1,impl2) = if impl=[] then [],[] else list_chop i impl in
	  let args1 = exprec 1 (args1,impl1) in
	  let args2 = exprec (i+1) (args2,impl2) in
	  CApp (loc,(Some (List.length args1),f),args1@args2)
    | None -> 
	let args = exprec 1 (args,impl) in
	if args = [] then f else CApp (loc, (None, f), args)

let extern_global loc impl f =
  if impl <> [] & List.for_all is_status_implicit impl then
    CAppExpl (loc, (None, f), [])
  else
    CRef f

let extern_app loc inctx impl (cf,f) args =
  if args = [] (* maybe caused by a hidden coercion *) then
    extern_global loc impl f
  else
  if 
    ((!Options.raw_print or
      (!print_implicits & not !print_implicits_explicit_args)) &
     List.exists is_status_implicit impl)
  then 
    CAppExpl (loc, (is_projection (List.length args) cf, f), args)
  else
    explicitize loc inctx impl (cf,CRef f) args

let rec extern_args extern scopes env args subscopes =
  match args with
    | [] -> []
    | a::args ->
	let argscopes, subscopes = match subscopes with
	  | [] -> (None,scopes), []
	  | scopt::subscopes -> (scopt,scopes), subscopes in
	extern argscopes env a :: extern_args extern scopes env args subscopes

let rec remove_coercions inctx = function
  | RApp (loc,RRef (_,r),args) as c
      when
        inctx &
        not (!Options.raw_print or !print_coercions or Options.do_translate ())
      ->
      (try match Classops.hide_coercion r with
	  | Some n when n < List.length args ->
	      (* We skip a coercion *) 
	      let l = list_skipn n args in
              let (a,l) = match l with a::l -> (a,l) | [] -> assert false in
              let (a,l) =
                (* Recursively remove the head coercions *)
                match remove_coercions inctx a with
                  | RApp (_,a,l') -> a,l'@l
                  | a -> a,l in
              if l = [] then a
              else
                (* Recursively remove coercions in arguments *)
                RApp (loc,a,List.map (remove_coercions true) l)
	  | _ -> c
      with Not_found -> c)
  | c -> c

let rec rename_rawconstr_var id0 id1 = function
    RRef(loc,VarRef id) when id=id0 -> RRef(loc,VarRef id1)
  | RVar(loc,id) when id=id0 -> RVar(loc,id1)
  | c -> map_rawconstr (rename_rawconstr_var id0 id1) c

let rec share_fix_binders n rbl ty def =
  match ty,def with
      RProd(_,na0,t0,b), RLambda(_,na1,t1,m) ->
        if not(same_rawconstr t0 t1) then List.rev rbl, ty, def
        else
          let (na,b,m) =
            match na0, na1 with
                Name id0, Name id1 ->
                  if id0=id1 then (na0,b,m)
                  else if not (occur_rawconstr id1 b) then
                    (na1,rename_rawconstr_var id0 id1 b,m)
                  else if not (occur_rawconstr id0 m) then
                    (na1,b,rename_rawconstr_var id1 id0 m)
                  else (* vraiment pas de chance! *)
                    failwith "share_fix_binders: capture"
              | Name id, Anonymous ->
                  if not (occur_rawconstr id m) then (na0,b,m)
                  else
                    failwith "share_fix_binders: capture"
              | Anonymous, Name id -> 
                  if not (occur_rawconstr id b) then (na1,b,m)
                  else
                    failwith "share_fix_binders: capture"
              | _ -> (na1,b,m) in
          share_fix_binders (n-1) ((na,None,t0)::rbl) b m
    | _ -> List.rev rbl, ty, def

(**********************************************************************)
(* mapping rawterms to constr_expr                                    *)

let rec extern inctx scopes vars r =
  try 
    if !Options.raw_print or !print_no_symbol then raise No_match;
    extern_numeral (Rawterm.loc_of_rawconstr r)
      scopes (Symbols.uninterp_numeral r)
  with No_match ->

  let r = remove_coercions inctx r in

  try 
    if !Options.raw_print or !print_no_symbol then raise No_match;
    extern_symbol scopes vars r (Symbols.uninterp_notations r)
  with No_match -> match r with
  | RRef (loc,ref) ->
      extern_global loc (implicits_of_global_out ref)
        (extern_reference loc vars ref)

  | RVar (loc,id) -> CRef (Ident (loc,v7_to_v8_id id))

  | REvar (loc,n,_) -> (* we drop args *) extern_evar loc n

  | RPatVar (loc,n) -> if !print_meta_as_hole then CHole loc else CPatVar (loc,n)

  | RApp (loc,f,args) ->
      (match f with
	 | RRef (rloc,ref) ->
	     let subscopes = Symbols.find_arguments_scope ref in
	     let args =
	       extern_args (extern true) (snd scopes) vars args subscopes in
	     extern_app loc inctx (implicits_of_global_out ref)
               (Some ref,extern_reference rloc vars ref)
	       args
	 | RVar (rloc,id) -> (* useful for translation of inductive *)
	     let args = List.map (sub_extern true scopes vars) args in
	     extern_app loc inctx (get_temporary_implicits_out id)
	       (None,Ident (rloc,v7_to_v8_id id))
	       args
	 | _       -> 
	     explicitize loc inctx [] (None,sub_extern false scopes vars f)
               (List.map (sub_extern true scopes vars) args))

  | RProd (loc,Anonymous,t,c) ->
      (* Anonymous product are never factorized *)
      CArrow (loc,extern_type scopes vars t, extern_type scopes vars c)

  | RLetIn (loc,na,t,c) ->
      let na = name_app translate_ident na in
      CLetIn (loc,(loc,na),sub_extern false scopes vars t,
              extern inctx scopes (add_vname vars na) c)

  | RProd (loc,na,t,c) ->
      let t = extern_type scopes vars (anonymize_if_reserved na t) in
      let (idl,c) = factorize_prod scopes (add_vname vars na) t c in
      CProdN (loc,[(dummy_loc,na)::idl,t],c)

  | RLambda (loc,na,t,c) ->
      let t = extern_type scopes vars (anonymize_if_reserved na t) in
      let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) t c in
      CLambdaN (loc,[(dummy_loc,na)::idl,t],c)

  | RCases (loc,(typopt,rtntypopt),tml,eqns) ->
      let pred = option_app (extern_type scopes vars) typopt in
      let vars' = 
	List.fold_right (name_fold Idset.add)
	  (cases_predicate_names tml) vars in
      let rtntypopt' = option_app (extern_type scopes vars') !rtntypopt in
      let tml = List.map (fun (tm,{contents=(na,x)}) ->
        let na' = match na,tm with
            Anonymous, RVar (_,id) when 
              !rtntypopt<>None & occur_rawconstr id (out_some !rtntypopt)
              -> Some Anonymous
          | Anonymous, _ -> None
          | Name id, RVar (_,id') when id=id' -> None
          | Name _, _ -> Some na in
	(sub_extern false scopes vars tm,
	(na',option_app (fun (loc,ind,nal) ->
	  let args = List.map (function
	    | Anonymous -> RHole (dummy_loc,InternalHole) 
	    | Name id -> RVar (dummy_loc,id)) nal in
	  let t = RApp (dummy_loc,RRef (dummy_loc,IndRef ind),args) in
	  (extern_type scopes vars t)) x))) tml in
      let eqns = List.map (extern_eqn (typopt<>None) scopes vars) eqns in 
      CCases (loc,(pred,rtntypopt'),tml,eqns)

  | ROrderedCase (loc,cs,typopt,tm,bv,{contents = Some x}) ->
      extern false scopes vars x

  | ROrderedCase (loc,IfStyle,typopt,tm,bv,_) when Options.do_translate () ->
      let rec strip_branches = function
        | (RLambda (_,_,_,c1), RLambda (_,_,_,c2)) -> strip_branches (c1,c2)
        | x -> x in
      let c1,c2 = strip_branches (bv.(0),bv.(1)) in
      msgerrnl (str "Warning: unable to ensure the correctness of the translation of an if-then-else");
      let bv = Array.map (sub_extern (typopt<>None) scopes vars) [|c1;c2|] in
      COrderedCase
	(loc,IfStyle,option_app (extern_type scopes vars) typopt,
         sub_extern false scopes vars tm,Array.to_list bv)
      (* We failed type-checking If and to translate it to CIf *)
      (* try to remove the dependances in branches anyway *)


  | ROrderedCase (loc,cs,typopt,tm,bv,_) ->
      let bv = Array.map (sub_extern (typopt<>None) scopes vars) bv in
      COrderedCase
	(loc,cs,option_app (extern_type scopes vars) typopt,
         sub_extern false scopes vars tm,Array.to_list bv)

  | RLetTuple (loc,nal,(na,typopt),tm,b) ->
      CLetTuple (loc,nal,
        (Some na,option_app (extern_type scopes (add_vname vars na)) typopt),
        sub_extern false scopes vars tm,
        extern false scopes (List.fold_left add_vname vars nal) b)

  | RIf (loc,c,(na,typopt),b1,b2) ->
      CIf (loc,sub_extern false scopes vars c,
        (Some na,option_app (extern_type scopes (add_vname vars na)) typopt),
        sub_extern false scopes vars b1, sub_extern false scopes vars b2)

  | RRec (loc,fk,idv,blv,tyv,bv) ->
      let vars' = Array.fold_right Idset.add idv vars in
      (match fk with
	 | RFix (nv,n) ->
	     let listdecl = 
	       Array.mapi (fun i fi ->
                 let (bl,ty,def) =
                   if Options.do_translate() then
                     let n = List.fold_left
                       (fun n (_,obd,_) -> if obd=None then n-1 else n)
                       nv.(i) blv.(i) in
                     share_fix_binders n (List.rev blv.(i)) tyv.(i) bv.(i)
                   else blv.(i), tyv.(i), bv.(i) in
                 let (ids,bl) = extern_local_binder scopes vars bl in
                 let vars0 = List.fold_right (name_fold Idset.add) ids vars in
                 let vars1 = List.fold_right (name_fold Idset.add) ids vars' in
		 (fi,nv.(i), bl, extern_type scopes vars0 ty,
                  extern false scopes vars1 def)) idv
	     in 
	     CFix (loc,(loc,idv.(n)),Array.to_list listdecl)
	 | RCoFix n -> 
	     let listdecl =
               Array.mapi (fun i fi ->
                 let (ids,bl) = extern_local_binder scopes vars blv.(i) in
                 let vars0 = List.fold_right (name_fold Idset.add) ids vars in
                 let vars1 = List.fold_right (name_fold Idset.add) ids vars' in
		 (fi,bl,extern_type scopes vars0 tyv.(i),
                  sub_extern false scopes vars1 bv.(i))) idv
	     in
	     CCoFix (loc,(loc,idv.(n)),Array.to_list listdecl))

  | RSort (loc,s) ->
      let s = match s with
	 | RProp _ -> s
	 | RType (Some _) when !print_universes -> s
	 | RType _ -> RType None in
      CSort (loc,s)

  | RHole (loc,e) -> CHole loc

  | RCast (loc,c,t) ->
      CCast (loc,sub_extern true scopes vars c,extern_type scopes vars t)

  | RDynamic (loc,d) -> CDynamic (loc,d)

and extern_type (_,scopes) = extern true (Some Symbols.type_scope,scopes)

and sub_extern inctx (_,scopes) = extern inctx (None,scopes)

and factorize_prod scopes vars aty = function
  | RProd (loc,(Name id as na),ty,c)
      when same aty (extern_type scopes vars (anonymize_if_reserved na ty))
	& not (occur_var_constr_expr id aty) (* avoid na in ty escapes scope *)
	-> let id = translate_ident id in
           let (nal,c) = factorize_prod scopes (Idset.add id vars) aty c in
           ((loc,Name id)::nal,c)
  | c -> ([],extern_type scopes vars c)

and factorize_lambda inctx scopes vars aty = function
  | RLambda (loc,na,ty,c)
      when same aty (extern_type scopes vars (anonymize_if_reserved na ty))
	& not (occur_name na aty) (* To avoid na in ty' escapes scope *)
	-> let na = name_app translate_ident na in
           let (nal,c) =
	     factorize_lambda inctx scopes (add_vname vars na) aty c in
           ((loc,na)::nal,c)
  | c -> ([],sub_extern inctx scopes vars c)

and extern_local_binder scopes vars = function
    [] -> ([],[])
  | (na,Some bd,ty)::l ->
      let na = name_app translate_ident na in
      let (ids,l) =
        extern_local_binder scopes (name_fold Idset.add na vars) l in
      (na::ids,
       LocalRawDef((dummy_loc,na), extern false scopes vars bd) :: l)
      
  | (na,None,ty)::l ->
      let na = name_app translate_ident na in
      let ty = extern_type scopes vars (anonymize_if_reserved na ty) in
      (match extern_local_binder scopes (name_fold Idset.add na vars) l with
          (ids,LocalRawAssum(nal,ty')::l)
            when same ty ty' &
              match na with Name id -> not (occur_var_constr_expr id ty')
                | _ -> true ->
              (na::ids,
               LocalRawAssum((dummy_loc,na)::nal,ty')::l)
        | (ids,l) ->
            (na::ids,
             LocalRawAssum([(dummy_loc,na)],ty) :: l))

and extern_eqn inctx scopes vars (loc,ids,pl,c) =
  (loc,List.map (extern_cases_pattern_in_scope scopes vars) pl,
   extern inctx scopes vars c)

and extern_numeral loc scopes (sc,n) =
  match Symbols.availability_of_numeral sc (make_current_scopes scopes) with
    | None -> raise No_match
    | Some key -> insert_delimiters (CNumeral (loc,n)) key

and extern_symbol (tmp_scope,scopes as allscopes) vars t = function
  | [] -> raise No_match
  | (keyrule,pat,n as rule)::rules ->
      let loc = Rawterm.loc_of_rawconstr t in
      try
	(* Adjusts to the number of arguments expected by the notation *)
	let (t,args) = match t,n with
	  | RApp (_,f,args), Some n when List.length args > n ->
	      let args1, args2 = list_chop n args in
	      RApp (dummy_loc,f,args1), args2
	  | _ -> t,[] in
	(* Try matching ... *)
	let subst = match_aconstr t pat in
	(* Try availability of interpretation ... *)
        let e =
          match keyrule with
          | NotationRule (sc,ntn) ->
	      let scopes' = make_current_scopes (tmp_scope, scopes) in
	      (match Symbols.availability_of_notation (sc,ntn) scopes' with
                  (* Uninterpretation is not allowed in current context *)
              | None -> raise No_match
                  (* Uninterpretation is allowed in current context *)
	      | Some (scopt,key) ->
	          let scopes = make_current_scopes (scopt, scopes) in
	          let l =
		    List.map (fun (c,(scopt,scl)) ->
		      extern (* assuming no overloading: *) true
		        (scopt,List.fold_right push_scope scl scopes) vars c)
                      subst in
	          insert_delimiters (make_notation loc ntn l) key)
          | SynDefRule kn ->
              CRef (Qualid (loc, shortest_qualid_of_syndef kn)) in
 	if args = [] then e 
	else
	  (* TODO: compute scopt for the extra args, in case, head is a ref *)
	  explicitize loc false [] (None,e)
	  (List.map (extern true allscopes vars) args)
      with
	  No_match -> extern_symbol allscopes vars t rules

let extern_rawconstr vars c = 
  extern false (None,Symbols.current_scopes()) vars c

let extern_rawtype vars c =
  extern_type (None,Symbols.current_scopes()) vars c

let extern_cases_pattern vars p = 
  extern_cases_pattern_in_scope (None,Symbols.current_scopes()) vars p

(******************************************************************)
(* Main translation function from constr -> constr_expr *)

let loc = dummy_loc (* for constr and pattern, locations are lost *)

let extern_constr_gen at_top scopt env t =
  let vars = vars_of_env env in
  let avoid = if at_top then ids_of_context env else [] in
  extern (not at_top) (scopt,Symbols.current_scopes()) vars
    (Detyping.detype (at_top,env) avoid (names_of_rel_context env) t)

let extern_constr_in_scope at_top scope env t =
  extern_constr_gen at_top (Some scope) env t

let extern_constr at_top env t =
  extern_constr_gen at_top None env t

(******************************************************************)
(* Main translation function from pattern -> constr_expr *)

let rec raw_of_pat tenv env = function
  | PRef ref -> RRef (loc,ref)
  | PVar id -> RVar (loc,id)
  | PEvar (n,l) -> REvar (loc,n,Some (array_map_to_list (raw_of_pat tenv env) l))
  | PRel n ->
      let id = try match lookup_name_of_rel n env with
	| Name id   -> id
	| Anonymous ->
	    anomaly "rawconstr_of_pattern: index to an anonymous variable"
      with Not_found -> id_of_string ("[REL "^(string_of_int n)^"]") in
      RVar (loc,id)
  | PMeta None -> RHole (loc,InternalHole)
  | PMeta (Some n) -> RPatVar (loc,(false,n))
  | PApp (f,args) ->
      RApp (loc,raw_of_pat tenv env f,array_map_to_list (raw_of_pat tenv env) args)
  | PSoApp (n,args) ->
      RApp (loc,RPatVar (loc,(true,n)),
        List.map (raw_of_pat tenv env) args)
  | PProd (na,t,c) ->
      RProd (loc,na,raw_of_pat tenv env t,raw_of_pat tenv (na::env) c)
  | PLetIn (na,t,c) ->
      RLetIn (loc,na,raw_of_pat tenv env t, raw_of_pat tenv (na::env) c)
  | PLambda (na,t,c) ->
      RLambda (loc,na,raw_of_pat tenv env t, raw_of_pat tenv (na::env) c)
  | PCase ((_,(IfStyle|LetStyle as cs)),typopt,tm,bv) ->
      ROrderedCase (loc,cs,option_app (raw_of_pat tenv env) typopt,
         raw_of_pat tenv env tm,Array.map (raw_of_pat tenv env) bv, ref None)
  | PCase ((_,cs),typopt,tm,[||]) ->
      RCases (loc,(option_app (raw_of_pat tenv env) typopt,ref None (* TODO *)),
         [raw_of_pat tenv env tm,ref (Anonymous,None)],[])
  | PCase ((Some ind,cs),typopt,tm,bv) ->
      let avoid = List.fold_right (name_fold (fun x l -> x::l)) env [] in
      let k = (snd (lookup_mind_specif (Global.env()) ind)).Declarations.mind_nrealargs in
      Detyping.detype_case false (raw_of_pat tenv env)(raw_of_eqn tenv env)
	(fun _ _ -> false (* lazy: don't try to display pattern with "if" *))
	tenv avoid ind cs typopt k tm bv
  | PCase _ -> error "Unsupported case-analysis while printing pattern"
  | PFix f -> Detyping.detype (false,tenv) [] env (mkFix f)
  | PCoFix c -> Detyping.detype (false,tenv) [] env (mkCoFix c)
  | PSort s -> RSort (loc,s)

and raw_of_eqn tenv env constr construct_nargs branch =
  let make_pat x env b ids =
    let avoid = List.fold_right (name_fold (fun x l -> x::l)) env [] in
    let id = next_name_away_with_default "x" x avoid in
    PatVar (dummy_loc,Name id),(Name id)::env,id::ids
  in
  let rec buildrec ids patlist env n b =
    if n=0 then
      (dummy_loc, ids, 
       [PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)],
       raw_of_pat tenv env b)
    else
      match b with
	| PLambda (x,_,b) -> 
	    let pat,new_env,new_ids = make_pat x env b ids in
            buildrec new_ids (pat::patlist) new_env (n-1) b

	| PLetIn (x,_,b) -> 
	    let pat,new_env,new_ids = make_pat x env b ids in
            buildrec new_ids (pat::patlist) new_env (n-1) b

	| _ ->
	    error "Unsupported branch in case-analysis while printing pattern"
  in 
  buildrec [] [] env construct_nargs branch

let extern_pattern tenv env pat =
  extern true (None,Symbols.current_scopes()) Idset.empty
    (raw_of_pat tenv env pat)