1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
(*i*)
open Pp
open Util
open Univ
open Names
open Nameops
open Term
open Termops
open Inductive
open Sign
open Environ
open Libnames
open Impargs
open Topconstr
open Rawterm
open Pattern
open Nametab
open Notation
open Reserve
open Detyping
(*i*)
(* Translation from rawconstr to front constr *)
(**********************************************************************)
(* Parametrization *)
(* This governs printing of local context of references *)
let print_arguments = ref false
(* If true, prints local context of evars, whatever print_arguments *)
let print_evar_arguments = ref false
(* This governs printing of implicit arguments. When
[print_implicits] is on then [print_implicits_explicit_args] tells
how implicit args are printed. If on, implicit args are printed
with the form (id:=arg) otherwise arguments are printed normally and
the function is prefixed by "@" *)
let print_implicits = ref false
let print_implicits_explicit_args = ref false
(* Tells if implicit arguments not known to be inferable from a rigid
position are systematically printed *)
let print_implicits_defensive = ref true
(* This forces printing of coercions *)
let print_coercions = ref false
(* This forces printing universe names of Type{.} *)
let print_universes = ref false
(* This suppresses printing of primitive tokens (e.g. numeral) and symbols *)
let print_no_symbol = ref false
(* This governs printing of projections using the dot notation symbols *)
let print_projections = ref false
let print_meta_as_hole = ref false
let with_arguments f = Flags.with_option print_arguments f
let with_implicits f = Flags.with_option print_implicits f
let with_coercions f = Flags.with_option print_coercions f
let with_universes f = Flags.with_option print_universes f
let without_symbols f = Flags.with_option print_no_symbol f
let with_meta_as_hole f = Flags.with_option print_meta_as_hole f
(**********************************************************************)
(* Various externalisation functions *)
let insert_delimiters e = function
| None -> e
| Some sc -> CDelimiters (dummy_loc,sc,e)
let insert_pat_delimiters loc p = function
| None -> p
| Some sc -> CPatDelimiters (loc,sc,p)
let insert_pat_alias loc p = function
| Anonymous -> p
| Name id -> CPatAlias (loc,p,id)
(**********************************************************************)
(* conversion of references *)
let extern_evar loc n l =
if !print_evar_arguments then CEvar (loc,n,l) else CEvar (loc,n,None)
let debug_global_reference_printer =
ref (fun _ -> failwith "Cannot print a global reference")
let set_debug_global_reference_printer f =
debug_global_reference_printer := f
let extern_reference loc vars r =
try Qualid (loc,shortest_qualid_of_global vars r)
with Not_found ->
(* happens in debugger *)
!debug_global_reference_printer loc r
(************************************************************************)
(* Equality up to location (useful for translator v8) *)
let rec check_same_pattern p1 p2 =
match p1, p2 with
| CPatAlias(_,a1,i1), CPatAlias(_,a2,i2) when i1=i2 ->
check_same_pattern a1 a2
| CPatCstr(_,c1,a1), CPatCstr(_,c2,a2) when c1=c2 ->
List.iter2 check_same_pattern a1 a2
| CPatAtom(_,r1), CPatAtom(_,r2) when r1=r2 -> ()
| CPatPrim(_,i1), CPatPrim(_,i2) when i1=i2 -> ()
| CPatDelimiters(_,s1,e1), CPatDelimiters(_,s2,e2) when s1=s2 ->
check_same_pattern e1 e2
| _ -> failwith "not same pattern"
let check_same_ref r1 r2 =
match r1,r2 with
| Qualid(_,q1), Qualid(_,q2) when q1=q2 -> ()
| Ident(_,i1), Ident(_,i2) when i1=i2 -> ()
| _ -> failwith "not same ref"
let rec check_same_type ty1 ty2 =
match ty1, ty2 with
| CRef r1, CRef r2 -> check_same_ref r1 r2
| CFix(_,(_,id1),fl1), CFix(_,(_,id2),fl2) when id1=id2 ->
List.iter2 (fun (id1,i1,bl1,a1,b1) (id2,i2,bl2,a2,b2) ->
if id1<>id2 || i1<>i2 then failwith "not same fix";
check_same_fix_binder bl1 bl2;
check_same_type a1 a2;
check_same_type b1 b2)
fl1 fl2
| CCoFix(_,(_,id1),fl1), CCoFix(_,(_,id2),fl2) when id1=id2 ->
List.iter2 (fun (id1,bl1,a1,b1) (id2,bl2,a2,b2) ->
if id1<>id2 then failwith "not same fix";
check_same_fix_binder bl1 bl2;
check_same_type a1 a2;
check_same_type b1 b2)
fl1 fl2
| CArrow(_,a1,b1), CArrow(_,a2,b2) ->
check_same_type a1 a2;
check_same_type b1 b2
| CProdN(_,bl1,a1), CProdN(_,bl2,a2) ->
List.iter2 check_same_binder bl1 bl2;
check_same_type a1 a2
| CLambdaN(_,bl1,a1), CLambdaN(_,bl2,a2) ->
List.iter2 check_same_binder bl1 bl2;
check_same_type a1 a2
| CLetIn(_,(_,na1),a1,b1), CLetIn(_,(_,na2),a2,b2) when na1=na2 ->
check_same_type a1 a2;
check_same_type b1 b2
| CAppExpl(_,r1,al1), CAppExpl(_,r2,al2) when r1=r2 ->
List.iter2 check_same_type al1 al2
| CApp(_,(_,e1),al1), CApp(_,(_,e2),al2) ->
check_same_type e1 e2;
List.iter2 (fun (a1,e1) (a2,e2) ->
if e1<>e2 then failwith "not same expl";
check_same_type a1 a2) al1 al2
| CCases(_,_,_,a1,brl1), CCases(_,_,_,a2,brl2) ->
List.iter2 (fun (tm1,_) (tm2,_) -> check_same_type tm1 tm2) a1 a2;
List.iter2 (fun (_,pl1,r1) (_,pl2,r2) ->
List.iter2 (located_iter2 (List.iter2 check_same_pattern)) pl1 pl2;
check_same_type r1 r2) brl1 brl2
| CHole _, CHole _ -> ()
| CPatVar(_,i1), CPatVar(_,i2) when i1=i2 -> ()
| CSort(_,s1), CSort(_,s2) when s1=s2 -> ()
| CCast(_,a1,CastConv (_,b1)), CCast(_,a2, CastConv(_,b2)) ->
check_same_type a1 a2;
check_same_type b1 b2
| CCast(_,a1,CastCoerce), CCast(_,a2, CastCoerce) ->
check_same_type a1 a2
| CNotation(_,n1,(e1,el1)), CNotation(_,n2,(e2,el2)) when n1=n2 ->
List.iter2 check_same_type e1 e2;
List.iter2 (List.iter2 check_same_type) el1 el2
| CPrim(_,i1), CPrim(_,i2) when i1=i2 -> ()
| CDelimiters(_,s1,e1), CDelimiters(_,s2,e2) when s1=s2 ->
check_same_type e1 e2
| _ when ty1=ty2 -> ()
| _ -> failwith "not same type"
and check_same_binder (nal1,_,e1) (nal2,_,e2) =
List.iter2 (fun (_,na1) (_,na2) ->
if na1<>na2 then failwith "not same name") nal1 nal2;
check_same_type e1 e2
and check_same_fix_binder bl1 bl2 =
List.iter2 (fun b1 b2 ->
match b1,b2 with
LocalRawAssum(nal1,k,ty1), LocalRawAssum(nal2,k',ty2) ->
check_same_binder (nal1,k,ty1) (nal2,k',ty2)
| LocalRawDef(na1,def1), LocalRawDef(na2,def2) ->
check_same_binder ([na1],default_binder_kind,def1) ([na2],default_binder_kind,def2)
| _ -> failwith "not same binder") bl1 bl2
let same c d = try check_same_type c d; true with _ -> false
(* Idem for rawconstr *)
let array_iter2 f v1 v2 =
List.iter2 f (Array.to_list v1) (Array.to_list v2)
let rec same_patt p1 p2 =
match p1, p2 with
PatVar(_,na1), PatVar(_,na2) -> if na1<>na2 then failwith "PatVar"
| PatCstr(_,c1,pl1,al1), PatCstr(_,c2,pl2,al2) ->
if c1<>c2 || al1 <> al2 then failwith "PatCstr";
List.iter2 same_patt pl1 pl2
| _ -> failwith "same_patt"
let rec same_raw c d =
match c,d with
| RRef(_,gr1), RRef(_,gr2) -> if gr1<>gr2 then failwith "RRef"
| RVar(_,id1), RVar(_,id2) -> if id1<>id2 then failwith "RVar"
| REvar(_,e1,a1), REvar(_,e2,a2) ->
if e1 <> e2 then failwith "REvar";
Option.iter2(List.iter2 same_raw) a1 a2
| RPatVar(_,pv1), RPatVar(_,pv2) -> if pv1<>pv2 then failwith "RPatVar"
| RApp(_,f1,a1), RApp(_,f2,a2) ->
List.iter2 same_raw (f1::a1) (f2::a2)
| RLambda(_,na1,bk1,t1,m1), RLambda(_,na2,bk2,t2,m2) ->
if na1 <> na2 then failwith "RLambda";
same_raw t1 t2; same_raw m1 m2
| RProd(_,na1,bk1,t1,m1), RProd(_,na2,bk2,t2,m2) ->
if na1 <> na2 then failwith "RProd";
same_raw t1 t2; same_raw m1 m2
| RLetIn(_,na1,t1,m1), RLetIn(_,na2,t2,m2) ->
if na1 <> na2 then failwith "RLetIn";
same_raw t1 t2; same_raw m1 m2
| RCases(_,_,_,c1,b1), RCases(_,_,_,c2,b2) ->
List.iter2
(fun (t1,(al1,oind1)) (t2,(al2,oind2)) ->
same_raw t1 t2;
if al1 <> al2 then failwith "RCases";
Option.iter2(fun (_,i1,_,nl1) (_,i2,_,nl2) ->
if i1<>i2 || nl1 <> nl2 then failwith "RCases") oind1 oind2) c1 c2;
List.iter2 (fun (_,_,pl1,b1) (_,_,pl2,b2) ->
List.iter2 same_patt pl1 pl2;
same_raw b1 b2) b1 b2
| RLetTuple(_,nl1,_,b1,c1), RLetTuple(_,nl2,_,b2,c2) ->
if nl1<>nl2 then failwith "RLetTuple";
same_raw b1 b2;
same_raw c1 c2
| RIf(_,b1,_,t1,e1),RIf(_,b2,_,t2,e2) ->
same_raw b1 b2; same_raw t1 t2; same_raw e1 e2
| RRec(_,fk1,na1,bl1,ty1,def1), RRec(_,fk2,na2,bl2,ty2,def2) ->
if fk1 <> fk2 || na1 <> na2 then failwith "RRec";
array_iter2
(List.iter2 (fun (na1,bk1,bd1,ty1) (na2,bk2,bd2,ty2) ->
if na1<>na2 then failwith "RRec";
Option.iter2 same_raw bd1 bd2;
same_raw ty1 ty2)) bl1 bl2;
array_iter2 same_raw ty1 ty2;
array_iter2 same_raw def1 def2
| RSort(_,s1), RSort(_,s2) -> if s1<>s2 then failwith "RSort"
| RHole _, _ -> ()
| _, RHole _ -> ()
| RCast(_,c1,_),r2 -> same_raw c1 r2
| r1, RCast(_,c2,_) -> same_raw r1 c2
| RDynamic(_,d1), RDynamic(_,d2) -> if d1<>d2 then failwith"RDynamic"
| _ -> failwith "same_raw"
let same_rawconstr c d =
try same_raw c d; true
with Failure _ | Invalid_argument _ -> false
(**********************************************************************)
(* mapping patterns to cases_pattern_expr *)
let has_curly_brackets ntn =
String.length ntn >= 6 & (String.sub ntn 0 6 = "{ _ } " or
String.sub ntn (String.length ntn - 6) 6 = " { _ }" or
string_string_contains ntn " { _ } ")
let rec wildcards ntn n =
if n = String.length ntn then []
else let l = spaces ntn (n+1) in if ntn.[n] = '_' then n::l else l
and spaces ntn n =
if n = String.length ntn then []
else if ntn.[n] = ' ' then wildcards ntn (n+1) else spaces ntn (n+1)
let expand_curly_brackets loc mknot ntn (l,ll) =
let ntn' = ref ntn in
let rec expand_ntn i =
function
| [] -> []
| a::l ->
let a' =
let p = List.nth (wildcards !ntn' 0) i - 2 in
if p>=0 & p+5 <= String.length !ntn' & String.sub !ntn' p 5 = "{ _ }"
then begin
ntn' :=
String.sub !ntn' 0 p ^ "_" ^
String.sub !ntn' (p+5) (String.length !ntn' -p-5);
mknot (loc,"{ _ }",([a],[])) end
else a in
a' :: expand_ntn (i+1) l in
let l = expand_ntn 0 l in
(* side effect *)
mknot (loc,!ntn',(l,ll))
let destPrim = function CPrim(_,t) -> Some t | _ -> None
let destPatPrim = function CPatPrim(_,t) -> Some t | _ -> None
let make_notation_gen loc ntn mknot mkprim destprim l =
if has_curly_brackets ntn
then expand_curly_brackets loc mknot ntn l
else match ntn,List.map destprim (fst l),(snd l) with
(* Special case to avoid writing "- 3" for e.g. (Zopp 3) *)
| "- _", [Some (Numeral p)],[] when Bigint.is_strictly_pos p ->
mknot (loc,ntn,([mknot (loc,"( _ )",l)],[]))
| _ ->
match decompose_notation_key ntn, l with
| [Terminal "-"; Terminal x], ([],[]) ->
(try mkprim (loc, Numeral (Bigint.neg (Bigint.of_string x)))
with _ -> mknot (loc,ntn,([],[])))
| [Terminal x], ([],[]) ->
(try mkprim (loc, Numeral (Bigint.of_string x))
with _ -> mknot (loc,ntn,([],[])))
| _ ->
mknot (loc,ntn,l)
let make_notation loc ntn l =
make_notation_gen loc ntn
(fun (loc,ntn,l) -> CNotation (loc,ntn,l))
(fun (loc,p) -> CPrim (loc,p))
destPrim l
let make_pat_notation loc ntn l =
make_notation_gen loc ntn
(fun (loc,ntn,l) -> CPatNotation (loc,ntn,l))
(fun (loc,p) -> CPatPrim (loc,p))
destPatPrim l
let bind_env (sigma,sigmalist as fullsigma) var v =
try
let vvar = List.assoc var sigma in
if v=vvar then fullsigma else raise No_match
with Not_found ->
(* TODO: handle the case of multiple occs in different scopes *)
(var,v)::sigma,sigmalist
let rec match_cases_pattern metas sigma a1 a2 = match (a1,a2) with
| r1, AVar id2 when List.mem id2 metas -> bind_env sigma id2 r1
| PatVar (_,Anonymous), AHole _ -> sigma
| a, AHole _ -> sigma
| PatCstr (loc,(ind,_ as r1),args1,_), _ ->
let nparams =
(fst (Global.lookup_inductive ind)).Declarations.mind_nparams in
let l2 =
match a2 with
| ARef (ConstructRef r2) when r1 = r2 -> []
| AApp (ARef (ConstructRef r2),l2) when r1 = r2 -> l2
| _ -> raise No_match in
if List.length l2 <> nparams + List.length args1
then raise No_match
else
let (p2,args2) = list_chop nparams l2 in
(* All parameters must be _ *)
List.iter (function AHole _ -> () | _ -> raise No_match) p2;
List.fold_left2 (match_cases_pattern metas) sigma args1 args2
(* TODO: use recursive notations *)
| _ -> raise No_match
let match_aconstr_cases_pattern c ((metas_scl,metaslist_scl),pat) =
let vars = List.map fst metas_scl @ List.map fst metaslist_scl in
let subst,substlist = match_cases_pattern vars ([],[]) c pat in
(* Reorder canonically the substitution *)
let find x subst =
try List.assoc x subst
with Not_found -> anomaly "match_aconstr_cases_pattern" in
List.map (fun (x,scl) -> (find x subst,scl)) metas_scl,
List.map (fun (x,scl) -> (find x substlist,scl)) metaslist_scl
(* Better to use extern_rawconstr composed with injection/retraction ?? *)
let rec extern_cases_pattern_in_scope (scopes:local_scopes) vars pat =
try
if !Flags.raw_print or !print_no_symbol then raise No_match;
let (na,sc,p) = uninterp_prim_token_cases_pattern pat in
match availability_of_prim_token sc scopes with
| None -> raise No_match
| Some key ->
let loc = cases_pattern_loc pat in
insert_pat_alias loc (insert_pat_delimiters loc (CPatPrim(loc,p)) key) na
with No_match ->
try
if !Flags.raw_print or !print_no_symbol then raise No_match;
extern_symbol_pattern scopes vars pat
(uninterp_cases_pattern_notations pat)
with No_match ->
match pat with
| PatVar (loc,Name id) -> CPatAtom (loc,Some (Ident (loc,id)))
| PatVar (loc,Anonymous) -> CPatAtom (loc, None)
| PatCstr(loc,cstrsp,args,na) ->
let args = List.map (extern_cases_pattern_in_scope scopes vars) args in
let p = CPatCstr
(loc,extern_reference loc vars (ConstructRef cstrsp),args) in
insert_pat_alias loc p na
and extern_symbol_pattern (tmp_scope,scopes as allscopes) vars t = function
| [] -> raise No_match
| (keyrule,pat,n as _rule)::rules ->
try
(* Check the number of arguments expected by the notation *)
let loc,na = match t,n with
| PatCstr (_,f,l,_), Some n when List.length l > n ->
raise No_match
| PatCstr (loc,_,_,na),_ -> loc,na
| PatVar (loc,na),_ -> loc,na in
(* Try matching ... *)
let subst,substlist = match_aconstr_cases_pattern t pat in
(* Try availability of interpretation ... *)
let p = match keyrule with
| NotationRule (sc,ntn) ->
(match availability_of_notation (sc,ntn) allscopes with
(* Uninterpretation is not allowed in current context *)
| None -> raise No_match
(* Uninterpretation is allowed in current context *)
| Some (scopt,key) ->
let scopes' = Option.List.cons scopt scopes in
let l =
List.map (fun (c,(scopt,scl)) ->
extern_cases_pattern_in_scope (scopt,scl@scopes') vars c)
subst in
let ll =
List.map (fun (c,(scopt,scl)) ->
let subscope = (scopt,scl@scopes') in
List.map (extern_cases_pattern_in_scope subscope vars) c)
substlist in
insert_pat_delimiters loc
(make_pat_notation loc ntn (l,ll)) key)
| SynDefRule kn ->
let qid = shortest_qualid_of_syndef vars kn in
CPatAtom (loc,Some (Qualid (loc, qid))) in
insert_pat_alias loc p na
with
No_match -> extern_symbol_pattern allscopes vars t rules
let extern_cases_pattern vars p =
extern_cases_pattern_in_scope (None,[]) vars p
(**********************************************************************)
(* Externalising applications *)
let occur_name na aty =
match na with
| Name id -> occur_var_constr_expr id aty
| Anonymous -> false
let is_projection nargs = function
| Some r when not !Flags.raw_print & !print_projections ->
(try
let n = Recordops.find_projection_nparams r + 1 in
if n <= nargs then Some n else None
with Not_found -> None)
| _ -> None
let is_hole = function CHole _ -> true | _ -> false
let is_significant_implicit a impl tail =
not (is_hole a) or (tail = [] & not (List.for_all is_status_implicit impl))
(* Implicit args indexes are in ascending order *)
(* inctx is useful only if there is a last argument to be deduced from ctxt *)
let explicitize loc inctx impl (cf,f) args =
let n = List.length args in
let rec exprec q = function
| a::args, imp::impl when is_status_implicit imp ->
let tail = exprec (q+1) (args,impl) in
let visible =
!Flags.raw_print or
(!print_implicits & !print_implicits_explicit_args) or
(!print_implicits_defensive &
is_significant_implicit a impl tail &
not (is_inferable_implicit inctx n imp))
in
if visible then
(a,Some (dummy_loc, ExplByName (name_of_implicit imp))) :: tail
else
tail
| a::args, _::impl -> (a,None) :: exprec (q+1) (args,impl)
| args, [] -> List.map (fun a -> (a,None)) args (*In case of polymorphism*)
| [], _ -> [] in
match is_projection (List.length args) cf with
| Some i as ip ->
if impl <> [] & is_status_implicit (List.nth impl (i-1)) then
let f' = match f with CRef f -> f | _ -> assert false in
CAppExpl (loc,(ip,f'),args)
else
let (args1,args2) = list_chop i args in
let (impl1,impl2) = if impl=[] then [],[] else list_chop i impl in
let args1 = exprec 1 (args1,impl1) in
let args2 = exprec (i+1) (args2,impl2) in
CApp (loc,(Some (List.length args1),f),args1@args2)
| None ->
let args = exprec 1 (args,impl) in
if args = [] then f else CApp (loc, (None, f), args)
let extern_global loc impl f =
if impl <> [] & List.for_all is_status_implicit impl then
CAppExpl (loc, (None, f), [])
else
CRef f
let extern_app loc inctx impl (cf,f) args =
if args = [] (* maybe caused by a hidden coercion *) then
extern_global loc impl f
else
if
((!Flags.raw_print or
(!print_implicits & not !print_implicits_explicit_args)) &
List.exists is_status_implicit impl)
then
CAppExpl (loc, (is_projection (List.length args) cf, f), args)
else
explicitize loc inctx impl (cf,CRef f) args
let rec extern_args extern scopes env args subscopes =
match args with
| [] -> []
| a::args ->
let argscopes, subscopes = match subscopes with
| [] -> (None,scopes), []
| scopt::subscopes -> (scopt,scopes), subscopes in
extern argscopes env a :: extern_args extern scopes env args subscopes
let rec remove_coercions inctx = function
| RApp (loc,RRef (_,r),args) as c
when not (!Flags.raw_print or !print_coercions)
->
let nargs = List.length args in
(try match Classops.hide_coercion r with
| Some n when n < nargs && (inctx or n+1 < nargs) ->
(* We skip a coercion *)
let l = list_skipn n args in
let (a,l) = match l with a::l -> (a,l) | [] -> assert false in
(* Recursively remove the head coercions *)
let a' = remove_coercions true a in
(* Don't flatten App's in case of funclass so that
(atomic) notations on [a] work; should be compatible
since printer does not care whether App's are
collapsed or not and notations with an implicit
coercion using funclass either would have already
been confused with ordinary application or would have need
a surrounding context and the coercion to funclass would
have been made explicit to match *)
if l = [] then a' else RApp (loc,a',l)
| _ -> c
with Not_found -> c)
| c -> c
let rec rename_rawconstr_var id0 id1 = function
RRef(loc,VarRef id) when id=id0 -> RRef(loc,VarRef id1)
| RVar(loc,id) when id=id0 -> RVar(loc,id1)
| c -> map_rawconstr (rename_rawconstr_var id0 id1) c
(**********************************************************************)
(* mapping rawterms to numerals (in presence of coercions, choose the *)
(* one with no delimiter if possible) *)
let extern_possible_prim_token scopes r =
try
let (sc,n) = uninterp_prim_token r in
match availability_of_prim_token sc scopes with
| None -> None
| Some key -> Some (insert_delimiters (CPrim (loc_of_rawconstr r,n)) key)
with No_match ->
None
let extern_optimal_prim_token scopes r r' =
let c = extern_possible_prim_token scopes r in
let c' = if r==r' then None else extern_possible_prim_token scopes r' in
match c,c' with
| Some n, (Some (CDelimiters _) | None) | _, Some n -> n
| _ -> raise No_match
(**********************************************************************)
(* mapping rawterms to constr_expr *)
let extern_rawsort = function
| RProp _ as s -> s
| RType (Some _) as s when !print_universes -> s
| RType _ -> RType None
let rec extern inctx scopes vars r =
let r' = remove_coercions inctx r in
try
if !Flags.raw_print or !print_no_symbol then raise No_match;
extern_optimal_prim_token scopes r r'
with No_match ->
try
if !Flags.raw_print or !print_no_symbol then raise No_match;
extern_symbol scopes vars r' (uninterp_notations r')
with No_match -> match r' with
| RRef (loc,ref) ->
extern_global loc (implicits_of_global ref)
(extern_reference loc vars ref)
| RVar (loc,id) -> CRef (Ident (loc,id))
| REvar (loc,n,None) when !print_meta_as_hole -> CHole (loc, None)
| REvar (loc,n,l) ->
extern_evar loc n (Option.map (List.map (extern false scopes vars)) l)
| RPatVar (loc,n) ->
if !print_meta_as_hole then CHole (loc, None) else CPatVar (loc,n)
| RApp (loc,f,args) ->
(match f with
| RRef (rloc,ref) ->
let subscopes = find_arguments_scope ref in
let args =
extern_args (extern true) (snd scopes) vars args subscopes in
extern_app loc inctx (implicits_of_global ref)
(Some ref,extern_reference rloc vars ref)
args
| _ ->
explicitize loc inctx [] (None,sub_extern false scopes vars f)
(List.map (sub_extern true scopes vars) args))
| RProd (loc,Anonymous,_,t,c) ->
(* Anonymous product are never factorized *)
CArrow (loc,extern_typ scopes vars t, extern_typ scopes vars c)
| RLetIn (loc,na,t,c) ->
CLetIn (loc,(loc,na),sub_extern false scopes vars t,
extern inctx scopes (add_vname vars na) c)
| RProd (loc,na,bk,t,c) ->
let t = extern_typ scopes vars (anonymize_if_reserved na t) in
let (idl,c) = factorize_prod scopes (add_vname vars na) t c in
CProdN (loc,[(dummy_loc,na)::idl,Default bk,t],c)
| RLambda (loc,na,bk,t,c) ->
let t = extern_typ scopes vars (anonymize_if_reserved na t) in
let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) t c in
CLambdaN (loc,[(dummy_loc,na)::idl,Default bk,t],c)
| RCases (loc,sty,rtntypopt,tml,eqns) ->
let vars' =
List.fold_right (name_fold Idset.add)
(cases_predicate_names tml) vars in
let rtntypopt' = Option.map (extern_typ scopes vars') rtntypopt in
let tml = List.map (fun (tm,(na,x)) ->
let na' = match na,tm with
Anonymous, RVar (_,id) when
rtntypopt<>None & occur_rawconstr id (Option.get rtntypopt)
-> Some Anonymous
| Anonymous, _ -> None
| Name id, RVar (_,id') when id=id' -> None
| Name _, _ -> Some na in
(sub_extern false scopes vars tm,
(na',Option.map (fun (loc,ind,n,nal) ->
let params = list_tabulate
(fun _ -> RHole (dummy_loc,Evd.InternalHole)) n in
let args = List.map (function
| Anonymous -> RHole (dummy_loc,Evd.InternalHole)
| Name id -> RVar (dummy_loc,id)) nal in
let t = RApp (dummy_loc,RRef (dummy_loc,IndRef ind),params@args) in
(extern_typ scopes vars t)) x))) tml in
let eqns = List.map (extern_eqn inctx scopes vars) eqns in
CCases (loc,sty,rtntypopt',tml,eqns)
| RLetTuple (loc,nal,(na,typopt),tm,b) ->
CLetTuple (loc,nal,
(Option.map (fun _ -> na) typopt,
Option.map (extern_typ scopes (add_vname vars na)) typopt),
sub_extern false scopes vars tm,
extern inctx scopes (List.fold_left add_vname vars nal) b)
| RIf (loc,c,(na,typopt),b1,b2) ->
CIf (loc,sub_extern false scopes vars c,
(Option.map (fun _ -> na) typopt,
Option.map (extern_typ scopes (add_vname vars na)) typopt),
sub_extern inctx scopes vars b1, sub_extern inctx scopes vars b2)
| RRec (loc,fk,idv,blv,tyv,bv) ->
let vars' = Array.fold_right Idset.add idv vars in
(match fk with
| RFix (nv,n) ->
let listdecl =
Array.mapi (fun i fi ->
let (bl,ty,def) = blv.(i), tyv.(i), bv.(i) in
let (ids,bl) = extern_local_binder scopes vars bl in
let vars0 = List.fold_right (name_fold Idset.add) ids vars in
let vars1 = List.fold_right (name_fold Idset.add) ids vars' in
let n =
match fst nv.(i) with
| None -> None
| Some x -> Some (dummy_loc, out_name (List.nth ids x))
in
let ro = extern_recursion_order scopes vars (snd nv.(i)) in
((dummy_loc, fi), (n, ro), bl, extern_typ scopes vars0 ty,
extern false scopes vars1 def)) idv
in
CFix (loc,(loc,idv.(n)),Array.to_list listdecl)
| RCoFix n ->
let listdecl =
Array.mapi (fun i fi ->
let (ids,bl) = extern_local_binder scopes vars blv.(i) in
let vars0 = List.fold_right (name_fold Idset.add) ids vars in
let vars1 = List.fold_right (name_fold Idset.add) ids vars' in
((dummy_loc, fi),bl,extern_typ scopes vars0 tyv.(i),
sub_extern false scopes vars1 bv.(i))) idv
in
CCoFix (loc,(loc,idv.(n)),Array.to_list listdecl))
| RSort (loc,s) -> CSort (loc,extern_rawsort s)
| RHole (loc,e) -> CHole (loc, Some e)
| RCast (loc,c, CastConv (k,t)) ->
CCast (loc,sub_extern true scopes vars c, CastConv (k,extern_typ scopes vars t))
| RCast (loc,c, CastCoerce) ->
CCast (loc,sub_extern true scopes vars c, CastCoerce)
| RDynamic (loc,d) -> CDynamic (loc,d)
and extern_typ (_,scopes) =
extern true (Some Notation.type_scope,scopes)
and sub_extern inctx (_,scopes) = extern inctx (None,scopes)
and factorize_prod scopes vars aty c =
try
if !Flags.raw_print or !print_no_symbol then raise No_match;
([],extern_symbol scopes vars c (uninterp_notations c))
with No_match -> match c with
| RProd (loc,(Name id as na),bk,ty,c)
when same aty (extern_typ scopes vars (anonymize_if_reserved na ty))
& not (occur_var_constr_expr id aty) (* avoid na in ty escapes scope *)
-> let (nal,c) = factorize_prod scopes (Idset.add id vars) aty c in
((loc,Name id)::nal,c)
| c -> ([],extern_typ scopes vars c)
and factorize_lambda inctx scopes vars aty c =
try
if !Flags.raw_print or !print_no_symbol then raise No_match;
([],extern_symbol scopes vars c (uninterp_notations c))
with No_match -> match c with
| RLambda (loc,na,bk,ty,c)
when same aty (extern_typ scopes vars (anonymize_if_reserved na ty))
& not (occur_name na aty) (* To avoid na in ty' escapes scope *)
-> let (nal,c) =
factorize_lambda inctx scopes (add_vname vars na) aty c in
((loc,na)::nal,c)
| c -> ([],sub_extern inctx scopes vars c)
and extern_local_binder scopes vars = function
[] -> ([],[])
| (na,bk,Some bd,ty)::l ->
let (ids,l) =
extern_local_binder scopes (name_fold Idset.add na vars) l in
(na::ids,
LocalRawDef((dummy_loc,na), extern false scopes vars bd) :: l)
| (na,bk,None,ty)::l ->
let ty = extern_typ scopes vars (anonymize_if_reserved na ty) in
(match extern_local_binder scopes (name_fold Idset.add na vars) l with
(ids,LocalRawAssum(nal,k,ty')::l)
when same ty ty' &
match na with Name id -> not (occur_var_constr_expr id ty')
| _ -> true ->
(na::ids,
LocalRawAssum((dummy_loc,na)::nal,k,ty')::l)
| (ids,l) ->
(na::ids,
LocalRawAssum([(dummy_loc,na)],Default bk,ty) :: l))
and extern_eqn inctx scopes vars (loc,ids,pl,c) =
(loc,[loc,List.map (extern_cases_pattern_in_scope scopes vars) pl],
extern inctx scopes vars c)
and extern_symbol (tmp_scope,scopes as allscopes) vars t = function
| [] -> raise No_match
| (keyrule,pat,n as _rule)::rules ->
let loc = Rawterm.loc_of_rawconstr t in
try
(* Adjusts to the number of arguments expected by the notation *)
let (t,args) = match t,n with
| RApp (_,(RRef _ as f),args), Some n when List.length args >= n ->
let args1, args2 = list_chop n args in
(if n = 0 then f else RApp (dummy_loc,f,args1)), args2
| RApp (_,(RRef _ as f),args), None -> f, args
| RRef _, Some 0 -> RApp (dummy_loc,t,[]), []
| _, None -> t,[]
| _ -> raise No_match in
(* Try matching ... *)
let subst,substlist = match_aconstr t pat in
(* Try availability of interpretation ... *)
let e =
match keyrule with
| NotationRule (sc,ntn) ->
(match availability_of_notation (sc,ntn) allscopes with
(* Uninterpretation is not allowed in current context *)
| None -> raise No_match
(* Uninterpretation is allowed in current context *)
| Some (scopt,key) ->
let scopes' = Option.List.cons scopt scopes in
let l =
List.map (fun (c,(scopt,scl)) ->
extern (* assuming no overloading: *) true
(scopt,scl@scopes') vars c)
subst in
let ll =
List.map (fun (c,(scopt,scl)) ->
List.map (extern true (scopt,scl@scopes') vars) c)
substlist in
insert_delimiters (make_notation loc ntn (l,ll)) key)
| SynDefRule kn ->
let l =
List.map (fun (c,(scopt,scl)) ->
extern true (scopt,scl@scopes) vars c, None)
subst in
let a = CRef (Qualid (loc, shortest_qualid_of_syndef vars kn)) in
if l = [] then a else CApp (loc,(None,a),l) in
if args = [] then e
else
(* TODO: compute scopt for the extra args, in case, head is a ref *)
explicitize loc false [] (None,e)
(List.map (extern true allscopes vars) args)
with
No_match -> extern_symbol allscopes vars t rules
and extern_recursion_order scopes vars = function
RStructRec -> CStructRec
| RWfRec c -> CWfRec (extern true scopes vars c)
| RMeasureRec (m,r) -> CMeasureRec (extern true scopes vars m,
Option.map (extern true scopes vars) r)
let extern_rawconstr vars c =
extern false (None,[]) vars c
let extern_rawtype vars c =
extern_typ (None,[]) vars c
(******************************************************************)
(* Main translation function from constr -> constr_expr *)
let loc = dummy_loc (* for constr and pattern, locations are lost *)
let extern_constr_gen at_top scopt env t =
let avoid = if at_top then ids_of_context env else [] in
let r = Detyping.detype at_top avoid (names_of_rel_context env) t in
let vars = vars_of_env env in
extern false (scopt,[]) vars r
let extern_constr_in_scope at_top scope env t =
extern_constr_gen at_top (Some scope) env t
let extern_constr at_top env t =
extern_constr_gen at_top None env t
let extern_type at_top env t =
let avoid = if at_top then ids_of_context env else [] in
let r = Detyping.detype at_top avoid (names_of_rel_context env) t in
extern_rawtype (vars_of_env env) r
let extern_sort s = extern_rawsort (detype_sort s)
(******************************************************************)
(* Main translation function from pattern -> constr_expr *)
let rec raw_of_pat env = function
| PRef ref -> RRef (loc,ref)
| PVar id -> RVar (loc,id)
| PEvar (n,l) -> REvar (loc,n,Some (array_map_to_list (raw_of_pat env) l))
| PRel n ->
let id = try match lookup_name_of_rel n env with
| Name id -> id
| Anonymous ->
anomaly "rawconstr_of_pattern: index to an anonymous variable"
with Not_found -> id_of_string ("_UNBOUND_REL_"^(string_of_int n)) in
RVar (loc,id)
| PMeta None -> RHole (loc,Evd.InternalHole)
| PMeta (Some n) -> RPatVar (loc,(false,n))
| PApp (f,args) ->
RApp (loc,raw_of_pat env f,array_map_to_list (raw_of_pat env) args)
| PSoApp (n,args) ->
RApp (loc,RPatVar (loc,(true,n)),
List.map (raw_of_pat env) args)
| PProd (na,t,c) ->
RProd (loc,na,Explicit,raw_of_pat env t,raw_of_pat (na::env) c)
| PLetIn (na,t,c) ->
RLetIn (loc,na,raw_of_pat env t, raw_of_pat (na::env) c)
| PLambda (na,t,c) ->
RLambda (loc,na,Explicit,raw_of_pat env t, raw_of_pat (na::env) c)
| PIf (c,b1,b2) ->
RIf (loc, raw_of_pat env c, (Anonymous,None),
raw_of_pat env b1, raw_of_pat env b2)
| PCase ((LetStyle,[|n|],ind,None),PMeta None,tm,[|b|]) ->
let nal,b = it_destRLambda_or_LetIn_names n (raw_of_pat env b) in
RLetTuple (loc,nal,(Anonymous,None),raw_of_pat env tm,b)
| PCase (_,PMeta None,tm,[||]) ->
RCases (loc,RegularStyle,None,[raw_of_pat env tm,(Anonymous,None)],[])
| PCase ((_,cstr_nargs,indo,ind_nargs),p,tm,bv) ->
let brs = Array.to_list (Array.map (raw_of_pat env) bv) in
let brns = Array.to_list cstr_nargs in
(* ind is None only if no branch and no return type *)
let ind = Option.get indo in
let mat = simple_cases_matrix_of_branches ind brns brs in
let indnames,rtn =
if p = PMeta None then (Anonymous,None),None
else
let nparams,n = Option.get ind_nargs in
return_type_of_predicate ind nparams n (raw_of_pat env p) in
RCases (loc,RegularStyle,rtn,[raw_of_pat env tm,indnames],mat)
| PFix f -> Detyping.detype false [] env (mkFix f)
| PCoFix c -> Detyping.detype false [] env (mkCoFix c)
| PSort s -> RSort (loc,s)
and raw_of_eqn env constr construct_nargs branch =
let make_pat x env b ids =
let avoid = List.fold_right (name_fold (fun x l -> x::l)) env [] in
let id = next_name_away_with_default "x" x avoid in
PatVar (dummy_loc,Name id),(Name id)::env,id::ids
in
let rec buildrec ids patlist env n b =
if n=0 then
(dummy_loc, ids,
[PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)],
raw_of_pat env b)
else
match b with
| PLambda (x,_,b) ->
let pat,new_env,new_ids = make_pat x env b ids in
buildrec new_ids (pat::patlist) new_env (n-1) b
| PLetIn (x,_,b) ->
let pat,new_env,new_ids = make_pat x env b ids in
buildrec new_ids (pat::patlist) new_env (n-1) b
| _ ->
error "Unsupported branch in case-analysis while printing pattern."
in
buildrec [] [] env construct_nargs branch
let extern_constr_pattern env pat =
extern true (None,[]) Idset.empty (raw_of_pat env pat)
let extern_rel_context where env sign =
let a = detype_rel_context where [] (names_of_rel_context env) sign in
let vars = vars_of_env env in
snd (extern_local_binder (None,[]) vars a)
|