1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open Util
open Names
open Nameops
open Libnames
open Namegen
open Glob_term
open Constrexpr
open Decl_kinds
(***********************)
(* For binders parsing *)
let binding_kind_eq bk1 bk2 = match bk1, bk2 with
| Explicit, Explicit -> true
| Implicit, Implicit -> true
| _ -> false
let abstraction_kind_eq ak1 ak2 = match ak1, ak2 with
| AbsLambda, AbsLambda -> true
| AbsPi, AbsPi -> true
| _ -> false
let binder_kind_eq b1 b2 = match b1, b2 with
| Default bk1, Default bk2 -> binding_kind_eq bk1 bk2
| Generalized (bk1, ck1, b1), Generalized (bk2, ck2, b2) ->
binding_kind_eq bk1 bk2 && binding_kind_eq ck1 ck2 &&
(if b1 then b2 else not b2)
| _ -> false
let default_binder_kind = Default Explicit
let names_of_local_assums bl =
List.flatten (List.map (function CLocalAssum(l,_,_)->l|_->[]) bl)
let names_of_local_binders bl =
List.flatten (List.map (function CLocalAssum(l,_,_)->l|CLocalDef(l,_,_)->[l]|CLocalPattern _ -> assert false) bl)
(**********************************************************************)
(* Functions on constr_expr *)
(* Note: redundant Numeral representations such as -0 and +0 (or different
numbers of leading zeros) are considered different here. *)
let prim_token_eq t1 t2 = match t1, t2 with
| Numeral (n1,s1), Numeral (n2,s2) -> String.equal n1 n2 && s1 == s2
| String s1, String s2 -> String.equal s1 s2
| _ -> false
let explicitation_eq ex1 ex2 = match ex1, ex2 with
| ExplByPos (i1, id1), ExplByPos (i2, id2) ->
Int.equal i1 i2 && Option.equal Id.equal id1 id2
| ExplByName id1, ExplByName id2 ->
Id.equal id1 id2
| _ -> false
let eq_ast f { CAst.v = x } { CAst.v = y } = f x y
let rec cases_pattern_expr_eq p1 p2 =
if CAst.(p1.v == p2.v) then true
else match CAst.(p1.v, p2.v) with
| CPatAlias(a1,i1), CPatAlias(a2,i2) ->
eq_ast Name.equal i1 i2 && cases_pattern_expr_eq a1 a2
| CPatCstr(c1,a1,b1), CPatCstr(c2,a2,b2) ->
qualid_eq c1 c2 &&
Option.equal (List.equal cases_pattern_expr_eq) a1 a2 &&
List.equal cases_pattern_expr_eq b1 b2
| CPatAtom(r1), CPatAtom(r2) ->
Option.equal qualid_eq r1 r2
| CPatOr a1, CPatOr a2 ->
List.equal cases_pattern_expr_eq a1 a2
| CPatNotation (n1, s1, l1), CPatNotation (n2, s2, l2) ->
String.equal n1 n2 &&
cases_pattern_notation_substitution_eq s1 s2 &&
List.equal cases_pattern_expr_eq l1 l2
| CPatPrim i1, CPatPrim i2 ->
prim_token_eq i1 i2
| CPatRecord l1, CPatRecord l2 ->
let equal (r1, e1) (r2, e2) =
qualid_eq r1 r2 && cases_pattern_expr_eq e1 e2
in
List.equal equal l1 l2
| CPatDelimiters(s1,e1), CPatDelimiters(s2,e2) ->
String.equal s1 s2 && cases_pattern_expr_eq e1 e2
| _ -> false
and cases_pattern_notation_substitution_eq (s1, n1) (s2, n2) =
List.equal cases_pattern_expr_eq s1 s2 &&
List.equal (List.equal cases_pattern_expr_eq) n1 n2
let eq_universes u1 u2 =
match u1, u2 with
| None, None -> true
| Some l, Some l' -> l = l'
| _, _ -> false
let rec constr_expr_eq e1 e2 =
if CAst.(e1.v == e2.v) then true
else match CAst.(e1.v, e2.v) with
| CRef (r1,u1), CRef (r2,u2) -> qualid_eq r1 r2 && eq_universes u1 u2
| CFix(id1,fl1), CFix(id2,fl2) ->
eq_ast Id.equal id1 id2 &&
List.equal fix_expr_eq fl1 fl2
| CCoFix(id1,fl1), CCoFix(id2,fl2) ->
eq_ast Id.equal id1 id2 &&
List.equal cofix_expr_eq fl1 fl2
| CProdN(bl1,a1), CProdN(bl2,a2) ->
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2
| CLambdaN(bl1,a1), CLambdaN(bl2,a2) ->
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2
| CLetIn(na1,a1,t1,b1), CLetIn(na2,a2,t2,b2) ->
eq_ast Name.equal na1 na2 &&
constr_expr_eq a1 a2 &&
Option.equal constr_expr_eq t1 t2 &&
constr_expr_eq b1 b2
| CAppExpl((proj1,r1,_),al1), CAppExpl((proj2,r2,_),al2) ->
Option.equal Int.equal proj1 proj2 &&
qualid_eq r1 r2 &&
List.equal constr_expr_eq al1 al2
| CApp((proj1,e1),al1), CApp((proj2,e2),al2) ->
Option.equal Int.equal proj1 proj2 &&
constr_expr_eq e1 e2 &&
List.equal args_eq al1 al2
| CRecord l1, CRecord l2 ->
let field_eq (r1, e1) (r2, e2) =
qualid_eq r1 r2 && constr_expr_eq e1 e2
in
List.equal field_eq l1 l2
| CCases(_,r1,a1,brl1), CCases(_,r2,a2,brl2) ->
(** Don't care about the case_style *)
Option.equal constr_expr_eq r1 r2 &&
List.equal case_expr_eq a1 a2 &&
List.equal branch_expr_eq brl1 brl2
| CLetTuple (n1, (m1, e1), t1, b1), CLetTuple (n2, (m2, e2), t2, b2) ->
List.equal (eq_ast Name.equal) n1 n2 &&
Option.equal (eq_ast Name.equal) m1 m2 &&
Option.equal constr_expr_eq e1 e2 &&
constr_expr_eq t1 t2 &&
constr_expr_eq b1 b2
| CIf (e1, (n1, r1), t1, f1), CIf (e2, (n2, r2), t2, f2) ->
constr_expr_eq e1 e2 &&
Option.equal (eq_ast Name.equal) n1 n2 &&
Option.equal constr_expr_eq r1 r2 &&
constr_expr_eq t1 t2 &&
constr_expr_eq f1 f2
| CHole _, CHole _ -> true
| CPatVar i1, CPatVar i2 ->
Id.equal i1 i2
| CEvar (id1, c1), CEvar (id2, c2) ->
Id.equal id1 id2 && List.equal instance_eq c1 c2
| CSort s1, CSort s2 ->
Glob_ops.glob_sort_eq s1 s2
| CCast(t1,c1), CCast(t2,c2) ->
constr_expr_eq t1 t2 && cast_expr_eq c1 c2
| CNotation(n1, s1), CNotation(n2, s2) ->
String.equal n1 n2 &&
constr_notation_substitution_eq s1 s2
| CPrim i1, CPrim i2 ->
prim_token_eq i1 i2
| CGeneralization (bk1, ak1, e1), CGeneralization (bk2, ak2, e2) ->
binding_kind_eq bk1 bk2 &&
Option.equal abstraction_kind_eq ak1 ak2 &&
constr_expr_eq e1 e2
| CDelimiters(s1,e1), CDelimiters(s2,e2) ->
String.equal s1 s2 &&
constr_expr_eq e1 e2
| CProj(p1,c1), CProj(p2,c2) ->
qualid_eq p1 p2 && constr_expr_eq c1 c2
| (CRef _ | CFix _ | CCoFix _ | CProdN _ | CLambdaN _ | CLetIn _ | CAppExpl _
| CApp _ | CRecord _ | CCases _ | CLetTuple _ | CIf _ | CHole _
| CPatVar _ | CEvar _ | CSort _ | CCast _ | CNotation _ | CPrim _
| CGeneralization _ | CDelimiters _ | CProj _), _ -> false
and args_eq (a1,e1) (a2,e2) =
Option.equal (eq_ast explicitation_eq) e1 e2 &&
constr_expr_eq a1 a2
and case_expr_eq (e1, n1, p1) (e2, n2, p2) =
constr_expr_eq e1 e2 &&
Option.equal (eq_ast Name.equal) n1 n2 &&
Option.equal cases_pattern_expr_eq p1 p2
and branch_expr_eq {CAst.v=(p1, e1)} {CAst.v=(p2, e2)} =
List.equal (List.equal cases_pattern_expr_eq) p1 p2 &&
constr_expr_eq e1 e2
and fix_expr_eq (id1,(j1, r1),bl1,a1,b1) (id2,(j2, r2),bl2,a2,b2) =
(eq_ast Id.equal id1 id2) &&
Option.equal (eq_ast Id.equal) j1 j2 &&
recursion_order_expr_eq r1 r2 &&
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2 &&
constr_expr_eq b1 b2
and cofix_expr_eq (id1,bl1,a1,b1) (id2,bl2,a2,b2) =
(eq_ast Id.equal id1 id2) &&
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2 &&
constr_expr_eq b1 b2
and recursion_order_expr_eq r1 r2 = match r1, r2 with
| CStructRec, CStructRec -> true
| CWfRec e1, CWfRec e2 -> constr_expr_eq e1 e2
| CMeasureRec (e1, o1), CMeasureRec (e2, o2) ->
constr_expr_eq e1 e2 && Option.equal constr_expr_eq o1 o2
| _ -> false
and local_binder_eq l1 l2 = match l1, l2 with
| CLocalDef (n1, e1, t1), CLocalDef (n2, e2, t2) ->
eq_ast Name.equal n1 n2 && constr_expr_eq e1 e2 && Option.equal constr_expr_eq t1 t2
| CLocalAssum (n1, _, e1), CLocalAssum (n2, _, e2) ->
(** Don't care about the [binder_kind] *)
List.equal (eq_ast Name.equal) n1 n2 && constr_expr_eq e1 e2
| _ -> false
and constr_notation_substitution_eq (e1, el1, b1, bl1) (e2, el2, b2, bl2) =
List.equal constr_expr_eq e1 e2 &&
List.equal (List.equal constr_expr_eq) el1 el2 &&
List.equal cases_pattern_expr_eq b1 b2 &&
List.equal (List.equal local_binder_eq) bl1 bl2
and instance_eq (x1,c1) (x2,c2) =
Id.equal x1 x2 && constr_expr_eq c1 c2
and cast_expr_eq c1 c2 = match c1, c2 with
| CastConv t1, CastConv t2
| CastVM t1, CastVM t2
| CastNative t1, CastNative t2 -> constr_expr_eq t1 t2
| CastCoerce, CastCoerce -> true
| CastConv _, _
| CastVM _, _
| CastNative _, _
| CastCoerce, _ -> false
let constr_loc c = CAst.(c.loc)
let cases_pattern_expr_loc cp = CAst.(cp.loc)
let local_binder_loc = let open CAst in function
| CLocalAssum ({ loc } ::_,_,t)
| CLocalDef ( { loc },t,None) -> Loc.merge_opt loc (constr_loc t)
| CLocalDef ( { loc },b,Some t) -> Loc.merge_opt loc (Loc.merge_opt (constr_loc b) (constr_loc t))
| CLocalAssum ([],_,_) -> assert false
| CLocalPattern { loc } -> loc
let local_binders_loc bll = match bll with
| [] -> None
| h :: l -> Loc.merge_opt (local_binder_loc h) (local_binder_loc (List.last bll))
(** Folds and maps *)
let is_constructor id =
try Globnames.isConstructRef
(Smartlocate.global_of_extended_global
(Nametab.locate_extended (qualid_of_ident id)))
with Not_found -> false
let rec cases_pattern_fold_names f a pt = match CAst.(pt.v) with
| CPatRecord l ->
List.fold_left (fun acc (r, cp) -> cases_pattern_fold_names f acc cp) a l
| CPatAlias (pat,{CAst.v=na}) -> Name.fold_right f na (cases_pattern_fold_names f a pat)
| CPatOr (patl) ->
List.fold_left (cases_pattern_fold_names f) a patl
| CPatCstr (_,patl1,patl2) ->
List.fold_left (cases_pattern_fold_names f)
(Option.fold_left (List.fold_left (cases_pattern_fold_names f)) a patl1) patl2
| CPatNotation (_,(patl,patll),patl') ->
List.fold_left (cases_pattern_fold_names f)
(List.fold_left (cases_pattern_fold_names f) a (patl@List.flatten patll)) patl'
| CPatDelimiters (_,pat) -> cases_pattern_fold_names f a pat
| CPatAtom (Some qid)
when qualid_is_ident qid && not (is_constructor @@ qualid_basename qid) ->
f (qualid_basename qid) a
| CPatPrim _ | CPatAtom _ -> a
| CPatCast ({CAst.loc},_) ->
CErrors.user_err ?loc ~hdr:"cases_pattern_fold_names"
(Pp.strbrk "Casts are not supported here.")
let ids_of_pattern =
cases_pattern_fold_names Id.Set.add Id.Set.empty
let ids_of_pattern_list =
List.fold_left
(List.fold_left (cases_pattern_fold_names Id.Set.add))
Id.Set.empty
let ids_of_cases_indtype p =
cases_pattern_fold_names Id.Set.add Id.Set.empty p
let ids_of_cases_tomatch tms =
List.fold_right
(fun (_, ona, indnal) l ->
Option.fold_right (fun t ids -> cases_pattern_fold_names Id.Set.add ids t)
indnal
(Option.fold_right (CAst.with_val (Name.fold_right Id.Set.add)) ona l))
tms Id.Set.empty
let rec fold_local_binders g f n acc b = let open CAst in function
| CLocalAssum (nal,bk,t)::l ->
let nal = List.(map (fun {v} -> v) nal) in
let n' = List.fold_right (Name.fold_right g) nal n in
f n (fold_local_binders g f n' acc b l) t
| CLocalDef ( { v = na },c,t)::l ->
Option.fold_left (f n) (f n (fold_local_binders g f (Name.fold_right g na n) acc b l) c) t
| CLocalPattern { v = pat,t }::l ->
let acc = fold_local_binders g f (cases_pattern_fold_names g n pat) acc b l in
Option.fold_left (f n) acc t
| [] ->
f n acc b
let fold_constr_expr_with_binders g f n acc = CAst.with_val (function
| CAppExpl ((_,_,_),l) -> List.fold_left (f n) acc l
| CApp ((_,t),l) -> List.fold_left (f n) (f n acc t) (List.map fst l)
| CProdN (l,b) | CLambdaN (l,b) -> fold_local_binders g f n acc b l
| CLetIn (na,a,t,b) ->
f (Name.fold_right g (na.CAst.v) n) (Option.fold_left (f n) (f n acc a) t) b
| CCast (a,(CastConv b|CastVM b|CastNative b)) -> f n (f n acc a) b
| CCast (a,CastCoerce) -> f n acc a
| CNotation (_,(l,ll,bl,bll)) ->
(* The following is an approximation: we don't know exactly if
an ident is binding nor to which subterms bindings apply *)
let acc = List.fold_left (f n) acc (l@List.flatten ll) in
List.fold_left (fun acc bl -> fold_local_binders g f n acc (CAst.make @@ CHole (None,IntroAnonymous,None)) bl) acc bll
| CGeneralization (_,_,c) -> f n acc c
| CDelimiters (_,a) -> f n acc a
| CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CRef _ ->
acc
| CRecord l -> List.fold_left (fun acc (id, c) -> f n acc c) acc l
| CCases (sty,rtnpo,al,bl) ->
let ids = ids_of_cases_tomatch al in
let acc = Option.fold_left (f (Id.Set.fold g ids n)) acc rtnpo in
let acc = List.fold_left (f n) acc (List.map (fun (fst,_,_) -> fst) al) in
List.fold_right (fun {CAst.v=(patl,rhs)} acc ->
let ids = ids_of_pattern_list patl in
f (Id.Set.fold g ids n) acc rhs) bl acc
| CLetTuple (nal,(ona,po),b,c) ->
let n' = List.fold_right (CAst.with_val (Name.fold_right g)) nal n in
f (Option.fold_right (CAst.with_val (Name.fold_right g)) ona n') (f n acc b) c
| CIf (c,(ona,po),b1,b2) ->
let acc = f n (f n (f n acc b1) b2) c in
Option.fold_left
(f (Option.fold_right (CAst.with_val (Name.fold_right g)) ona n)) acc po
| CFix (_,l) ->
let n' = List.fold_right (fun ( { CAst.v = id },_,_,_,_) -> g id) l n in
List.fold_right (fun (_,(_,o),lb,t,c) acc ->
fold_local_binders g f n'
(fold_local_binders g f n acc t lb) c lb) l acc
| CCoFix (_,_) ->
Feedback.msg_warning (strbrk "Capture check in multiple binders not done"); acc
| CProj (_,c) ->
f n acc c
)
let free_vars_of_constr_expr c =
let rec aux bdvars l = function
| { CAst.v = CRef (qid, _) } when qualid_is_ident qid ->
let id = qualid_basename qid in
if Id.List.mem id bdvars then l else Id.Set.add id l
| c -> fold_constr_expr_with_binders (fun a l -> a::l) aux bdvars l c
in aux [] Id.Set.empty c
let occur_var_constr_expr id c = Id.Set.mem id (free_vars_of_constr_expr c)
(* Used in correctness and interface *)
let map_binder g e nal = List.fold_right (CAst.with_val (Name.fold_right g)) nal e
let map_local_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let open CAst in
let h (e,bl) = function
CLocalAssum(nal,k,ty) ->
(map_binder g e nal, CLocalAssum(nal,k,f e ty)::bl)
| CLocalDef( { loc ; v = na } as cna ,c,ty) ->
(Name.fold_right g na e, CLocalDef(cna,f e c,Option.map (f e) ty)::bl)
| CLocalPattern { loc; v = pat,t } ->
let ids = ids_of_pattern pat in
(Id.Set.fold g ids e, CLocalPattern (make ?loc (pat,Option.map (f e) t))::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_constr_expr_with_binders g f e = CAst.map (function
| CAppExpl (r,l) -> CAppExpl (r,List.map (f e) l)
| CApp ((p,a),l) ->
CApp ((p,f e a),List.map (fun (a,i) -> (f e a,i)) l)
| CProdN (bl,b) ->
let (e,bl) = map_local_binders f g e bl in CProdN (bl,f e b)
| CLambdaN (bl,b) ->
let (e,bl) = map_local_binders f g e bl in CLambdaN (bl,f e b)
| CLetIn (na,a,t,b) ->
CLetIn (na,f e a,Option.map (f e) t,f (Name.fold_right g (na.CAst.v) e) b)
| CCast (a,c) -> CCast (f e a, Glob_ops.map_cast_type (f e) c)
| CNotation (n,(l,ll,bl,bll)) ->
(* This is an approximation because we don't know what binds what *)
CNotation (n,(List.map (f e) l,List.map (List.map (f e)) ll, bl,
List.map (fun bl -> snd (map_local_binders f g e bl)) bll))
| CGeneralization (b,a,c) -> CGeneralization (b,a,f e c)
| CDelimiters (s,a) -> CDelimiters (s,f e a)
| CHole _ | CEvar _ | CPatVar _ | CSort _
| CPrim _ | CRef _ as x -> x
| CRecord l -> CRecord (List.map (fun (id, c) -> (id, f e c)) l)
| CCases (sty,rtnpo,a,bl) ->
let bl = List.map (fun {CAst.v=(patl,rhs);loc} ->
let ids = ids_of_pattern_list patl in
CAst.make ?loc (patl,f (Id.Set.fold g ids e) rhs)) bl in
let ids = ids_of_cases_tomatch a in
let po = Option.map (f (Id.Set.fold g ids e)) rtnpo in
CCases (sty, po, List.map (fun (tm,x,y) -> f e tm,x,y) a,bl)
| CLetTuple (nal,(ona,po),b,c) ->
let e' = List.fold_right (CAst.with_val (Name.fold_right g)) nal e in
let e'' = Option.fold_right (CAst.with_val (Name.fold_right g)) ona e in
CLetTuple (nal,(ona,Option.map (f e'') po),f e b,f e' c)
| CIf (c,(ona,po),b1,b2) ->
let e' = Option.fold_right (CAst.with_val (Name.fold_right g)) ona e in
CIf (f e c,(ona,Option.map (f e') po),f e b1,f e b2)
| CFix (id,dl) ->
CFix (id,List.map (fun (id,n,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
(* Note: fix names should be inserted before the arguments... *)
let e'' = List.fold_left (fun e ({ CAst.v = id },_,_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,n,bl',t',d')) dl)
| CCoFix (id,dl) ->
CCoFix (id,List.map (fun (id,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
let e'' = List.fold_left (fun e ({ CAst.v = id },_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,bl',t',d')) dl)
| CProj (p,c) ->
CProj (p, f e c)
)
(* Used in constrintern *)
let rec replace_vars_constr_expr l r =
match r with
| { CAst.loc; v = CRef (qid,us) } as x when qualid_is_ident qid ->
let id = qualid_basename qid in
(try CAst.make ?loc @@ CRef (qualid_of_ident ?loc (Id.Map.find id l),us)
with Not_found -> x)
| cn -> map_constr_expr_with_binders Id.Map.remove replace_vars_constr_expr l cn
(* Returns the ranges of locs of the notation that are not occupied by args *)
(* and which are then occupied by proper symbols of the notation (or spaces) *)
let locs_of_notation ?loc locs ntn =
let unloc loc = Option.cata Loc.unloc (0,0) loc in
let (bl, el) = unloc loc in
let locs = List.map unloc locs in
let rec aux pos = function
| [] -> if Int.equal pos el then [] else [(pos,el)]
| (ba,ea)::l -> if Int.equal pos ba then aux ea l else (pos,ba)::aux ea l
in aux bl (List.sort (fun l1 l2 -> fst l1 - fst l2) locs)
let ntn_loc ?loc (args,argslist,binders,binderslist) =
locs_of_notation ?loc
(List.map constr_loc (args@List.flatten argslist)@
List.map cases_pattern_expr_loc binders@
List.map local_binders_loc binderslist)
let patntn_loc ?loc (args,argslist) =
locs_of_notation ?loc
(List.map cases_pattern_expr_loc (args@List.flatten argslist))
let error_invalid_pattern_notation ?loc () =
CErrors.user_err ?loc (str "Invalid notation for pattern.")
(* Interpret the index of a recursion order annotation *)
let split_at_annot bl na =
let open CAst in
let names = List.map (fun { v } -> v) (names_of_local_assums bl) in
match na with
| None ->
begin match names with
| [] -> CErrors.user_err (Pp.str "A fixpoint needs at least one parameter.")
| _ -> ([], bl)
end
| Some { loc; v = id } ->
let rec aux acc = function
| CLocalAssum (bls, k, t) as x :: rest ->
let test { CAst.v = na } = match na with
| Name id' -> Id.equal id id'
| Anonymous -> false
in
let l, r = List.split_when test bls in
begin match r with
| [] -> aux (x :: acc) rest
| _ ->
let ans = match l with
| [] -> acc
| _ -> CLocalAssum (l, k, t) :: acc
in
(List.rev ans, CLocalAssum (r, k, t) :: rest)
end
| CLocalDef ({ CAst.v = na },_,_) as x :: rest ->
if Name.equal (Name id) na then
CErrors.user_err ?loc
(Id.print id ++ str" must be a proper parameter and not a local definition.")
else
aux (x :: acc) rest
| CLocalPattern _ :: rest ->
Loc.raise ?loc (Stream.Error "pattern with quote not allowed after fix")
| [] ->
CErrors.user_err ?loc
(str "No parameter named " ++ Id.print id ++ str".")
in aux [] bl
(** Pseudo-constructors *)
let mkIdentC id = CAst.make @@ CRef (qualid_of_ident id,None)
let mkRefC r = CAst.make @@ CRef (r,None)
let mkCastC (a,k) = CAst.make @@ CCast (a,k)
let mkLambdaC (idl,bk,a,b) = CAst.make @@ CLambdaN ([CLocalAssum (idl,bk,a)],b)
let mkLetInC (id,a,t,b) = CAst.make @@ CLetIn (id,a,t,b)
let mkProdC (idl,bk,a,b) = CAst.make @@ CProdN ([CLocalAssum (idl,bk,a)],b)
let mkAppC (f,l) =
let l = List.map (fun x -> (x,None)) l in
match CAst.(f.v) with
| CApp (g,l') -> CAst.make @@ CApp (g, l' @ l)
| _ -> CAst.make @@ CApp ((None, f), l)
let mkCProdN ?loc bll c =
CAst.make ?loc @@ CProdN (bll,c)
let mkCLambdaN ?loc bll c =
CAst.make ?loc @@ CLambdaN (bll,c)
let coerce_reference_to_id qid =
if qualid_is_ident qid then qualid_basename qid
else
CErrors.user_err ?loc:qid.CAst.loc ~hdr:"coerce_reference_to_id"
(str "This expression should be a simple identifier.")
let coerce_to_id = function
| { CAst.loc; v = CRef (qid,None) } when qualid_is_ident qid ->
CAst.make ?loc @@ qualid_basename qid
| { CAst.loc; _ } -> CErrors.user_err ?loc
~hdr:"coerce_to_id"
(str "This expression should be a simple identifier.")
let coerce_to_name = function
| { CAst.loc; v = CRef (qid,None) } when qualid_is_ident qid ->
CAst.make ?loc @@ Name (qualid_basename qid)
| { CAst.loc; v = CHole (None,IntroAnonymous,None) } -> CAst.make ?loc Anonymous
| { CAst.loc; _ } -> CErrors.user_err ?loc ~hdr:"coerce_to_name"
(str "This expression should be a name.")
let mkCPatOr ?loc = function
| [pat] -> pat
| disjpat -> CAst.make ?loc @@ (CPatOr disjpat)
let mkAppPattern ?loc p lp =
let open CAst in
make ?loc @@ (match p.v with
| CPatAtom (Some r) -> CPatCstr (r, None, lp)
| CPatCstr (r, None, l2) ->
CErrors.user_err ?loc:p.loc ~hdr:"compound_pattern"
(Pp.str "Nested applications not supported.")
| CPatCstr (r, l1, l2) -> CPatCstr (r, l1 , l2@lp)
| CPatNotation (n, s, l) -> CPatNotation (n , s, l@lp)
| _ -> CErrors.user_err
?loc:p.loc ~hdr:"compound_pattern"
(Pp.str "Such pattern cannot have arguments."))
let rec coerce_to_cases_pattern_expr c = CAst.map_with_loc (fun ?loc -> function
| CRef (r,None) ->
CPatAtom (Some r)
| CHole (None,IntroAnonymous,None) ->
CPatAtom None
| CLetIn ({CAst.loc;v=Name id},b,None,{ CAst.v = CRef (qid,None) })
when qualid_is_ident qid && Id.equal id (qualid_basename qid) ->
CPatAlias (coerce_to_cases_pattern_expr b, CAst.(make ?loc @@ Name id))
| CApp ((None,p),args) when List.for_all (fun (_,e) -> e=None) args ->
(mkAppPattern (coerce_to_cases_pattern_expr p) (List.map (fun (a,_) -> coerce_to_cases_pattern_expr a) args)).CAst.v
| CAppExpl ((None,r,i),args) ->
CPatCstr (r,Some (List.map coerce_to_cases_pattern_expr args),[])
| CNotation (ntn,(c,cl,[],[])) ->
CPatNotation (ntn,(List.map coerce_to_cases_pattern_expr c,
List.map (List.map coerce_to_cases_pattern_expr) cl),[])
| CPrim p ->
CPatPrim p
| CRecord l ->
CPatRecord (List.map (fun (r,p) -> (r,coerce_to_cases_pattern_expr p)) l)
| CDelimiters (s,p) ->
CPatDelimiters (s,coerce_to_cases_pattern_expr p)
| CCast (p,CastConv t) ->
CPatCast (coerce_to_cases_pattern_expr p,t)
| _ ->
CErrors.user_err ?loc ~hdr:"coerce_to_cases_pattern_expr"
(str "This expression should be coercible to a pattern.")) c
let asymmetric_patterns = ref (false)
let _ = Goptions.declare_bool_option {
Goptions.optdepr = false;
Goptions.optname = "no parameters in constructors";
Goptions.optkey = ["Asymmetric";"Patterns"];
Goptions.optread = (fun () -> !asymmetric_patterns);
Goptions.optwrite = (fun a -> asymmetric_patterns:=a);
}
(** Local universe and constraint declarations. *)
let interp_univ_constraints env evd cstrs =
let interp (evd,cstrs) (u, d, u') =
let ul = Pretyping.interp_known_glob_level evd u in
let u'l = Pretyping.interp_known_glob_level evd u' in
let cstr = (ul,d,u'l) in
let cstrs' = Univ.Constraint.add cstr cstrs in
try let evd = Evd.add_constraints evd (Univ.Constraint.singleton cstr) in
evd, cstrs'
with Univ.UniverseInconsistency e ->
CErrors.user_err ~hdr:"interp_constraint"
(Univ.explain_universe_inconsistency (Termops.pr_evd_level evd) e)
in
List.fold_left interp (evd,Univ.Constraint.empty) cstrs
let interp_univ_decl env decl =
let open UState in
let pl : lident list = decl.univdecl_instance in
let evd = Evd.from_ctx (UState.make_with_initial_binders (Environ.universes env) pl) in
let evd, cstrs = interp_univ_constraints env evd decl.univdecl_constraints in
let decl = { univdecl_instance = pl;
univdecl_extensible_instance = decl.univdecl_extensible_instance;
univdecl_constraints = cstrs;
univdecl_extensible_constraints = decl.univdecl_extensible_constraints }
in evd, decl
let interp_univ_decl_opt env l =
match l with
| None -> Evd.from_env env, UState.default_univ_decl
| Some decl -> interp_univ_decl env decl
|