aboutsummaryrefslogtreecommitdiffhomepage
path: root/interp/constrexpr_ops.ml
blob: c5730e626182e8e7bca4c7d58d667911682ced0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Pp
open Util
open Names
open Libnames
open Constrexpr
open Misctypes
open Decl_kinds

(***********************)
(* For binders parsing *)

let binding_kind_eq bk1 bk2 = match bk1, bk2 with
| Explicit, Explicit -> true
| Implicit, Implicit -> true
| _ -> false

let abstraction_kind_eq ak1 ak2 = match ak1, ak2 with
| AbsLambda, AbsLambda -> true
| AbsPi, AbsPi -> true
| _ -> false

let binder_kind_eq b1 b2 = match b1, b2 with
| Default bk1, Default bk2 -> binding_kind_eq bk1 bk2
| Generalized (bk1, ck1, b1), Generalized (bk2, ck2, b2) ->
  binding_kind_eq bk1 bk2 && binding_kind_eq ck1 ck2 &&
  (if b1 then b2 else not b2)
| _ -> false

let default_binder_kind = Default Explicit

let names_of_local_assums bl =
  List.flatten (List.map (function LocalRawAssum(l,_,_)->l|_->[]) bl)

let names_of_local_binders bl =
  List.flatten (List.map (function LocalRawAssum(l,_,_)->l|LocalRawDef(l,_)->[l]) bl)

(**********************************************************************)
(* Functions on constr_expr *)

let prim_token_eq t1 t2 = match t1, t2 with
| Numeral i1, Numeral i2 -> Bigint.equal i1 i2
| String s1, String s2 -> String.equal s1 s2
| _ -> false

let explicitation_eq ex1 ex2 = match ex1, ex2 with
| ExplByPos (i1, id1), ExplByPos (i2, id2) ->
  Int.equal i1 i2 && Option.equal Id.equal id1 id2
| ExplByName id1, ExplByName id2 ->
  Id.equal id1 id2
| _ -> false

let eq_located f (_, x) (_, y) = f x y

let rec cases_pattern_expr_eq p1 p2 =
  if p1 == p2 then true
  else match p1, p2 with
  | CPatAlias(_,a1,i1), CPatAlias(_,a2,i2) ->
      Id.equal i1 i2 && cases_pattern_expr_eq a1 a2
  | CPatCstr(_,c1,a1,b1), CPatCstr(_,c2,a2,b2) ->
      eq_reference c1 c2 &&
      Option.equal (List.equal cases_pattern_expr_eq) a1 a2 &&
      List.equal cases_pattern_expr_eq b1 b2
  | CPatAtom(_,r1), CPatAtom(_,r2) ->
      Option.equal eq_reference r1 r2
  | CPatOr (_, a1), CPatOr (_, a2) ->
      List.equal cases_pattern_expr_eq a1 a2
  | CPatNotation (_, n1, s1, l1), CPatNotation (_, n2, s2, l2) ->
    String.equal n1 n2 &&
    cases_pattern_notation_substitution_eq s1 s2 &&
    List.equal cases_pattern_expr_eq l1 l2
  | CPatPrim(_,i1), CPatPrim(_,i2) ->
      prim_token_eq i1 i2
  | CPatRecord (_, l1), CPatRecord (_, l2) ->
      let equal (r1, e1) (r2, e2) =
        eq_reference r1 r2 && cases_pattern_expr_eq e1 e2
      in
      List.equal equal l1 l2
  | CPatDelimiters(_,s1,e1), CPatDelimiters(_,s2,e2) ->
      String.equal s1 s2 && cases_pattern_expr_eq e1 e2
  | _ -> false

and cases_pattern_notation_substitution_eq (s1, n1) (s2, n2) =
  List.equal cases_pattern_expr_eq s1 s2 &&
  List.equal (List.equal cases_pattern_expr_eq) n1 n2

let eq_universes u1 u2 =
  match u1, u2 with
  | None, None -> true
  | Some l, Some l' -> l = l'
  | _, _ -> false

let rec constr_expr_eq e1 e2 =
  if e1 == e2 then true
  else match e1, e2 with
  | CRef (r1,u1), CRef (r2,u2) -> eq_reference r1 r2 && eq_universes u1 u2
  | CFix(_,id1,fl1), CFix(_,id2,fl2) ->
      eq_located Id.equal id1 id2 &&
      List.equal fix_expr_eq fl1 fl2
  | CCoFix(_,id1,fl1), CCoFix(_,id2,fl2) ->
      eq_located Id.equal id1 id2 &&
      List.equal cofix_expr_eq fl1 fl2
  | CProdN(_,bl1,a1), CProdN(_,bl2,a2) ->
      List.equal binder_expr_eq bl1 bl2 &&
      constr_expr_eq a1 a2
  | CLambdaN(_,bl1,a1), CLambdaN(_,bl2,a2) ->
      List.equal binder_expr_eq bl1 bl2 &&
      constr_expr_eq a1 a2
  | CLetIn(_,(_,na1),a1,b1), CLetIn(_,(_,na2),a2,b2) ->
      Name.equal na1 na2 &&
      constr_expr_eq a1 a2 &&
      constr_expr_eq b1 b2
  | CAppExpl(_,(proj1,r1,_),al1), CAppExpl(_,(proj2,r2,_),al2) ->
      Option.equal Int.equal proj1 proj2 &&
      eq_reference r1 r2 &&
      List.equal constr_expr_eq al1 al2
  | CApp(_,(proj1,e1),al1), CApp(_,(proj2,e2),al2) ->
      Option.equal Int.equal proj1 proj2 &&
      constr_expr_eq e1 e2 &&
      List.equal args_eq al1 al2
  | CRecord (_, l1), CRecord (_, l2) ->
    let field_eq (r1, e1) (r2, e2) =
      eq_reference r1 r2 && constr_expr_eq e1 e2
    in
    List.equal field_eq l1 l2
  | CCases(_,_,r1,a1,brl1), CCases(_,_,r2,a2,brl2) ->
      (** Don't care about the case_style *)
      Option.equal constr_expr_eq r1 r2 &&
      List.equal case_expr_eq a1 a2 &&
      List.equal branch_expr_eq brl1 brl2
  | CLetTuple (_, n1, (m1, e1), t1, b1), CLetTuple (_, n2, (m2, e2), t2, b2) ->
    List.equal (eq_located Name.equal) n1 n2 &&
    Option.equal (eq_located Name.equal) m1 m2 &&
    Option.equal constr_expr_eq e1 e2 &&
    constr_expr_eq t1 t2 &&
    constr_expr_eq b1 b2
  | CIf (_, e1, (n1, r1), t1, f1), CIf (_, e2, (n2, r2), t2, f2) ->
    constr_expr_eq e1 e2 &&
    Option.equal (eq_located Name.equal) n1 n2 &&
    Option.equal constr_expr_eq r1 r2 &&
    constr_expr_eq t1 t2 &&
    constr_expr_eq f1 f2
  | CHole _, CHole _ -> true
  | CPatVar(_,i1), CPatVar(_,i2) ->
    Id.equal i1 i2
  | CEvar (_, id1, c1), CEvar (_, id2, c2) ->
    Id.equal id1 id2 && List.equal instance_eq c1 c2
  | CSort(_,s1), CSort(_,s2) ->
    Miscops.glob_sort_eq s1 s2
  | CCast(_,a1,(CastConv b1|CastVM b1)), CCast(_,a2,(CastConv b2|CastVM b2)) ->
      constr_expr_eq a1 a2 &&
      constr_expr_eq b1 b2
  | CCast(_,a1,CastCoerce), CCast(_,a2, CastCoerce) ->
      constr_expr_eq a1 a2
  | CNotation(_, n1, s1), CNotation(_, n2, s2) ->
      String.equal n1 n2 &&
      constr_notation_substitution_eq s1 s2
  | CPrim(_,i1), CPrim(_,i2) ->
    prim_token_eq i1 i2
  | CGeneralization (_, bk1, ak1, e1), CGeneralization (_, bk2, ak2, e2) ->
    binding_kind_eq bk1 bk2 &&
    Option.equal abstraction_kind_eq ak1 ak2 &&
    constr_expr_eq e1 e2
  | CDelimiters(_,s1,e1), CDelimiters(_,s2,e2) ->
    String.equal s1 s2 &&
    constr_expr_eq e1 e2
  | _ -> false

and args_eq (a1,e1) (a2,e2) =
  Option.equal (eq_located explicitation_eq) e1 e2 &&
  constr_expr_eq a1 a2

and case_expr_eq (e1, n1, p1) (e2, n2, p2) =
  constr_expr_eq e1 e2 &&
  Option.equal (eq_located Name.equal) n1 n2 &&
  Option.equal cases_pattern_expr_eq p1 p2

and branch_expr_eq (_, p1, e1) (_, p2, e2) =
  List.equal (eq_located (List.equal cases_pattern_expr_eq)) p1 p2 &&
  constr_expr_eq e1 e2

and binder_expr_eq ((n1, _, e1) : binder_expr) (n2, _, e2) =
  (** Don't care about the [binder_kind] *)
  List.equal (eq_located Name.equal) n1 n2 && constr_expr_eq e1 e2

and fix_expr_eq (id1,(j1, r1),bl1,a1,b1) (id2,(j2, r2),bl2,a2,b2) =
  (eq_located Id.equal id1 id2) &&
  Option.equal (eq_located Id.equal) j1 j2 &&
  recursion_order_expr_eq r1 r2 &&
  List.equal local_binder_eq bl1 bl2 &&
  constr_expr_eq a1 a2 &&
  constr_expr_eq b1 b2

and cofix_expr_eq (id1,bl1,a1,b1) (id2,bl2,a2,b2) =
  (eq_located Id.equal id1 id2) &&
  List.equal local_binder_eq bl1 bl2 &&
  constr_expr_eq a1 a2 &&
  constr_expr_eq b1 b2

and recursion_order_expr_eq r1 r2 = match r1, r2 with
| CStructRec, CStructRec -> true
| CWfRec e1, CWfRec e2 -> constr_expr_eq e1 e2
| CMeasureRec (e1, o1), CMeasureRec (e2, o2) ->
  constr_expr_eq e1 e2 && Option.equal constr_expr_eq o1 o2
| _ -> false

and local_binder_eq l1 l2 = match l1, l2 with
| LocalRawDef (n1, e1), LocalRawDef (n2, e2) ->
  eq_located Name.equal n1 n2 && constr_expr_eq e1 e2
| LocalRawAssum (n1, _, e1), LocalRawAssum (n2, _, e2) ->
  (** Don't care about the [binder_kind] *)
  List.equal (eq_located Name.equal) n1 n2 && constr_expr_eq e1 e2
| _ -> false

and constr_notation_substitution_eq (e1, el1, bl1) (e2, el2, bl2) =
  List.equal constr_expr_eq e1 e2 &&
  List.equal (List.equal constr_expr_eq) el1 el2 &&
  List.equal (List.equal local_binder_eq) bl1 bl2

and instance_eq (x1,c1) (x2,c2) =
  Id.equal x1 x2 && constr_expr_eq c1 c2

let constr_loc = function
  | CRef (Ident (loc,_),_) -> loc
  | CRef (Qualid (loc,_),_) -> loc
  | CFix (loc,_,_) -> loc
  | CCoFix (loc,_,_) -> loc
  | CProdN (loc,_,_) -> loc
  | CLambdaN (loc,_,_) -> loc
  | CLetIn (loc,_,_,_) -> loc
  | CAppExpl (loc,_,_) -> loc
  | CApp (loc,_,_) -> loc
  | CRecord (loc,_) -> loc
  | CCases (loc,_,_,_,_) -> loc
  | CLetTuple (loc,_,_,_,_) -> loc
  | CIf (loc,_,_,_,_) -> loc
  | CHole (loc,_,_,_) -> loc
  | CPatVar (loc,_) -> loc
  | CEvar (loc,_,_) -> loc
  | CSort (loc,_) -> loc
  | CCast (loc,_,_) -> loc
  | CNotation (loc,_,_) -> loc
  | CGeneralization (loc,_,_,_) -> loc
  | CPrim (loc,_) -> loc
  | CDelimiters (loc,_,_) -> loc

let cases_pattern_expr_loc = function
  | CPatAlias (loc,_,_) -> loc
  | CPatCstr (loc,_,_,_) -> loc
  | CPatAtom (loc,_) -> loc
  | CPatOr (loc,_) -> loc
  | CPatNotation (loc,_,_,_) -> loc
  | CPatRecord (loc, _) -> loc
  | CPatPrim (loc,_) -> loc
  | CPatDelimiters (loc,_,_) -> loc

let raw_cases_pattern_expr_loc = function
  | RCPatAlias (loc,_,_) -> loc
  | RCPatCstr (loc,_,_,_) -> loc
  | RCPatAtom (loc,_) -> loc
  | RCPatOr (loc,_) -> loc

let local_binder_loc = function
  | LocalRawAssum ((loc,_)::_,_,t)
  | LocalRawDef ((loc,_),t) -> Loc.merge loc (constr_loc t)
  | LocalRawAssum ([],_,_) -> assert false

let local_binders_loc bll = match bll with
  | [] -> Loc.ghost
  | h :: l ->
    Loc.merge (local_binder_loc h) (local_binder_loc (List.last bll))

(** Pseudo-constructors *)

let mkIdentC id  = CRef (Ident (Loc.ghost, id),None)
let mkRefC r     = CRef (r,None)
let mkCastC (a,k)  = CCast (Loc.ghost,a,k)
let mkLambdaC (idl,bk,a,b) = CLambdaN (Loc.ghost,[idl,bk,a],b)
let mkLetInC (id,a,b)   = CLetIn (Loc.ghost,id,a,b)
let mkProdC (idl,bk,a,b)   = CProdN (Loc.ghost,[idl,bk,a],b)

let mkAppC (f,l) =
  let l = List.map (fun x -> (x,None)) l in
  match f with
  | CApp (_,g,l') -> CApp (Loc.ghost, g, l' @ l)
  | _ -> CApp (Loc.ghost, (None, f), l)

let rec mkCProdN loc bll c =
  match bll with
  | LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
      CProdN (loc,[idl,bk,t],mkCProdN (Loc.merge loc1 loc) bll c)
  | LocalRawDef ((loc1,_) as id,b) :: bll ->
      CLetIn (loc,id,b,mkCProdN (Loc.merge loc1 loc) bll c)
  | [] -> c
  | LocalRawAssum ([],_,_) :: bll -> mkCProdN loc bll c

let rec mkCLambdaN loc bll c =
  match bll with
  | LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
      CLambdaN (loc,[idl,bk,t],mkCLambdaN (Loc.merge loc1 loc) bll c)
  | LocalRawDef ((loc1,_) as id,b) :: bll ->
      CLetIn (loc,id,b,mkCLambdaN (Loc.merge loc1 loc) bll c)
  | [] -> c
  | LocalRawAssum ([],_,_) :: bll -> mkCLambdaN loc bll c

let rec abstract_constr_expr c = function
  | [] -> c
  | LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
  | LocalRawAssum (idl,bk,t)::bl ->
      List.fold_right (fun x b -> mkLambdaC([x],bk,t,b)) idl
      (abstract_constr_expr c bl)

let rec prod_constr_expr c = function
  | [] -> c
  | LocalRawDef (x,b)::bl -> mkLetInC(x,b,prod_constr_expr c bl)
  | LocalRawAssum (idl,bk,t)::bl ->
      List.fold_right (fun x b -> mkProdC([x],bk,t,b)) idl
      (prod_constr_expr c bl)

let coerce_reference_to_id = function
  | Ident (_,id) -> id
  | Qualid (loc,_) ->
      Errors.user_err_loc (loc, "coerce_reference_to_id",
        str "This expression should be a simple identifier.")

let coerce_to_id = function
  | CRef (Ident (loc,id),_) -> (loc,id)
  | a -> Errors.user_err_loc
        (constr_loc a,"coerce_to_id",
         str "This expression should be a simple identifier.")

let coerce_to_name = function
  | CRef (Ident (loc,id),_) -> (loc,Name id)
  | CHole (loc,_,_,_) -> (loc,Anonymous)
  | a -> Errors.user_err_loc
        (constr_loc a,"coerce_to_name",
         str "This expression should be a name.")