1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Univ
open UnivSubst
(* To disallow minimization to Set *)
let set_minimization = ref true
let is_set_minimization () = !set_minimization
let _ =
Goptions.(declare_bool_option
{ optdepr = false;
optname = "minimization to Set";
optkey = ["Universe";"Minimization";"ToSet"];
optread = is_set_minimization;
optwrite = (:=) set_minimization })
(** Simplification *)
let add_list_map u t map =
try
let l = LMap.find u map in
LMap.set u (t :: l) map
with Not_found ->
LMap.add u [t] map
(** Precondition: flexible <= ctx *)
let choose_canonical ctx flexible algs s =
let global = LSet.diff s ctx in
let flexible, rigid = LSet.partition flexible (LSet.inter s ctx) in
(** If there is a global universe in the set, choose it *)
if not (LSet.is_empty global) then
let canon = LSet.choose global in
canon, (LSet.remove canon global, rigid, flexible)
else (** No global in the equivalence class, choose a rigid one *)
if not (LSet.is_empty rigid) then
let canon = LSet.choose rigid in
canon, (global, LSet.remove canon rigid, flexible)
else (** There are only flexible universes in the equivalence
class, choose a non-algebraic. *)
let algs, nonalgs = LSet.partition (fun x -> LSet.mem x algs) flexible in
if not (LSet.is_empty nonalgs) then
let canon = LSet.choose nonalgs in
canon, (global, rigid, LSet.remove canon flexible)
else
let canon = LSet.choose algs in
canon, (global, rigid, LSet.remove canon flexible)
(* Eq < Le < Lt *)
let compare_constraint_type d d' =
match d, d' with
| Eq, Eq -> 0
| Eq, _ -> -1
| _, Eq -> 1
| Le, Le -> 0
| Le, _ -> -1
| _, Le -> 1
| Lt, Lt -> 0
type lowermap = constraint_type LMap.t
let lower_union =
let merge k a b =
match a, b with
| Some _, None -> a
| None, Some _ -> b
| None, None -> None
| Some l, Some r ->
if compare_constraint_type l r >= 0 then a
else b
in LMap.merge merge
let lower_add l c m =
try let c' = LMap.find l m in
if compare_constraint_type c c' > 0 then
LMap.add l c m
else m
with Not_found -> LMap.add l c m
let lower_of_list l =
List.fold_left (fun acc (d,l) -> LMap.add l d acc) LMap.empty l
type lbound = { enforce : bool; alg : bool; lbound: Universe.t; lower : lowermap }
exception Found of Level.t * lowermap
let find_inst insts v =
try LMap.iter (fun k {enforce;alg;lbound=v';lower} ->
if not alg && enforce && Universe.equal v' v then raise (Found (k, lower)))
insts; raise Not_found
with Found (f,l) -> (f,l)
let compute_lbound left =
(** The universe variable was not fixed yet.
Compute its level using its lower bound. *)
let sup l lbound =
match lbound with
| None -> Some l
| Some l' -> Some (Universe.sup l l')
in
List.fold_left (fun lbound (d, l) ->
if d == Le (* l <= ?u *) then sup l lbound
else (* l < ?u *)
(assert (d == Lt);
if not (Universe.level l == None) then
sup (Universe.super l) lbound
else None))
None left
let instantiate_with_lbound u lbound lower ~alg ~enforce (ctx, us, algs, insts, cstrs) =
if enforce then
let inst = Universe.make u in
let cstrs' = enforce_leq lbound inst cstrs in
(ctx, us, LSet.remove u algs,
LMap.add u {enforce;alg;lbound;lower} insts, cstrs'),
{enforce; alg; lbound=inst; lower}
else (* Actually instantiate *)
(Univ.LSet.remove u ctx, Univ.LMap.add u (Some lbound) us, algs,
LMap.add u {enforce;alg;lbound;lower} insts, cstrs),
{enforce; alg; lbound; lower}
type constraints_map = (Univ.constraint_type * Univ.LMap.key) list Univ.LMap.t
let _pr_constraints_map (cmap:constraints_map) =
let open Pp in
LMap.fold (fun l cstrs acc ->
Level.pr l ++ str " => " ++
prlist_with_sep spc (fun (d,r) -> pr_constraint_type d ++ Level.pr r) cstrs ++
fnl () ++ acc)
cmap (mt ())
let remove_alg l (ctx, us, algs, insts, cstrs) =
(ctx, us, LSet.remove l algs, insts, cstrs)
let not_lower lower (d,l) =
(* We're checking if (d,l) is already implied by the lower
constraints on some level u. If it represents l < u (d is Lt
or d is Le and i > 0, the i < 0 case is impossible due to
invariants of Univ), and the lower constraints only have l <=
u then it is not implied. *)
Univ.Universe.exists
(fun (l,i) ->
let d =
if i == 0 then d
else match d with
| Le -> Lt
| d -> d
in
try let d' = LMap.find l lower in
(* If d is stronger than the already implied lower
* constraints we must keep it. *)
compare_constraint_type d d' > 0
with Not_found ->
(** No constraint existing on l *) true) l
exception UpperBoundedAlg
(** [enforce_uppers upper lbound cstrs] interprets [upper] as upper
constraints to [lbound], adding them to [cstrs].
@raise UpperBoundedAlg if any [upper] constraints are strict and
[lbound] algebraic. *)
let enforce_uppers upper lbound cstrs =
List.fold_left (fun cstrs (d, r) ->
if d == Univ.Le then
enforce_leq lbound (Universe.make r) cstrs
else
match Universe.level lbound with
| Some lev -> Constraint.add (lev, d, r) cstrs
| None -> raise UpperBoundedAlg)
cstrs upper
let minimize_univ_variables ctx us algs left right cstrs =
let left, lbounds =
Univ.LMap.fold (fun r lower (left, lbounds as acc) ->
if Univ.LMap.mem r us || not (Univ.LSet.mem r ctx) then acc
else (* Fixed universe, just compute its glb for sharing *)
let lbounds =
match compute_lbound (List.map (fun (d,l) -> d, Universe.make l) lower) with
| None -> lbounds
| Some lbound -> LMap.add r {enforce=true; alg=false; lbound; lower=lower_of_list lower}
lbounds
in (Univ.LMap.remove r left, lbounds))
left (left, Univ.LMap.empty)
in
let rec instance (ctx, us, algs, insts, cstrs as acc) u =
let acc, left, lower =
match LMap.find u left with
| exception Not_found -> acc, [], LMap.empty
| l ->
let acc, left, newlow, lower =
List.fold_left
(fun (acc, left, newlow, lower') (d, l) ->
let acc', {enforce=enf;alg;lbound=l';lower} = aux acc l in
let l' =
if enf then Universe.make l
else l'
in acc', (d, l') :: left,
lower_add l d newlow, lower_union lower lower')
(acc, [], LMap.empty, LMap.empty) l
in
let left = CList.uniquize (List.filter (not_lower lower) left) in
(acc, left, LMap.union newlow lower)
in
let instantiate_lbound lbound =
let alg = LSet.mem u algs in
if alg then
(* u is algebraic: we instantiate it with its lower bound, if any,
or enforce the constraints if it is bounded from the top. *)
let lower = LSet.fold LMap.remove (Universe.levels lbound) lower in
instantiate_with_lbound u lbound lower ~alg:true ~enforce:false acc
else (* u is non algebraic *)
match Universe.level lbound with
| Some l -> (* The lowerbound is directly a level *)
(* u is not algebraic but has no upper bounds,
we instantiate it with its lower bound if it is a
different level, otherwise we keep it. *)
let lower = LMap.remove l lower in
if not (Level.equal l u) then
(* Should check that u does not
have upper constraints that are not already in right *)
let acc = remove_alg l acc in
instantiate_with_lbound u lbound lower ~alg:false ~enforce:false acc
else acc, {enforce=true; alg=false; lbound; lower}
| None ->
begin match find_inst insts lbound with
| can, lower ->
(* Another universe represents the same lower bound,
we can share them with no harm. *)
let lower = LMap.remove can lower in
instantiate_with_lbound u (Universe.make can) lower ~alg:false ~enforce:false acc
| exception Not_found ->
(* We set u as the canonical universe representing lbound *)
instantiate_with_lbound u lbound lower ~alg:false ~enforce:true acc
end
in
let enforce_uppers ((ctx,us,algs,insts,cstrs), b as acc) =
match LMap.find u right with
| exception Not_found -> acc
| upper ->
let upper = List.filter (fun (d, r) -> not (LMap.mem r us)) upper in
let cstrs = enforce_uppers upper b.lbound cstrs in
(ctx, us, algs, insts, cstrs), b
in
if not (LSet.mem u ctx)
then enforce_uppers (acc, {enforce=true; alg=false; lbound=Universe.make u; lower})
else
let lbound = compute_lbound left in
match lbound with
| None -> (* Nothing to do *)
enforce_uppers (acc, {enforce=true;alg=false;lbound=Universe.make u; lower})
| Some lbound ->
try enforce_uppers (instantiate_lbound lbound)
with UpperBoundedAlg ->
enforce_uppers (acc, {enforce=true; alg=false; lbound=Universe.make u; lower})
and aux (ctx, us, algs, seen, cstrs as acc) u =
try acc, LMap.find u seen
with Not_found -> instance acc u
in
LMap.fold (fun u v (ctx, us, algs, seen, cstrs as acc) ->
if v == None then fst (aux acc u)
else LSet.remove u ctx, us, LSet.remove u algs, seen, cstrs)
us (ctx, us, algs, lbounds, cstrs)
module UPairs = OrderedType.UnorderedPair(Univ.Level)
module UPairSet = Set.Make (UPairs)
let normalize_context_set g ctx us algs weak =
let (ctx, csts) = ContextSet.levels ctx, ContextSet.constraints ctx in
(** Keep the Prop/Set <= i constraints separate for minimization *)
let smallles, csts =
Constraint.partition (fun (l,d,r) -> d == Le && Level.is_small l) csts
in
let smallles = if is_set_minimization ()
then Constraint.filter (fun (l,d,r) -> LSet.mem r ctx) smallles
else Constraint.empty
in
let csts, partition =
(* We first put constraints in a normal-form: all self-loops are collapsed
to equalities. *)
let g = LSet.fold (fun v g -> UGraph.add_universe v false g)
ctx UGraph.initial_universes
in
let add_soft u g =
if not (Level.is_small u || LSet.mem u ctx)
then try UGraph.add_universe u false g with UGraph.AlreadyDeclared -> g
else g
in
let g = Constraint.fold
(fun (l, d, r) g -> add_soft r (add_soft l g))
csts g
in
let g = UGraph.merge_constraints csts g in
UGraph.constraints_of_universes g
in
(* We ignore the trivial Prop/Set <= i constraints. *)
let noneqs =
Constraint.filter
(fun (l,d,r) -> not ((d == Le && Level.is_small l) ||
(Level.is_prop l && d == Lt && Level.is_set r)))
csts
in
let noneqs = Constraint.union noneqs smallles in
let flex x = LMap.mem x us in
let ctx, us, eqs = List.fold_left (fun (ctx, us, cstrs) s ->
let canon, (global, rigid, flexible) = choose_canonical ctx flex algs s in
(* Add equalities for globals which can't be merged anymore. *)
let cstrs = LSet.fold (fun g cst ->
Constraint.add (canon, Eq, g) cst) global
cstrs
in
(* Also add equalities for rigid variables *)
let cstrs = LSet.fold (fun g cst ->
Constraint.add (canon, Eq, g) cst) rigid
cstrs
in
let canonu = Some (Universe.make canon) in
let us = LSet.fold (fun f -> LMap.add f canonu) flexible us in
(LSet.diff ctx flexible, us, cstrs))
(ctx, us, Constraint.empty) partition
in
(* Process weak constraints: when one side is flexible and the 2
universes are unrelated unify them. *)
let ctx, us, g = UPairSet.fold (fun (u,v) (ctx, us, g as acc) ->
let norm = level_subst_of (normalize_univ_variable_opt_subst us) in
let u = norm u and v = norm v in
let set_to a b =
(LSet.remove a ctx,
LMap.add a (Some (Universe.make b)) us,
UGraph.enforce_constraint (a,Eq,b) g)
in
if UGraph.check_constraint g (u,Le,v) || UGraph.check_constraint g (v,Le,u)
then acc
else
if LMap.mem u us
then set_to u v
else if LMap.mem v us
then set_to v u
else acc)
weak (ctx, us, g) in
(* Noneqs is now in canonical form w.r.t. equality constraints,
and contains only inequality constraints. *)
let noneqs =
let norm = level_subst_of (normalize_univ_variable_opt_subst us) in
Constraint.fold (fun (u,d,v) noneqs ->
let u = norm u and v = norm v in
if d != Lt && Level.equal u v then noneqs
else Constraint.add (u,d,v) noneqs)
noneqs Constraint.empty
in
(* Compute the left and right set of flexible variables, constraints
mentionning other variables remain in noneqs. *)
let noneqs, ucstrsl, ucstrsr =
Constraint.fold (fun (l,d,r as cstr) (noneq, ucstrsl, ucstrsr) ->
let lus = LMap.mem l us and rus = LMap.mem r us in
let ucstrsl' =
if lus then add_list_map l (d, r) ucstrsl
else ucstrsl
and ucstrsr' =
add_list_map r (d, l) ucstrsr
in
let noneqs =
if lus || rus then noneq
else Constraint.add cstr noneq
in (noneqs, ucstrsl', ucstrsr'))
noneqs (Constraint.empty, LMap.empty, LMap.empty)
in
(* Now we construct the instantiation of each variable. *)
let ctx', us, algs, inst, noneqs =
minimize_univ_variables ctx us algs ucstrsr ucstrsl noneqs
in
let us = normalize_opt_subst us in
(us, algs), (ctx', Constraint.union noneqs eqs)
(* let normalize_conkey = CProfile.declare_profile "normalize_context_set" *)
(* let normalize_context_set a b c = CProfile.profile3 normalize_conkey normalize_context_set a b c *)
|