1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
module StringOrd = struct type t = string let compare = String.compare end
module UNameMap = struct
include Map.Make(StringOrd)
let union s t =
if s == t then s
else
merge (fun k l r ->
match l, r with
| Some _, _ -> l
| _, _ -> r) s t
end
type uinfo = {
uname : string option;
uloc : Loc.t option;
}
(* 2nd part used to check consistency on the fly. *)
type t =
{ uctx_names : Univ.Level.t UNameMap.t * uinfo Univ.LMap.t;
uctx_local : Univ.universe_context_set; (** The local context of variables *)
uctx_univ_variables : Universes.universe_opt_subst;
(** The local universes that are unification variables *)
uctx_univ_algebraic : Univ.universe_set;
(** The subset of unification variables that can be instantiated with
algebraic universes as they appear in inferred types only. *)
uctx_universes : UGraph.t; (** The current graph extended with the local constraints *)
uctx_initial_universes : UGraph.t; (** The graph at the creation of the evar_map *)
}
let empty =
{ uctx_names = UNameMap.empty, Univ.LMap.empty;
uctx_local = Univ.ContextSet.empty;
uctx_univ_variables = Univ.LMap.empty;
uctx_univ_algebraic = Univ.LSet.empty;
uctx_universes = UGraph.initial_universes;
uctx_initial_universes = UGraph.initial_universes; }
let make u =
{ empty with
uctx_universes = u; uctx_initial_universes = u}
let is_empty ctx =
Univ.ContextSet.is_empty ctx.uctx_local &&
Univ.LMap.is_empty ctx.uctx_univ_variables
let union ctx ctx' =
if ctx == ctx' then ctx
else if is_empty ctx' then ctx
else
let local = Univ.ContextSet.union ctx.uctx_local ctx'.uctx_local in
let names = UNameMap.union (fst ctx.uctx_names) (fst ctx'.uctx_names) in
let newus = Univ.LSet.diff (Univ.ContextSet.levels ctx'.uctx_local)
(Univ.ContextSet.levels ctx.uctx_local) in
let newus = Univ.LSet.diff newus (Univ.LMap.domain ctx.uctx_univ_variables) in
let declarenew g =
Univ.LSet.fold (fun u g -> UGraph.add_universe u false g) newus g
in
let names_rev = Univ.LMap.union (snd ctx.uctx_names) (snd ctx'.uctx_names) in
{ uctx_names = (names, names_rev);
uctx_local = local;
uctx_univ_variables =
Univ.LMap.subst_union ctx.uctx_univ_variables ctx'.uctx_univ_variables;
uctx_univ_algebraic =
Univ.LSet.union ctx.uctx_univ_algebraic ctx'.uctx_univ_algebraic;
uctx_initial_universes = declarenew ctx.uctx_initial_universes;
uctx_universes =
if local == ctx.uctx_local then ctx.uctx_universes
else
let cstrsr = Univ.ContextSet.constraints ctx'.uctx_local in
UGraph.merge_constraints cstrsr (declarenew ctx.uctx_universes) }
let context_set ctx = ctx.uctx_local
let constraints ctx = snd ctx.uctx_local
let context ctx = Univ.ContextSet.to_context ctx.uctx_local
let of_context_set ctx = { empty with uctx_local = ctx }
let subst ctx = ctx.uctx_univ_variables
let ugraph ctx = ctx.uctx_universes
let algebraics ctx = ctx.uctx_univ_algebraic
let constrain_variables diff ctx =
Univ.LSet.fold
(fun l cstrs ->
try
match Univ.LMap.find l ctx.uctx_univ_variables with
| Some u -> Univ.Constraint.add (l, Univ.Eq, Option.get (Univ.Universe.level u)) cstrs
| None -> cstrs
with Not_found | Option.IsNone -> cstrs)
diff Univ.Constraint.empty
let add_uctx_names ?loc s l (names, names_rev) =
(UNameMap.add s l names, Univ.LMap.add l { uname = Some s; uloc = loc } names_rev)
let add_uctx_loc l loc (names, names_rev) =
match loc with
| None -> (names, names_rev)
| Some _ -> (names, Univ.LMap.add l { uname = None; uloc = loc } names_rev)
let of_binders b =
let ctx = empty in
let names =
List.fold_left (fun acc (id, l) -> add_uctx_names (Id.to_string id) l acc)
ctx.uctx_names b
in { ctx with uctx_names = names }
let instantiate_variable l b v =
try v := Univ.LMap.update l (Some b) !v
with Not_found -> assert false
exception UniversesDiffer
let process_universe_constraints ctx cstrs =
let univs = ctx.uctx_universes in
let vars = ref ctx.uctx_univ_variables in
let normalize = Universes.normalize_universe_opt_subst vars in
let rec unify_universes fo l d r local =
let l = normalize l and r = normalize r in
if Univ.Universe.equal l r then local
else
let varinfo x =
match Univ.Universe.level x with
| None -> Inl x
| Some l -> Inr (l, Univ.LMap.mem l !vars, Univ.LSet.mem l ctx.uctx_univ_algebraic)
in
if d == Universes.ULe then
if UGraph.check_leq univs l r then
(** Keep Prop/Set <= var around if var might be instantiated by prop or set
later. *)
if Univ.Universe.is_level l then
match Univ.Universe.level r with
| Some r ->
Univ.Constraint.add (Option.get (Univ.Universe.level l),Univ.Le,r) local
| _ -> local
else local
else
match Univ.Universe.level r with
| None -> error ("Algebraic universe on the right")
| Some rl ->
if Univ.Level.is_small rl then
let levels = Univ.Universe.levels l in
Univ.LSet.fold (fun l local ->
if Univ.Level.is_small l || Univ.LMap.mem l !vars then
unify_universes fo (Univ.Universe.make l) Universes.UEq r local
else raise (Univ.UniverseInconsistency (Univ.Le, Univ.Universe.make l, r, None)))
levels local
else
Univ.enforce_leq l r local
else if d == Universes.ULub then
match varinfo l, varinfo r with
| (Inr (l, true, _), Inr (r, _, _))
| (Inr (r, _, _), Inr (l, true, _)) ->
instantiate_variable l (Univ.Universe.make r) vars;
Univ.enforce_eq_level l r local
| Inr (_, _, _), Inr (_, _, _) ->
unify_universes true l Universes.UEq r local
| _, _ -> assert false
else (* d = Universes.UEq *)
match varinfo l, varinfo r with
| Inr (l', lloc, _), Inr (r', rloc, _) ->
let () =
if lloc then
instantiate_variable l' r vars
else if rloc then
instantiate_variable r' l vars
else if not (UGraph.check_eq univs l r) then
(* Two rigid/global levels, none of them being local,
one of them being Prop/Set, disallow *)
if Univ.Level.is_small l' || Univ.Level.is_small r' then
raise (Univ.UniverseInconsistency (Univ.Eq, l, r, None))
else
if fo then
raise UniversesDiffer
in
Univ.enforce_eq_level l' r' local
| Inr (l, loc, alg), Inl r
| Inl r, Inr (l, loc, alg) ->
let inst = Univ.univ_level_rem l r r in
if alg then (instantiate_variable l inst vars; local)
else
let lu = Univ.Universe.make l in
if Univ.univ_level_mem l r then
Univ.enforce_leq inst lu local
else raise (Univ.UniverseInconsistency (Univ.Eq, lu, r, None))
| _, _ (* One of the two is algebraic or global *) ->
if UGraph.check_eq univs l r then local
else raise (Univ.UniverseInconsistency (Univ.Eq, l, r, None))
in
let local =
Universes.Constraints.fold (fun (l,d,r) local -> unify_universes false l d r local)
cstrs Univ.Constraint.empty
in
!vars, local
let add_constraints ctx cstrs =
let univs, local = ctx.uctx_local in
let cstrs' = Univ.Constraint.fold (fun (l,d,r) acc ->
let l = Univ.Universe.make l and r = Univ.Universe.make r in
let cstr' =
if d == Univ.Lt then (Univ.Universe.super l, Universes.ULe, r)
else (l, (if d == Univ.Le then Universes.ULe else Universes.UEq), r)
in Universes.Constraints.add cstr' acc)
cstrs Universes.Constraints.empty
in
let vars, local' = process_universe_constraints ctx cstrs' in
{ ctx with uctx_local = (univs, Univ.Constraint.union local local');
uctx_univ_variables = vars;
uctx_universes = UGraph.merge_constraints local' ctx.uctx_universes }
(* let addconstrkey = Profile.declare_profile "add_constraints_context";; *)
(* let add_constraints_context = Profile.profile2 addconstrkey add_constraints_context;; *)
let add_universe_constraints ctx cstrs =
let univs, local = ctx.uctx_local in
let vars, local' = process_universe_constraints ctx cstrs in
{ ctx with uctx_local = (univs, Univ.Constraint.union local local');
uctx_univ_variables = vars;
uctx_universes = UGraph.merge_constraints local' ctx.uctx_universes }
let pr_uctx_level uctx =
let map, map_rev = uctx.uctx_names in
fun l ->
try str (Option.get (Univ.LMap.find l map_rev).uname)
with Not_found | Option.IsNone ->
Universes.pr_with_global_universes l
let universe_context ?names ctx =
match names with
| None -> [], Univ.ContextSet.to_context ctx.uctx_local
| Some pl ->
let levels = Univ.ContextSet.levels ctx.uctx_local in
let newinst, map, left =
List.fold_right
(fun (loc,id) (newinst, map, acc) ->
let l =
try UNameMap.find (Id.to_string id) (fst ctx.uctx_names)
with Not_found ->
user_err ~loc ~hdr:"universe_context"
(str"Universe " ++ Nameops.pr_id id ++ str" is not bound anymore.")
in (l :: newinst, (id, l) :: map, Univ.LSet.remove l acc))
pl ([], [], levels)
in
if not (Univ.LSet.is_empty left) then
let n = Univ.LSet.cardinal left in
let loc =
try
let info =
Univ.LMap.find (Univ.LSet.choose left) (snd ctx.uctx_names) in
Option.default Loc.ghost info.uloc
with Not_found -> Loc.ghost
in
user_err ~loc ~hdr:"universe_context"
((str(CString.plural n "Universe") ++ spc () ++
Univ.LSet.pr (pr_uctx_level ctx) left ++
spc () ++ str (CString.conjugate_verb_to_be n) ++
str" unbound."))
else
let inst = Univ.Instance.of_array (Array.of_list newinst) in
let ctx = Univ.UContext.make (inst,
Univ.ContextSet.constraints ctx.uctx_local)
in map, ctx
let restrict ctx vars =
let uctx' = Universes.restrict_universe_context ctx.uctx_local vars in
{ ctx with uctx_local = uctx' }
type rigid =
| UnivRigid
| UnivFlexible of bool (** Is substitution by an algebraic ok? *)
let univ_rigid = UnivRigid
let univ_flexible = UnivFlexible false
let univ_flexible_alg = UnivFlexible true
let merge ?loc sideff rigid uctx ctx' =
let open Univ in
let levels = ContextSet.levels ctx' in
let uctx = if sideff then uctx else
match rigid with
| UnivRigid -> uctx
| UnivFlexible b ->
let fold u accu =
if LMap.mem u accu then accu
else LMap.add u None accu
in
let uvars' = LSet.fold fold levels uctx.uctx_univ_variables in
if b then
{ uctx with uctx_univ_variables = uvars';
uctx_univ_algebraic = LSet.union uctx.uctx_univ_algebraic levels }
else { uctx with uctx_univ_variables = uvars' }
in
let uctx_local =
if sideff then uctx.uctx_local
else ContextSet.append ctx' uctx.uctx_local
in
let declare g =
LSet.fold (fun u g ->
try UGraph.add_universe u false g
with UGraph.AlreadyDeclared when sideff -> g)
levels g
in
let uctx_names =
let fold u accu =
let modify _ info = match info.uloc with
| None -> { info with uloc = loc }
| Some _ -> info
in
try LMap.modify u modify accu
with Not_found -> LMap.add u { uname = None; uloc = loc } accu
in
(fst uctx.uctx_names, LSet.fold fold levels (snd uctx.uctx_names))
in
let initial = declare uctx.uctx_initial_universes in
let univs = declare uctx.uctx_universes in
let uctx_universes = UGraph.merge_constraints (ContextSet.constraints ctx') univs in
{ uctx with uctx_names; uctx_local; uctx_universes;
uctx_initial_universes = initial }
let merge_subst uctx s =
{ uctx with uctx_univ_variables = Univ.LMap.subst_union uctx.uctx_univ_variables s }
let emit_side_effects eff u =
let uctxs = Safe_typing.universes_of_private eff in
List.fold_left (merge true univ_rigid) u uctxs
let new_univ_variable ?loc rigid name
({ uctx_local = ctx; uctx_univ_variables = uvars; uctx_univ_algebraic = avars} as uctx) =
let u = Universes.new_univ_level (Global.current_dirpath ()) in
let ctx' = Univ.ContextSet.add_universe u ctx in
let uctx', pred =
match rigid with
| UnivRigid -> uctx, true
| UnivFlexible b ->
let uvars' = Univ.LMap.add u None uvars in
if b then {uctx with uctx_univ_variables = uvars';
uctx_univ_algebraic = Univ.LSet.add u avars}, false
else {uctx with uctx_univ_variables = uvars'}, false
in
let names =
match name with
| Some n -> add_uctx_names ?loc n u uctx.uctx_names
| None -> add_uctx_loc u loc uctx.uctx_names
in
let initial =
UGraph.add_universe u false uctx.uctx_initial_universes
in
let uctx' =
{uctx' with uctx_names = names; uctx_local = ctx';
uctx_universes = UGraph.add_universe u false uctx.uctx_universes;
uctx_initial_universes = initial}
in uctx', u
let add_global_univ uctx u =
let initial =
UGraph.add_universe u true uctx.uctx_initial_universes
in
let univs =
UGraph.add_universe u true uctx.uctx_universes
in
{ uctx with uctx_local = Univ.ContextSet.add_universe u uctx.uctx_local;
uctx_initial_universes = initial;
uctx_universes = univs }
let make_flexible_variable ctx b u =
let {uctx_univ_variables = uvars; uctx_univ_algebraic = avars} = ctx in
let uvars' = Univ.LMap.add u None uvars in
let avars' =
if b then
let uu = Univ.Universe.make u in
let substu_not_alg u' v =
Option.cata (fun vu -> Univ.Universe.equal uu vu && not (Univ.LSet.mem u' avars)) false v
in
if not (Univ.LMap.exists substu_not_alg uvars)
then Univ.LSet.add u avars else avars
else avars
in
{ctx with uctx_univ_variables = uvars';
uctx_univ_algebraic = avars'}
let is_sort_variable uctx s =
match s with
| Sorts.Type u ->
(match Univ.universe_level u with
| Some l as x ->
if Univ.LSet.mem l (Univ.ContextSet.levels uctx.uctx_local) then x
else None
| None -> None)
| _ -> None
let subst_univs_context_with_def def usubst (ctx, cst) =
(Univ.LSet.diff ctx def, Univ.subst_univs_constraints usubst cst)
let normalize_variables uctx =
let normalized_variables, undef, def, subst =
Universes.normalize_univ_variables uctx.uctx_univ_variables
in
let ctx_local = subst_univs_context_with_def def (Univ.make_subst subst) uctx.uctx_local in
let ctx_local', univs = Universes.refresh_constraints uctx.uctx_initial_universes ctx_local in
subst, { uctx with uctx_local = ctx_local';
uctx_univ_variables = normalized_variables;
uctx_universes = univs }
let abstract_undefined_variables uctx =
let vars' =
Univ.LMap.fold (fun u v acc ->
if v == None then Univ.LSet.remove u acc
else acc)
uctx.uctx_univ_variables uctx.uctx_univ_algebraic
in { uctx with uctx_local = Univ.ContextSet.empty;
uctx_univ_algebraic = vars' }
let fix_undefined_variables uctx =
let algs', vars' =
Univ.LMap.fold (fun u v (algs, vars as acc) ->
if v == None then (Univ.LSet.remove u algs, Univ.LMap.remove u vars)
else acc)
uctx.uctx_univ_variables
(uctx.uctx_univ_algebraic, uctx.uctx_univ_variables)
in
{ uctx with uctx_univ_variables = vars';
uctx_univ_algebraic = algs' }
let refresh_undefined_univ_variables uctx =
let subst, ctx' = Universes.fresh_universe_context_set_instance uctx.uctx_local in
let alg = Univ.LSet.fold (fun u acc -> Univ.LSet.add (Univ.subst_univs_level_level subst u) acc)
uctx.uctx_univ_algebraic Univ.LSet.empty
in
let vars =
Univ.LMap.fold
(fun u v acc ->
Univ.LMap.add (Univ.subst_univs_level_level subst u)
(Option.map (Univ.subst_univs_level_universe subst) v) acc)
uctx.uctx_univ_variables Univ.LMap.empty
in
let declare g = Univ.LSet.fold (fun u g -> UGraph.add_universe u false g)
(Univ.ContextSet.levels ctx') g in
let initial = declare uctx.uctx_initial_universes in
let univs = declare UGraph.initial_universes in
let uctx' = {uctx_names = uctx.uctx_names;
uctx_local = ctx';
uctx_univ_variables = vars; uctx_univ_algebraic = alg;
uctx_universes = univs;
uctx_initial_universes = initial } in
uctx', subst
let normalize uctx =
let ((vars',algs'), us') =
Universes.normalize_context_set uctx.uctx_local uctx.uctx_univ_variables
uctx.uctx_univ_algebraic
in
if Univ.ContextSet.equal us' uctx.uctx_local then uctx
else
let us', universes =
Universes.refresh_constraints uctx.uctx_initial_universes us'
in
{ uctx_names = uctx.uctx_names;
uctx_local = us';
uctx_univ_variables = vars';
uctx_univ_algebraic = algs';
uctx_universes = universes;
uctx_initial_universes = uctx.uctx_initial_universes }
let universe_of_name uctx s =
UNameMap.find s (fst uctx.uctx_names)
let add_universe_name uctx s l =
let names' = add_uctx_names s l uctx.uctx_names in
{ uctx with uctx_names = names' }
let update_sigma_env uctx env =
let univs = Environ.universes env in
let eunivs =
{ uctx with uctx_initial_universes = univs;
uctx_universes = univs }
in
merge true univ_rigid eunivs eunivs.uctx_local
|