1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Nameops
open Term
open Vars
open Environ
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
module CompactedDecl = Context.Compacted.Declaration
(* Sorts and sort family *)
let print_sort = function
| Prop Pos -> (str "Set")
| Prop Null -> (str "Prop")
| Type u -> (str "Type(" ++ Univ.Universe.pr u ++ str ")")
let pr_sort_family = function
| InSet -> (str "Set")
| InProp -> (str "Prop")
| InType -> (str "Type")
let pr_con sp = str(string_of_con sp)
let pr_fix pr_constr ((t,i),(lna,tl,bl)) =
let fixl = Array.mapi (fun i na -> (na,t.(i),tl.(i),bl.(i))) lna in
hov 1
(str"fix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,i,ty,bd) ->
Name.print na ++ str"/" ++ int i ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
let pr_puniverses p u =
if Univ.Instance.is_empty u then p
else p ++ str"(*" ++ Univ.Instance.pr Universes.pr_with_global_universes u ++ str"*)"
let rec pr_constr c = match kind_of_term c with
| Rel n -> str "#"++int n
| Meta n -> str "Meta(" ++ int n ++ str ")"
| Var id -> pr_id id
| Sort s -> print_sort s
| Cast (c,_, t) -> hov 1
(str"(" ++ pr_constr c ++ cut() ++
str":" ++ pr_constr t ++ str")")
| Prod (Name(id),t,c) -> hov 1
(str"forall " ++ pr_id id ++ str":" ++ pr_constr t ++ str"," ++
spc() ++ pr_constr c)
| Prod (Anonymous,t,c) -> hov 0
(str"(" ++ pr_constr t ++ str " ->" ++ spc() ++
pr_constr c ++ str")")
| Lambda (na,t,c) -> hov 1
(str"fun " ++ Name.print na ++ str":" ++
pr_constr t ++ str" =>" ++ spc() ++ pr_constr c)
| LetIn (na,b,t,c) -> hov 0
(str"let " ++ Name.print na ++ str":=" ++ pr_constr b ++
str":" ++ brk(1,2) ++ pr_constr t ++ cut() ++
pr_constr c)
| App (c,l) -> hov 1
(str"(" ++ pr_constr c ++ spc() ++
prlist_with_sep spc pr_constr (Array.to_list l) ++ str")")
| Evar (e,l) -> hov 1
(str"Evar#" ++ int (Evar.repr e) ++ str"{" ++
prlist_with_sep spc pr_constr (Array.to_list l) ++str"}")
| Const (c,u) -> str"Cst(" ++ pr_puniverses (pr_con c) u ++ str")"
| Ind ((sp,i),u) -> str"Ind(" ++ pr_puniverses (pr_mind sp ++ str"," ++ int i) u ++ str")"
| Construct (((sp,i),j),u) ->
str"Constr(" ++ pr_puniverses (pr_mind sp ++ str"," ++ int i ++ str"," ++ int j) u ++ str")"
| Proj (p,c) -> str"Proj(" ++ pr_con (Projection.constant p) ++ str"," ++ bool (Projection.unfolded p) ++ pr_constr c ++ str")"
| Case (ci,p,c,bl) -> v 0
(hv 0 (str"<"++pr_constr p++str">"++ cut() ++ str"Case " ++
pr_constr c ++ str"of") ++ cut() ++
prlist_with_sep (fun _ -> brk(1,2)) pr_constr (Array.to_list bl) ++
cut() ++ str"end")
| Fix f -> pr_fix pr_constr f
| CoFix(i,(lna,tl,bl)) ->
let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in
hov 1
(str"cofix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,ty,bd) ->
Name.print na ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
let term_printer = ref (fun _env _sigma c -> pr_constr (EConstr.Unsafe.to_constr c))
let print_constr_env env sigma t = !term_printer env sigma t
let print_constr t = !term_printer (Global.env()) Evd.empty t
let set_print_constr f = term_printer := f
module EvMap = Evar.Map
let pr_evar_suggested_name evk sigma =
let open Evd in
let base_id evk' evi =
match evar_ident evk' sigma with
| Some id -> id
| None -> match evi.evar_source with
| _,Evar_kinds.ImplicitArg (c,(n,Some id),b) -> id
| _,Evar_kinds.VarInstance id -> id
| _,Evar_kinds.QuestionMark (_,Name id) -> id
| _,Evar_kinds.GoalEvar -> Id.of_string "Goal"
| _ ->
let env = reset_with_named_context evi.evar_hyps (Global.env()) in
Namegen.id_of_name_using_hdchar env sigma (EConstr.of_constr evi.evar_concl) Anonymous
in
let names = EvMap.mapi base_id (undefined_map sigma) in
let id = EvMap.find evk names in
let fold evk' id' (seen, n) =
if seen then (seen, n)
else if Evar.equal evk evk' then (true, n)
else if Id.equal id id' then (seen, succ n)
else (seen, n)
in
let (_, n) = EvMap.fold fold names (false, 0) in
if n = 0 then id else Nameops.add_suffix id (string_of_int (pred n))
let pr_existential_key sigma evk =
let open Evd in
match evar_ident evk sigma with
| None ->
str "?" ++ pr_id (pr_evar_suggested_name evk sigma)
| Some id ->
str "?" ++ pr_id id
let pr_instance_status (sc,typ) =
let open Evd in
begin match sc with
| IsSubType -> str " [or a subtype of it]"
| IsSuperType -> str " [or a supertype of it]"
| Conv -> mt ()
end ++
begin match typ with
| CoerceToType -> str " [up to coercion]"
| TypeNotProcessed -> mt ()
| TypeProcessed -> str " [type is checked]"
end
let protect f x =
try f x
with e -> str "EXCEPTION: " ++ str (Printexc.to_string e)
let print_kconstr a =
protect (fun c -> print_constr (EConstr.of_constr c)) a
let pr_meta_map evd =
let open Evd in
let print_constr = print_kconstr in
let pr_name = function
Name id -> str"[" ++ pr_id id ++ str"]"
| _ -> mt() in
let pr_meta_binding = function
| (mv,Cltyp (na,b)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " : " ++
print_constr b.rebus ++ fnl ())
| (mv,Clval(na,(b,s),t)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " := " ++
print_constr b.rebus ++
str " : " ++ print_constr t.rebus ++
spc () ++ pr_instance_status s ++ fnl ())
in
prlist pr_meta_binding (meta_list evd)
let pr_decl (decl,ok) =
let open NamedDecl in
let print_constr = print_kconstr in
match decl with
| LocalAssum (id,_) -> if ok then pr_id id else (str "{" ++ pr_id id ++ str "}")
| LocalDef (id,c,_) -> str (if ok then "(" else "{") ++ pr_id id ++ str ":=" ++
print_constr c ++ str (if ok then ")" else "}")
let pr_evar_source = function
| Evar_kinds.NamedHole id -> pr_id id
| Evar_kinds.QuestionMark _ -> str "underscore"
| Evar_kinds.CasesType false -> str "pattern-matching return predicate"
| Evar_kinds.CasesType true ->
str "subterm of pattern-matching return predicate"
| Evar_kinds.BinderType (Name id) -> str "type of " ++ Nameops.pr_id id
| Evar_kinds.BinderType Anonymous -> str "type of anonymous binder"
| Evar_kinds.ImplicitArg (c,(n,ido),b) ->
let open Globnames in
let print_constr = print_kconstr in
let id = Option.get ido in
str "parameter " ++ pr_id id ++ spc () ++ str "of" ++
spc () ++ print_constr (printable_constr_of_global c)
| Evar_kinds.InternalHole -> str "internal placeholder"
| Evar_kinds.TomatchTypeParameter (ind,n) ->
let print_constr = print_kconstr in
pr_nth n ++ str " argument of type " ++ print_constr (mkInd ind)
| Evar_kinds.GoalEvar -> str "goal evar"
| Evar_kinds.ImpossibleCase -> str "type of impossible pattern-matching clause"
| Evar_kinds.MatchingVar _ -> str "matching variable"
| Evar_kinds.VarInstance id -> str "instance of " ++ pr_id id
| Evar_kinds.SubEvar evk ->
let open Evd in
str "subterm of " ++ str (string_of_existential evk)
let pr_evar_info evi =
let open Evd in
let print_constr = print_kconstr in
let phyps =
try
let decls = match Filter.repr (evar_filter evi) with
| None -> List.map (fun c -> (c, true)) (evar_context evi)
| Some filter -> List.combine (evar_context evi) filter
in
prlist_with_sep spc pr_decl (List.rev decls)
with Invalid_argument _ -> str "Ill-formed filtered context" in
let pty = print_constr evi.evar_concl in
let pb =
match evi.evar_body with
| Evar_empty -> mt ()
| Evar_defined c -> spc() ++ str"=> " ++ print_constr c
in
let candidates =
match evi.evar_body, evi.evar_candidates with
| Evar_empty, Some l ->
spc () ++ str "{" ++
prlist_with_sep (fun () -> str "|") print_constr l ++ str "}"
| _ ->
mt ()
in
let src = str "(" ++ pr_evar_source (snd evi.evar_source) ++ str ")" in
hov 2
(str"[" ++ phyps ++ spc () ++ str"|- " ++ pty ++ pb ++ str"]" ++
candidates ++ spc() ++ src)
let compute_evar_dependency_graph sigma =
let open Evd in
(* Compute the map binding ev to the evars whose body depends on ev *)
let fold evk evi acc =
let fold_ev evk' acc =
let tab =
try EvMap.find evk' acc
with Not_found -> Evar.Set.empty
in
EvMap.add evk' (Evar.Set.add evk tab) acc
in
match evar_body evi with
| Evar_empty -> acc
| Evar_defined c -> Evar.Set.fold fold_ev (evars_of_term c) acc
in
Evd.fold fold sigma EvMap.empty
let evar_dependency_closure n sigma =
let open Evd in
(** Create the DAG of depth [n] representing the recursive dependencies of
undefined evars. *)
let graph = compute_evar_dependency_graph sigma in
let rec aux n curr accu =
if Int.equal n 0 then Evar.Set.union curr accu
else
let fold evk accu =
try
let deps = EvMap.find evk graph in
Evar.Set.union deps accu
with Not_found -> accu
in
(** Consider only the newly added evars *)
let ncurr = Evar.Set.fold fold curr Evar.Set.empty in
(** Merge the others *)
let accu = Evar.Set.union curr accu in
aux (n - 1) ncurr accu
in
let undef = EvMap.domain (undefined_map sigma) in
aux n undef Evar.Set.empty
let evar_dependency_closure n sigma =
let open Evd in
let deps = evar_dependency_closure n sigma in
let map = EvMap.bind (fun ev -> find sigma ev) deps in
EvMap.bindings map
let has_no_evar sigma =
try let () = Evd.fold (fun _ _ () -> raise Exit) sigma () in true
with Exit -> false
let pr_evd_level evd = UState.pr_uctx_level (Evd.evar_universe_context evd)
let pr_evar_universe_context ctx =
let open UState in
let open Evd in
let prl = pr_uctx_level ctx in
if UState.is_empty ctx then mt ()
else
(str"UNIVERSES:"++brk(0,1)++
h 0 (Univ.pr_universe_context_set prl (evar_universe_context_set ctx)) ++ fnl () ++
str"ALGEBRAIC UNIVERSES:"++brk(0,1)++
h 0 (Univ.LSet.pr prl (UState.algebraics ctx)) ++ fnl() ++
str"UNDEFINED UNIVERSES:"++brk(0,1)++
h 0 (Universes.pr_universe_opt_subst (UState.subst ctx)) ++ fnl())
let print_env_short env =
let print_constr = print_kconstr in
let pr_rel_decl = function
| RelDecl.LocalAssum (n,_) -> Name.print n
| RelDecl.LocalDef (n,b,_) -> str "(" ++ Name.print n ++ str " := " ++ print_constr b ++ str ")"
in
let pr_named_decl = NamedDecl.to_rel_decl %> pr_rel_decl in
let nc = List.rev (named_context env) in
let rc = List.rev (rel_context env) in
str "[" ++ pr_sequence pr_named_decl nc ++ str "]" ++ spc () ++
str "[" ++ pr_sequence pr_rel_decl rc ++ str "]"
let pr_evar_constraints sigma pbs =
let pr_evconstr (pbty, env, t1, t2) =
let env =
(** We currently allow evar instances to refer to anonymous de
Bruijn indices, so we protect the error printing code in this
case by giving names to every de Bruijn variable in the
rel_context of the conversion problem. MS: we should rather
stop depending on anonymous variables, they can be used to
indicate independency. Also, this depends on a strategy for
naming/renaming. *)
Namegen.make_all_name_different env sigma
in
print_env_short env ++ spc () ++ str "|-" ++ spc () ++
print_constr_env env sigma (EConstr.of_constr t1) ++ spc () ++
str (match pbty with
| Reduction.CONV -> "=="
| Reduction.CUMUL -> "<=") ++
spc () ++ print_constr_env env Evd.empty (EConstr.of_constr t2)
in
prlist_with_sep fnl pr_evconstr pbs
let pr_evar_map_gen with_univs pr_evars sigma =
let uvs = Evd.evar_universe_context sigma in
let (_, conv_pbs) = Evd.extract_all_conv_pbs sigma in
let evs = if has_no_evar sigma then mt () else pr_evars sigma ++ fnl ()
and svs = if with_univs then pr_evar_universe_context uvs else mt ()
and cstrs =
if List.is_empty conv_pbs then mt ()
else
str "CONSTRAINTS:" ++ brk (0, 1) ++
pr_evar_constraints sigma conv_pbs ++ fnl ()
and metas =
if List.is_empty (Evd.meta_list sigma) then mt ()
else
str "METAS:" ++ brk (0, 1) ++ pr_meta_map sigma
in
evs ++ svs ++ cstrs ++ metas
let pr_evar_list sigma l =
let open Evd in
let pr (ev, evi) =
h 0 (str (string_of_existential ev) ++
str "==" ++ pr_evar_info evi ++
(if evi.evar_body == Evar_empty
then str " {" ++ pr_existential_key sigma ev ++ str "}"
else mt ()))
in
h 0 (prlist_with_sep fnl pr l)
let pr_evar_by_depth depth sigma = match depth with
| None ->
(* Print all evars *)
let to_list d =
let open Evd in
(* Workaround for change in Map.fold behavior in ocaml 3.08.4 *)
let l = ref [] in
let fold_def evk evi () = match evi.evar_body with
| Evar_defined _ -> l := (evk, evi) :: !l
| Evar_empty -> ()
in
let fold_undef evk evi () = match evi.evar_body with
| Evar_empty -> l := (evk, evi) :: !l
| Evar_defined _ -> ()
in
Evd.fold fold_def d ();
Evd.fold fold_undef d ();
!l
in
str"EVARS:"++brk(0,1)++pr_evar_list sigma (to_list sigma)++fnl()
| Some n ->
(* Print all evars *)
str"UNDEFINED EVARS:"++
(if Int.equal n 0 then mt() else str" (+level "++int n++str" closure):")++
brk(0,1)++
pr_evar_list sigma (evar_dependency_closure n sigma)++fnl()
let pr_evar_by_filter filter sigma =
let open Evd in
let elts = Evd.fold (fun evk evi accu -> (evk, evi) :: accu) sigma [] in
let elts = List.rev elts in
let is_def (_, evi) = match evi.evar_body with
| Evar_defined _ -> true
| Evar_empty -> false
in
let (defined, undefined) = List.partition is_def elts in
let filter (evk, evi) = filter evk evi in
let defined = List.filter filter defined in
let undefined = List.filter filter undefined in
let prdef =
if List.is_empty defined then mt ()
else str "DEFINED EVARS:" ++ brk (0, 1) ++
pr_evar_list sigma defined
in
let prundef =
if List.is_empty undefined then mt ()
else str "UNDEFINED EVARS:" ++ brk (0, 1) ++
pr_evar_list sigma undefined
in
prdef ++ prundef
let pr_evar_map ?(with_univs=true) depth sigma =
pr_evar_map_gen with_univs (fun sigma -> pr_evar_by_depth depth sigma) sigma
let pr_evar_map_filter ?(with_univs=true) filter sigma =
pr_evar_map_gen with_univs (fun sigma -> pr_evar_by_filter filter sigma) sigma
let pr_metaset metas =
str "[" ++ pr_sequence pr_meta (Evd.Metaset.elements metas) ++ str "]"
let pr_var_decl env decl =
let open NamedDecl in
let pbody = match decl with
| LocalAssum _ -> mt ()
| LocalDef (_,c,_) ->
(* Force evaluation *)
let c = EConstr.of_constr c in
let pb = print_constr_env env Evd.empty c in
(str" := " ++ pb ++ cut () ) in
let pt = print_constr_env env Evd.empty (EConstr.of_constr (get_type decl)) in
let ptyp = (str" : " ++ pt) in
(pr_id (get_id decl) ++ hov 0 (pbody ++ ptyp))
let pr_rel_decl env decl =
let open RelDecl in
let pbody = match decl with
| LocalAssum _ -> mt ()
| LocalDef (_,c,_) ->
(* Force evaluation *)
let c = EConstr.of_constr c in
let pb = print_constr_env env Evd.empty c in
(str":=" ++ spc () ++ pb ++ spc ()) in
let ptyp = print_constr_env env Evd.empty (EConstr.of_constr (get_type decl)) in
match get_name decl with
| Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
| Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
let print_named_context env =
hv 0 (fold_named_context
(fun env d pps ->
pps ++ ws 2 ++ pr_var_decl env d)
env ~init:(mt ()))
let print_rel_context env =
hv 0 (fold_rel_context
(fun env d pps -> pps ++ ws 2 ++ pr_rel_decl env d)
env ~init:(mt ()))
let print_env env =
let sign_env =
fold_named_context
(fun env d pps ->
let pidt = pr_var_decl env d in
(pps ++ fnl () ++ pidt))
env ~init:(mt ())
in
let db_env =
fold_rel_context
(fun env d pps ->
let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat))
env ~init:(mt ())
in
(sign_env ++ db_env)
(* [Rel (n+m);...;Rel(n+1)] *)
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_list n m =
let open EConstr in
let rec reln l p =
if p>m then l else reln (mkRel(n+p)::l) (p+1)
in
reln [] 1
let push_rel_assum (x,t) env =
let open RelDecl in
let open EConstr in
push_rel (LocalAssum (x,t)) env
let push_rels_assum assums =
let open RelDecl in
push_rel_context (List.map (fun (x,t) -> LocalAssum (x,t)) assums)
let push_named_rec_types (lna,typarray,_) env =
let open NamedDecl in
let ctxt =
Array.map2_i
(fun i na t ->
match na with
| Name id -> LocalAssum (id, lift i t)
| Anonymous -> anomaly (Pp.str "Fix declarations must be named."))
lna typarray in
Array.fold_left
(fun e assum -> push_named assum e) env ctxt
let lookup_rel_id id sign =
let open RelDecl in
let rec lookrec n = function
| [] ->
raise Not_found
| (LocalAssum (Anonymous, _) | LocalDef (Anonymous,_,_)) :: l ->
lookrec (n + 1) l
| LocalAssum (Name id', t) :: l ->
if Names.Id.equal id' id then (n,None,t) else lookrec (n + 1) l
| LocalDef (Name id', b, t) :: l ->
if Names.Id.equal id' id then (n,Some b,t) else lookrec (n + 1) l
in
lookrec 1 sign
(* Constructs either [forall x:t, c] or [let x:=b:t in c] *)
let mkProd_or_LetIn = EConstr.mkProd_or_LetIn
(* Constructs either [forall x:t, c] or [c] in which [x] is replaced by [b] *)
let mkProd_wo_LetIn decl c =
let open EConstr in
let open RelDecl in
match decl with
| LocalAssum (na,t) -> mkProd (na, t, c)
| LocalDef (_,b,_) -> Vars.subst1 b c
let it_mkProd init = List.fold_left (fun c (n,t) -> EConstr.mkProd (n, t, c)) init
let it_mkLambda init = List.fold_left (fun c (n,t) -> EConstr.mkLambda (n, t, c)) init
let it_named_context_quantifier f ~init =
List.fold_left (fun c d -> f d c) init
let it_mkProd_or_LetIn init = it_named_context_quantifier mkProd_or_LetIn ~init
let it_mkProd_wo_LetIn init = it_named_context_quantifier mkProd_wo_LetIn ~init
let it_mkLambda_or_LetIn init = it_named_context_quantifier mkLambda_or_LetIn ~init
let it_mkNamedProd_or_LetIn init = it_named_context_quantifier EConstr.mkNamedProd_or_LetIn ~init
let it_mkNamedProd_wo_LetIn init = it_named_context_quantifier mkNamedProd_wo_LetIn ~init
let it_mkNamedLambda_or_LetIn init = it_named_context_quantifier EConstr.mkNamedLambda_or_LetIn ~init
let it_mkLambda_or_LetIn_from_no_LetIn c decls =
let open RelDecl in
let rec aux k decls c = match decls with
| [] -> c
| LocalDef (na,b,t) :: decls -> mkLetIn (na,b,t,aux (k-1) decls (liftn 1 k c))
| LocalAssum (na,t) :: decls -> mkLambda (na,t,aux (k-1) decls c)
in aux (List.length decls) (List.rev decls) c
(* *)
(* strips head casts and flattens head applications *)
let rec strip_head_cast sigma c = match EConstr.kind sigma c with
| App (f,cl) ->
let rec collapse_rec f cl2 = match EConstr.kind sigma f with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| Cast (c,_,_) -> collapse_rec c cl2
| _ -> if Int.equal (Array.length cl2) 0 then f else EConstr.mkApp (f,cl2)
in
collapse_rec f cl
| Cast (c,_,_) -> strip_head_cast sigma c
| _ -> c
let rec drop_extra_implicit_args sigma c = match EConstr.kind sigma c with
(* Removed trailing extra implicit arguments, what improves compatibility
for constants with recently added maximal implicit arguments *)
| App (f,args) when EConstr.isEvar sigma (Array.last args) ->
let open EConstr in
drop_extra_implicit_args sigma
(mkApp (f,fst (Array.chop (Array.length args - 1) args)))
| _ -> c
(* Get the last arg of an application *)
let last_arg sigma c = match EConstr.kind sigma c with
| App (f,cl) -> Array.last cl
| _ -> anomaly (Pp.str "last_arg.")
(* Get the last arg of an application *)
let decompose_app_vect sigma c =
match EConstr.kind sigma c with
| App (f,cl) -> (f, cl)
| _ -> (c,[||])
let adjust_app_list_size f1 l1 f2 l2 =
let open EConstr in
let len1 = List.length l1 and len2 = List.length l2 in
if Int.equal len1 len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = List.chop (len2-len1) l2 in
(f1, l1, applist (f2,extras), restl2)
else
let extras,restl1 = List.chop (len1-len2) l1 in
(applist (f1,extras), restl1, f2, l2)
let adjust_app_array_size f1 l1 f2 l2 =
let open EConstr in
let len1 = Array.length l1 and len2 = Array.length l2 in
if Int.equal len1 len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = Array.chop (len2-len1) l2 in
(f1, l1, mkApp (f2,extras), restl2)
else
let extras,restl1 = Array.chop (len1-len2) l1 in
(mkApp (f1,extras), restl1, f2, l2)
(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
immediate subterms of [c]; it carries an extra data [n] (typically
a lift index) which is processed by [g] (which typically add 1 to
[n]) at each binder traversal; the subterms are processed from left
to right according to the usual representation of the constructions
(this may matter if [f] does a side-effect); it is not recursive;
in fact, the usual representation of the constructions is at the
time being almost those of the ML representation (except for
(co-)fixpoint) *)
let fold_rec_types g (lna,typarray,_) e =
let open EConstr in
let open Vars in
let ctxt = Array.map2_i (fun i na t -> RelDecl.LocalAssum (na, lift i t)) lna typarray in
Array.fold_left (fun e assum -> g assum e) e ctxt
let map_left2 f a g b =
let l = Array.length a in
if Int.equal l 0 then [||], [||] else begin
let r = Array.make l (f a.(0)) in
let s = Array.make l (g b.(0)) in
for i = 1 to l - 1 do
r.(i) <- f a.(i);
s.(i) <- g b.(i)
done;
r, s
end
let map_constr_with_binders_left_to_right sigma g f l c =
let open RelDecl in
let open EConstr in
match EConstr.kind sigma c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (b,k,t) ->
let b' = f l b in
let t' = f l t in
if b' == b && t' == t then c
else mkCast (b',k,t')
| Prod (na,t,b) ->
let t' = f l t in
let b' = f (g (LocalAssum (na,t)) l) b in
if t' == t && b' == b then c
else mkProd (na, t', b')
| Lambda (na,t,b) ->
let t' = f l t in
let b' = f (g (LocalAssum (na,t)) l) b in
if t' == t && b' == b then c
else mkLambda (na, t', b')
| LetIn (na,bo,t,b) ->
let bo' = f l bo in
let t' = f l t in
let b' = f (g (LocalDef (na,bo,t)) l) b in
if bo' == bo && t' == t && b' == b then c
else mkLetIn (na, bo', t', b')
| App (c,[||]) -> assert false
| App (t,al) ->
(*Special treatment to be able to recognize partially applied subterms*)
let a = al.(Array.length al - 1) in
let app = (mkApp (t, Array.sub al 0 (Array.length al - 1))) in
let app' = f l app in
let a' = f l a in
if app' == app && a' == a then c
else mkApp (app', [| a' |])
| Proj (p,b) ->
let b' = f l b in
if b' == b then c
else mkProj (p, b')
| Evar (e,al) ->
let al' = Array.map_left (f l) al in
if Array.for_all2 (==) al' al then c
else mkEvar (e, al')
| Case (ci,p,b,bl) ->
(* In v8 concrete syntax, predicate is after the term to match! *)
let b' = f l b in
let p' = f l p in
let bl' = Array.map_left (f l) bl in
if b' == b && p' == p && bl' == bl then c
else mkCase (ci, p', b', bl')
| Fix (ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl', bl') = map_left2 (f l) tl (f l') bl in
if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then c
else mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl', bl') = map_left2 (f l) tl (f l') bl in
if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then c
else mkCoFix (ln,(lna,tl',bl'))
(* strong *)
let map_constr_with_full_binders sigma g f l cstr =
let open EConstr in
let open RelDecl in
match EConstr.kind sigma cstr with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> cstr
| Cast (c,k, t) ->
let c' = f l c in
let t' = f l t in
if c==c' && t==t' then cstr else mkCast (c', k, t')
| Prod (na,t,c) ->
let t' = f l t in
let c' = f (g (LocalAssum (na, t)) l) c in
if t==t' && c==c' then cstr else mkProd (na, t', c')
| Lambda (na,t,c) ->
let t' = f l t in
let c' = f (g (LocalAssum (na, t)) l) c in
if t==t' && c==c' then cstr else mkLambda (na, t', c')
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (LocalDef (na, b, t)) l) c in
if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')
| App (c,al) ->
let c' = f l c in
let al' = Array.map (f l) al in
if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al')
| Proj (p,c) ->
let c' = f l c in
if c' == c then cstr else mkProj (p, c')
| Evar (e,al) ->
let al' = Array.map (f l) al in
if Array.for_all2 (==) al al' then cstr else mkEvar (e, al')
| Case (ci,p,c,bl) ->
let p' = f l p in
let c' = f l c in
let bl' = Array.map (f l) bl in
if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else
mkCase (ci, p', c', bl')
| Fix (ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
Array.fold_left2 (fun l na t -> g (LocalAssum (na, t)) l) l lna tl in
let bl' = Array.map (f l') bl in
if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then cstr
else mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
Array.fold_left2 (fun l na t -> g (LocalAssum (na, t)) l) l lna tl in
let bl' = Array.map (f l') bl in
if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
then cstr
else mkCoFix (ln,(lna,tl',bl'))
(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
subterms of [c] starting from [acc] and proceeding from left to
right according to the usual representation of the constructions as
[fold_constr] but it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive *)
let fold_constr_with_full_binders sigma g f n acc c =
let open RelDecl in
let inj c = EConstr.Unsafe.to_constr c in
match EConstr.kind sigma c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> acc
| Cast (c,_, t) -> f n (f n acc c) t
| Prod (na,t,c) -> f (g (LocalAssum (na, inj t)) n) (f n acc t) c
| Lambda (na,t,c) -> f (g (LocalAssum (na, inj t)) n) (f n acc t) c
| LetIn (na,b,t,c) -> f (g (LocalDef (na, inj b, inj t)) n) (f n (f n acc b) t) c
| App (c,l) -> Array.fold_left (f n) (f n acc c) l
| Proj (p,c) -> f n acc c
| Evar (_,l) -> Array.fold_left (f n) acc l
| Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl
| Fix (_,(lna,tl,bl)) ->
let n' = CArray.fold_left2 (fun c n t -> g (LocalAssum (n, inj t)) c) n lna tl in
let fd = Array.map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
| CoFix (_,(lna,tl,bl)) ->
let n' = CArray.fold_left2 (fun c n t -> g (LocalAssum (n, inj t)) c) n lna tl in
let fd = Array.map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
let fold_constr_with_binders sigma g f n acc c =
fold_constr_with_full_binders sigma (fun _ x -> g x) f n acc c
(* [iter_constr_with_full_binders g f acc c] iters [f acc] on the immediate
subterms of [c]; it carries an extra data [acc] which is processed by [g] at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
let iter_constr_with_full_binders g f l c =
let open RelDecl in
match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_, t) -> f l c; f l t
| Prod (na,t,c) -> f l t; f (g (LocalAssum (na,t)) l) c
| Lambda (na,t,c) -> f l t; f (g (LocalAssum (na,t)) l) c
| LetIn (na,b,t,c) -> f l b; f l t; f (g (LocalDef (na,b,t)) l) c
| App (c,args) -> f l c; Array.iter (f l) args
| Proj (p,c) -> f l c
| Evar (_,args) -> Array.iter (f l) args
| Case (_,p,c,bl) -> f l p; f l c; Array.iter (f l) bl
| Fix (_,(lna,tl,bl)) ->
let l' = Array.fold_left2 (fun l na t -> g (LocalAssum (na,t)) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
| CoFix (_,(lna,tl,bl)) ->
let l' = Array.fold_left2 (fun l na t -> g (LocalAssum (na,t)) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
(***************************)
(* occurs check functions *)
(***************************)
exception Occur
let occur_meta sigma c =
let rec occrec c = match EConstr.kind sigma c with
| Meta _ -> raise Occur
| _ -> EConstr.iter sigma occrec c
in try occrec c; false with Occur -> true
let occur_existential sigma c =
let rec occrec c = match EConstr.kind sigma c with
| Evar _ -> raise Occur
| _ -> EConstr.iter sigma occrec c
in try occrec c; false with Occur -> true
let occur_meta_or_existential sigma c =
let rec occrec c = match EConstr.kind sigma c with
| Evar _ -> raise Occur
| Meta _ -> raise Occur
| _ -> EConstr.iter sigma occrec c
in try occrec c; false with Occur -> true
let occur_evar sigma n c =
let rec occur_rec c = match EConstr.kind sigma c with
| Evar (sp,_) when Evar.equal sp n -> raise Occur
| _ -> EConstr.iter sigma occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_in_global env id constr =
let vars = vars_of_global env constr in
if Id.Set.mem id vars then raise Occur
let occur_var env sigma id c =
let rec occur_rec c =
match EConstr.kind sigma c with
| Var _ | Const _ | Ind _ | Construct _ -> occur_in_global env id (EConstr.to_constr sigma c)
| _ -> EConstr.iter sigma occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_var_in_decl env sigma hyp decl =
let open NamedDecl in
match decl with
| LocalAssum (_,typ) -> occur_var env sigma hyp typ
| LocalDef (_, body, typ) ->
occur_var env sigma hyp typ ||
occur_var env sigma hyp body
let local_occur_var sigma id c =
let rec occur c = match EConstr.kind sigma c with
| Var id' -> if Id.equal id id' then raise Occur
| _ -> EConstr.iter sigma occur c
in
try occur c; false with Occur -> true
(* returns the list of free debruijn indices in a term *)
let free_rels sigma m =
let rec frec depth acc c = match EConstr.kind sigma c with
| Rel n -> if n >= depth then Int.Set.add (n-depth+1) acc else acc
| _ -> fold_constr_with_binders sigma succ frec depth acc c
in
frec 1 Int.Set.empty m
(* collects all metavar occurrences, in left-to-right order, preserving
* repetitions and all. *)
let collect_metas sigma c =
let rec collrec acc c =
match EConstr.kind sigma c with
| Meta mv -> List.add_set Int.equal mv acc
| _ -> EConstr.fold sigma collrec acc c
in
List.rev (collrec [] c)
(* collects all vars; warning: this is only visible vars, not dependencies in
all section variables; for the latter, use global_vars_set *)
let collect_vars sigma c =
let rec aux vars c = match EConstr.kind sigma c with
| Var id -> Id.Set.add id vars
| _ -> EConstr.fold sigma aux vars c in
aux Id.Set.empty c
let vars_of_global_reference env gr =
let c, _ = Universes.unsafe_constr_of_global gr in
vars_of_global (Global.env ()) c
(* Tests whether [m] is a subterm of [t]:
[m] is appropriately lifted through abstractions of [t] *)
let dependent_main noevar univs sigma m t =
let open EConstr in
let eqc x y =
if univs then not (Option.is_empty (eq_constr_universes sigma x y))
else eq_constr_nounivs sigma x y
in
let rec deprec m t =
if eqc m t then
raise Occur
else
match EConstr.kind sigma m, EConstr.kind sigma t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
CArray.Fun1.iter deprec m
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _, Cast (c,_,_) when noevar && isMeta sigma c -> ()
| _, Evar _ when noevar -> ()
| _ -> EConstr.iter_with_binders sigma (fun c -> Vars.lift 1 c) deprec m t
in
try deprec m t; false with Occur -> true
let dependent sigma c t = dependent_main false false sigma c t
let dependent_no_evar sigma c t = dependent_main true false sigma c t
let dependent_univs sigma c t = dependent_main false true sigma c t
let dependent_univs_no_evar sigma c t = dependent_main true true sigma c t
let dependent_in_decl sigma a decl =
let open NamedDecl in
match decl with
| LocalAssum (_,t) -> dependent sigma a t
| LocalDef (_, body, t) -> dependent sigma a body || dependent sigma a t
let count_occurrences sigma m t =
let open EConstr in
let n = ref 0 in
let rec countrec m t =
if EConstr.eq_constr sigma m t then
incr n
else
match EConstr.kind sigma m, EConstr.kind sigma t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
countrec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
Array.iter (countrec m)
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _, Cast (c,_,_) when isMeta sigma c -> ()
| _, Evar _ -> ()
| _ -> EConstr.iter_with_binders sigma (Vars.lift 1) countrec m t
in
countrec m t;
!n
(* Synonymous *)
let occur_term = dependent
let pop t = EConstr.Vars.lift (-1) t
(***************************)
(* bindings functions *)
(***************************)
type meta_type_map = (metavariable * types) list
type meta_value_map = (metavariable * constr) list
let isMetaOf sigma mv c =
match EConstr.kind sigma c with Meta mv' -> Int.equal mv mv' | _ -> false
let rec subst_meta bl c =
match kind_of_term c with
| Meta i -> (try Int.List.assoc i bl with Not_found -> c)
| _ -> map_constr (subst_meta bl) c
let rec strip_outer_cast sigma c = match EConstr.kind sigma c with
| Cast (c,_,_) -> strip_outer_cast sigma c
| _ -> c
(* flattens application lists throwing casts in-between *)
let collapse_appl sigma c = match EConstr.kind sigma c with
| App (f,cl) ->
let rec collapse_rec f cl2 =
match EConstr.kind sigma (strip_outer_cast sigma f) with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| _ -> EConstr.mkApp (f,cl2)
in
collapse_rec f cl
| _ -> c
(* First utilities for avoiding telescope computation for subst_term *)
let prefix_application sigma eq_fun (k,c) t =
let open EConstr in
let c' = collapse_appl sigma c and t' = collapse_appl sigma t in
match EConstr.kind sigma c', EConstr.kind sigma t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun sigma c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
let my_prefix_application sigma eq_fun (k,c) by_c t =
let open EConstr in
let c' = collapse_appl sigma c and t' = collapse_appl sigma t in
match EConstr.kind sigma c', EConstr.kind sigma t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun sigma c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp ((Vars.lift k by_c), Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
(* Recognizing occurrences of a given subterm in a term: [subst_term c t]
substitutes [(Rel 1)] for all occurrences of term [c] in a term [t];
works if [c] has rels *)
let subst_term_gen sigma eq_fun c t =
let open EConstr in
let open Vars in
let rec substrec (k,c as kc) t =
match prefix_application sigma eq_fun kc t with
| Some x -> x
| None ->
if eq_fun sigma c t then mkRel k
else
EConstr.map_with_binders sigma (fun (k,c) -> (k+1,lift 1 c)) substrec kc t
in
substrec (1,c) t
let subst_term sigma c t = subst_term_gen sigma EConstr.eq_constr c t
(* Recognizing occurrences of a given subterm in a term :
[replace_term c1 c2 t] substitutes [c2] for all occurrences of
term [c1] in a term [t]; works if [c1] and [c2] have rels *)
let replace_term_gen sigma eq_fun c by_c in_t =
let rec substrec (k,c as kc) t =
match my_prefix_application sigma eq_fun kc by_c t with
| Some x -> x
| None ->
(if eq_fun sigma c t then (EConstr.Vars.lift k by_c) else
EConstr.map_with_binders sigma (fun (k,c) -> (k+1,EConstr.Vars.lift 1 c))
substrec kc t)
in
substrec (0,c) in_t
let replace_term sigma c byc t = replace_term_gen sigma EConstr.eq_constr c byc t
let vars_of_env env =
let s =
Context.Named.fold_outside (fun decl s -> Id.Set.add (NamedDecl.get_id decl) s)
(named_context env) ~init:Id.Set.empty in
Context.Rel.fold_outside
(fun decl s -> match RelDecl.get_name decl with Name id -> Id.Set.add id s | _ -> s)
(rel_context env) ~init:s
let add_vname vars = function
Name id -> Id.Set.add id vars
| _ -> vars
(*************************)
(* Names environments *)
(*************************)
type names_context = Name.t list
let add_name n nl = n::nl
let lookup_name_of_rel p names =
try List.nth names (p-1)
with Invalid_argument _ | Failure _ -> raise Not_found
let lookup_rel_of_name id names =
let rec lookrec n = function
| Anonymous :: l -> lookrec (n+1) l
| (Name id') :: l -> if Id.equal id' id then n else lookrec (n+1) l
| [] -> raise Not_found
in
lookrec 1 names
let empty_names_context = []
let ids_of_rel_context sign =
Context.Rel.fold_outside
(fun decl l -> match RelDecl.get_name decl with Name id -> id::l | Anonymous -> l)
sign ~init:[]
let ids_of_named_context sign =
Context.Named.fold_outside (fun decl idl -> NamedDecl.get_id decl :: idl) sign ~init:[]
let ids_of_context env =
(ids_of_rel_context (rel_context env))
@ (ids_of_named_context (named_context env))
let names_of_rel_context env =
List.map RelDecl.get_name (rel_context env)
let is_section_variable id =
try let _ = Global.lookup_named id in true
with Not_found -> false
let global_of_constr sigma c =
let open Globnames in
match EConstr.kind sigma c with
| Const (c, u) -> ConstRef c, u
| Ind (i, u) -> IndRef i, u
| Construct (c, u) -> ConstructRef c, u
| Var id -> VarRef id, EConstr.EInstance.empty
| _ -> raise Not_found
let is_global sigma c t =
let open Globnames in
match c, EConstr.kind sigma t with
| ConstRef c, Const (c', _) -> Constant.equal c c'
| IndRef i, Ind (i', _) -> eq_ind i i'
| ConstructRef i, Construct (i', _) -> eq_constructor i i'
| VarRef id, Var id' -> Id.equal id id'
| _ -> false
let isGlobalRef sigma c =
match EConstr.kind sigma c with
| Const _ | Ind _ | Construct _ | Var _ -> true
| _ -> false
let is_template_polymorphic env sigma f =
match EConstr.kind sigma f with
| Ind (ind, u) ->
if not (EConstr.EInstance.is_empty u) then false
else Environ.template_polymorphic_ind ind env
| Const (cst, u) ->
if not (EConstr.EInstance.is_empty u) then false
else Environ.template_polymorphic_constant cst env
| _ -> false
let base_sort_cmp pb s0 s1 =
match (s0,s1) with
| (Prop c1, Prop c2) -> c1 == Null || c2 == Pos (* Prop <= Set *)
| (Prop c1, Type u) -> pb == Reduction.CUMUL
| (Type u1, Type u2) -> true
| _ -> false
let rec is_Prop sigma c = match EConstr.kind sigma c with
| Sort u ->
begin match EConstr.ESorts.kind sigma u with
| Prop Null -> true
| _ -> false
end
| Cast (c,_,_) -> is_Prop sigma c
| _ -> false
(* eq_constr extended with universe erasure *)
let compare_constr_univ sigma f cv_pb t1 t2 =
let open EConstr in
match EConstr.kind sigma t1, EConstr.kind sigma t2 with
Sort s1, Sort s2 -> base_sort_cmp cv_pb (ESorts.kind sigma s1) (ESorts.kind sigma s2)
| Prod (_,t1,c1), Prod (_,t2,c2) ->
f Reduction.CONV t1 t2 && f cv_pb c1 c2
| Const (c, u), Const (c', u') -> Constant.equal c c'
| Ind (i, _), Ind (i', _) -> eq_ind i i'
| Construct (i, _), Construct (i', _) -> eq_constructor i i'
| _ -> EConstr.compare_constr sigma (fun t1 t2 -> f Reduction.CONV t1 t2) t1 t2
let constr_cmp sigma cv_pb t1 t2 =
let rec compare cv_pb t1 t2 = compare_constr_univ sigma compare cv_pb t1 t2 in
compare cv_pb t1 t2
let eq_constr sigma t1 t2 = constr_cmp sigma Reduction.CONV t1 t2
(* App(c,[t1,...tn]) -> ([c,t1,...,tn-1],tn)
App(c,[||]) -> ([],c) *)
let split_app sigma c = match EConstr.kind sigma c with
App(c,l) ->
let len = Array.length l in
if Int.equal len 0 then ([],c) else
let last = Array.get l (len-1) in
let prev = Array.sub l 0 (len-1) in
c::(Array.to_list prev), last
| _ -> assert false
type subst = (EConstr.rel_context * EConstr.constr) Evar.Map.t
exception CannotFilter
let filtering sigma env cv_pb c1 c2 =
let open EConstr in
let open Vars in
let evm = ref Evar.Map.empty in
let define cv_pb e1 ev c1 =
try let (e2,c2) = Evar.Map.find ev !evm in
let shift = List.length e1 - List.length e2 in
if constr_cmp sigma cv_pb c1 (lift shift c2) then () else raise CannotFilter
with Not_found ->
evm := Evar.Map.add ev (e1,c1) !evm
in
let rec aux env cv_pb c1 c2 =
match EConstr.kind sigma c1, EConstr.kind sigma c2 with
| App _, App _ ->
let ((p1,l1),(p2,l2)) = (split_app sigma c1),(split_app sigma c2) in
let () = aux env cv_pb l1 l2 in
begin match p1, p2 with
| [], [] -> ()
| (h1 :: p1), (h2 :: p2) ->
aux env cv_pb (applist (h1, p1)) (applist (h2, p2))
| _ -> assert false
end
| Prod (n,t1,c1), Prod (_,t2,c2) ->
aux env cv_pb t1 t2;
aux (RelDecl.LocalAssum (n,t1) :: env) cv_pb c1 c2
| _, Evar (ev,_) -> define cv_pb env ev c1
| Evar (ev,_), _ -> define cv_pb env ev c2
| _ ->
if compare_constr_univ sigma
(fun pb c1 c2 -> aux env pb c1 c2; true) cv_pb c1 c2 then ()
else raise CannotFilter
(* TODO: le reste des binders *)
in
aux env cv_pb c1 c2; !evm
let decompose_prod_letin sigma c =
let rec prodec_rec i l c = match EConstr.kind sigma c with
| Prod (n,t,c) -> prodec_rec (succ i) (RelDecl.LocalAssum (n,t)::l) c
| LetIn (n,d,t,c) -> prodec_rec (succ i) (RelDecl.LocalDef (n,d,t)::l) c
| Cast (c,_,_) -> prodec_rec i l c
| _ -> i,l,c in
prodec_rec 0 [] c
(* (nb_lam [na1:T1]...[nan:Tan]c) where c is not an abstraction
* gives n (casts are ignored) *)
let nb_lam sigma c =
let rec nbrec n c = match EConstr.kind sigma c with
| Lambda (_,_,c) -> nbrec (n+1) c
| Cast (c,_,_) -> nbrec n c
| _ -> n
in
nbrec 0 c
(* similar to nb_lam, but gives the number of products instead *)
let nb_prod sigma c =
let rec nbrec n c = match EConstr.kind sigma c with
| Prod (_,_,c) -> nbrec (n+1) c
| Cast (c,_,_) -> nbrec n c
| _ -> n
in
nbrec 0 c
let nb_prod_modulo_zeta sigma x =
let rec count n c =
match EConstr.kind sigma c with
Prod(_,_,t) -> count (n+1) t
| LetIn(_,a,_,t) -> count n (EConstr.Vars.subst1 a t)
| Cast(c,_,_) -> count n c
| _ -> n
in count 0 x
let align_prod_letin sigma c a =
let (lc,_,_) = decompose_prod_letin sigma c in
let (la,l,a) = decompose_prod_letin sigma a in
if not (la >= lc) then invalid_arg "align_prod_letin";
let (l1,l2) = Util.List.chop lc l in
l2,it_mkProd_or_LetIn a l1
(* We reduce a series of head eta-redex or nothing at all *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 earlier buggish versions *)
let rec eta_reduce_head sigma c =
let open EConstr in
let open Vars in
match EConstr.kind sigma c with
| Lambda (_,c1,c') ->
(match EConstr.kind sigma (eta_reduce_head sigma c') with
| App (f,cl) ->
let lastn = (Array.length cl) - 1 in
if lastn < 0 then anomaly (Pp.str "application without arguments.")
else
(match EConstr.kind sigma cl.(lastn) with
| Rel 1 ->
let c' =
if Int.equal lastn 0 then f
else mkApp (f, Array.sub cl 0 lastn)
in
if noccurn sigma 1 c'
then lift (-1) c'
else c
| _ -> c)
| _ -> c)
| _ -> c
(* iterator on rel context *)
let process_rel_context f env =
let sign = named_context_val env in
let rels = EConstr.rel_context env in
let env0 = reset_with_named_context sign env in
Context.Rel.fold_outside f rels ~init:env0
let assums_of_rel_context sign =
Context.Rel.fold_outside
(fun decl l ->
match decl with
| RelDecl.LocalDef _ -> l
| RelDecl.LocalAssum (na,t) -> (na, t)::l)
sign ~init:[]
let map_rel_context_in_env f env sign =
let rec aux env acc = function
| d::sign ->
aux (push_rel d env) (RelDecl.map_constr (f env) d :: acc) sign
| [] ->
acc
in
aux env [] (List.rev sign)
let map_rel_context_with_binders f sign =
let rec aux k = function
| d::sign -> RelDecl.map_constr (f k) d :: aux (k-1) sign
| [] -> []
in
aux (Context.Rel.length sign) sign
let substl_rel_context l =
map_rel_context_with_binders (fun k -> substnl l (k-1))
let lift_rel_context n =
map_rel_context_with_binders (liftn n)
let smash_rel_context sign =
let rec aux acc = function
| [] -> acc
| (RelDecl.LocalAssum _ as d) :: l -> aux (d::acc) l
| RelDecl.LocalDef (_,b,_) :: l ->
(* Quadratic in the number of let but there are probably a few of them *)
aux (List.rev (substl_rel_context [b] (List.rev acc))) l
in List.rev (aux [] sign)
let fold_named_context_both_sides f l ~init = List.fold_right_and_left f l init
let mem_named_context_val id ctxt =
try ignore(Environ.lookup_named_val id ctxt); true with Not_found -> false
let map_rel_decl f = function
| RelDecl.LocalAssum (id, t) -> RelDecl.LocalAssum (id, f t)
| RelDecl.LocalDef (id, b, t) -> RelDecl.LocalDef (id, f b, f t)
let map_named_decl f = function
| NamedDecl.LocalAssum (id, t) -> NamedDecl.LocalAssum (id, f t)
| NamedDecl.LocalDef (id, b, t) -> NamedDecl.LocalDef (id, f b, f t)
let compact_named_context sign =
let compact l decl =
match decl, l with
| NamedDecl.LocalAssum (i,t), [] ->
[CompactedDecl.LocalAssum ([i],t)]
| NamedDecl.LocalDef (i,c,t), [] ->
[CompactedDecl.LocalDef ([i],c,t)]
| NamedDecl.LocalAssum (i1,t1), CompactedDecl.LocalAssum (li,t2) :: q ->
if Constr.equal t1 t2
then CompactedDecl.LocalAssum (i1::li, t2) :: q
else CompactedDecl.LocalAssum ([i1],t1) :: CompactedDecl.LocalAssum (li,t2) :: q
| NamedDecl.LocalDef (i1,c1,t1), CompactedDecl.LocalDef (li,c2,t2) :: q ->
if Constr.equal c1 c2 && Constr.equal t1 t2
then CompactedDecl.LocalDef (i1::li, c2, t2) :: q
else CompactedDecl.LocalDef ([i1],c1,t1) :: CompactedDecl.LocalDef (li,c2,t2) :: q
| NamedDecl.LocalAssum (i,t), q ->
CompactedDecl.LocalAssum ([i],t) :: q
| NamedDecl.LocalDef (i,c,t), q ->
CompactedDecl.LocalDef ([i],c,t) :: q
in
sign |> Context.Named.fold_inside compact ~init:[] |> List.rev
let clear_named_body id env =
let open NamedDecl in
let aux _ = function
| LocalDef (id',c,t) when Id.equal id id' -> push_named (LocalAssum (id,t))
| d -> push_named d in
fold_named_context aux env ~init:(reset_context env)
let global_vars_set env sigma constr =
let rec filtrec acc c =
let acc = match EConstr.kind sigma c with
| Var _ | Const _ | Ind _ | Construct _ ->
Id.Set.union (vars_of_global env (EConstr.to_constr sigma c)) acc
| _ -> acc
in
EConstr.fold sigma filtrec acc c
in
filtrec Id.Set.empty constr
let global_vars env sigma ids = Id.Set.elements (global_vars_set env sigma ids)
let global_vars_set_of_decl env sigma = function
| NamedDecl.LocalAssum (_,t) -> global_vars_set env sigma t
| NamedDecl.LocalDef (_,c,t) ->
Id.Set.union (global_vars_set env sigma t)
(global_vars_set env sigma c)
let dependency_closure env sigma sign hyps =
if Id.Set.is_empty hyps then [] else
let (_,lh) =
Context.Named.fold_inside
(fun (hs,hl) d ->
let x = NamedDecl.get_id d in
if Id.Set.mem x hs then
(Id.Set.union (global_vars_set_of_decl env sigma d) (Id.Set.remove x hs),
x::hl)
else (hs,hl))
~init:(hyps,[])
sign in
List.rev lh
let global_app_of_constr sigma c =
let open Globnames in
match EConstr.kind sigma c with
| Const (c, u) -> (ConstRef c, u), None
| Ind (i, u) -> (IndRef i, u), None
| Construct (c, u) -> (ConstructRef c, u), None
| Var id -> (VarRef id, EConstr.EInstance.empty), None
| Proj (p, c) -> (ConstRef (Projection.constant p), EConstr.EInstance.empty), Some c
| _ -> raise Not_found
let prod_applist sigma c l =
let open EConstr in
let rec app subst c l =
match EConstr.kind sigma c, l with
| Prod(_,_,c), arg::l -> app (arg::subst) c l
| _, [] -> Vars.substl subst c
| _ -> anomaly (Pp.str "Not enough prod's.") in
app [] c l
(* Combinators on judgments *)
let on_judgment f j = { uj_val = f j.uj_val; uj_type = f j.uj_type }
let on_judgment_value f j = { j with uj_val = f j.uj_val }
let on_judgment_type f j = { j with uj_type = f j.uj_type }
(* Cut a context ctx in 2 parts (ctx1,ctx2) with ctx1 containing k non let-in
variables skips let-in's; let-in's in the middle are put in ctx2 *)
let context_chop k ctx =
let rec chop_aux acc = function
| (0, l2) -> (List.rev acc, l2)
| (n, (RelDecl.LocalDef _ as h)::t) -> chop_aux (h::acc) (n, t)
| (n, (h::t)) -> chop_aux (h::acc) (pred n, t)
| (_, []) -> anomaly (Pp.str "context_chop.")
in chop_aux [] (k,ctx)
(* Do not skip let-in's *)
let env_rel_context_chop k env =
let open EConstr in
let rels = rel_context env in
let ctx1,ctx2 = List.chop k rels in
push_rel_context ctx2 (reset_with_named_context (named_context_val env) env),
ctx1
|