1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created from contents that was formerly in termops.ml and
nameops.ml, Nov 2009 *)
(* This file is about generating new or fresh names and dealing with
alpha-renaming *)
open Util
open Names
open Term
open Environ
open EConstr
open Vars
open Nametab
open Nameops
open Libnames
open Globnames
open Context.Rel.Declaration
module RelDecl = Context.Rel.Declaration
(**********************************************************************)
(* Conventional names *)
let default_prop_string = "H"
let default_prop_ident = Id.of_string default_prop_string
let default_small_string = "H"
let default_small_ident = Id.of_string default_small_string
let default_type_string = "X"
let default_type_ident = Id.of_string default_type_string
let default_non_dependent_string = "H"
let default_non_dependent_ident = Id.of_string default_non_dependent_string
let default_dependent_ident = Id.of_string "x"
(**********************************************************************)
(* Globality of identifiers *)
let is_imported_modpath = function
| MPfile dp ->
let rec find_prefix = function
|MPfile dp1 -> not (DirPath.equal dp1 dp)
|MPdot(mp,_) -> find_prefix mp
|MPbound(_) -> false
in find_prefix (Lib.current_mp ())
| _ -> false
let is_imported_ref = function
| VarRef _ -> false
| IndRef (kn,_)
| ConstructRef ((kn,_),_) ->
let (mp,_,_) = repr_mind kn in is_imported_modpath mp
| ConstRef kn ->
let (mp,_,_) = repr_con kn in is_imported_modpath mp
let is_global id =
try
let ref = locate (qualid_of_ident id) in
not (is_imported_ref ref)
with Not_found ->
false
let is_constructor id =
try
match locate (qualid_of_ident id) with
| ConstructRef _ -> true
| _ -> false
with Not_found ->
false
let is_section_variable id =
try let _ = Global.lookup_named id in true
with Not_found -> false
(**********************************************************************)
(* Generating "intuitive" names from its type *)
let global_of_constr = function
| Const (c, _) -> ConstRef c
| Ind (i, _) -> IndRef i
| Construct (c, _) -> ConstructRef c
| Var id -> VarRef id
| _ -> assert false
let head_name sigma c = (* Find the head constant of a constr if any *)
let rec hdrec c =
match EConstr.kind sigma c with
| Prod (_,_,c) | Lambda (_,_,c) | LetIn (_,_,_,c)
| Cast (c,_,_) | App (c,_) -> hdrec c
| Proj (kn,_) -> Some (Label.to_id (con_label (Projection.constant kn)))
| Const _ | Ind _ | Construct _ | Var _ as c ->
Some (basename_of_global (global_of_constr c))
| Fix ((_,i),(lna,_,_)) | CoFix (i,(lna,_,_)) ->
Some (match lna.(i) with Name id -> id | _ -> assert false)
| Sort _ | Rel _ | Meta _|Evar _|Case (_, _, _, _) -> None
in
hdrec c
let lowercase_first_char id = (* First character of a constr *)
Unicode.lowercase_first_char (Id.to_string id)
let sort_hdchar = function
| Prop(_) -> "P"
| Type(_) -> "T"
let hdchar env sigma c =
let rec hdrec k c =
match EConstr.kind sigma c with
| Prod (_,_,c) | Lambda (_,_,c) | LetIn (_,_,_,c) -> hdrec (k+1) c
| Cast (c,_,_) | App (c,_) -> hdrec k c
| Proj (kn,_) -> lowercase_first_char (Label.to_id (con_label (Projection.constant kn)))
| Const (kn,_) -> lowercase_first_char (Label.to_id (con_label kn))
| Ind (x,_) -> lowercase_first_char (basename_of_global (IndRef x))
| Construct (x,_) -> lowercase_first_char (basename_of_global (ConstructRef x))
| Var id -> lowercase_first_char id
| Sort s -> sort_hdchar s
| Rel n ->
(if n<=k then "p" (* the initial term is flexible product/function *)
else
try match lookup_rel (n-k) env with
| LocalAssum (Name id,_) | LocalDef (Name id,_,_) -> lowercase_first_char id
| LocalAssum (Anonymous,t) | LocalDef (Anonymous,_,t) -> hdrec 0 (lift (n-k) t)
with Not_found -> "y")
| Fix ((_,i),(lna,_,_)) | CoFix (i,(lna,_,_)) ->
let id = match lna.(i) with Name id -> id | _ -> assert false in
lowercase_first_char id
| Evar _ (* We could do better... *)
| Meta _ | Case (_, _, _, _) -> "y"
in
hdrec 0 c
let id_of_name_using_hdchar env sigma a = function
| Anonymous -> Id.of_string (hdchar env sigma a)
| Name id -> id
let named_hd env sigma a = function
| Anonymous -> Name (Id.of_string (hdchar env sigma a))
| x -> x
let mkProd_name env sigma (n,a,b) = mkProd (named_hd env sigma a n, a, b)
let mkLambda_name env sigma (n,a,b) = mkLambda (named_hd env sigma a n, a, b)
let lambda_name = mkLambda_name
let prod_name = mkProd_name
let prod_create env sigma (a,b) = mkProd (named_hd env sigma a Anonymous, a, b)
let lambda_create env sigma (a,b) = mkLambda (named_hd env sigma a Anonymous, a, b)
let name_assumption env sigma = function
| LocalAssum (na,t) -> LocalAssum (named_hd env sigma t na, t)
| LocalDef (na,c,t) -> LocalDef (named_hd env sigma c na, c, t)
let name_context env sigma hyps =
snd
(List.fold_left
(fun (env,hyps) d ->
let d' = name_assumption env sigma d in (push_rel d' env, d' :: hyps))
(env,[]) (List.rev hyps))
let mkProd_or_LetIn_name env sigma b d = mkProd_or_LetIn (name_assumption env sigma d) b
let mkLambda_or_LetIn_name env sigma b d = mkLambda_or_LetIn (name_assumption env sigma d) b
let it_mkProd_or_LetIn_name env sigma b hyps =
it_mkProd_or_LetIn b (name_context env sigma hyps)
let it_mkLambda_or_LetIn_name env sigma b hyps =
it_mkLambda_or_LetIn b (name_context env sigma hyps)
(**********************************************************************)
(* Fresh names *)
(* Looks for next "good" name by lifting subscript *)
let next_ident_away_from id bad =
let rec name_rec id = if bad id then name_rec (increment_subscript id) else id in
name_rec id
(* Restart subscript from x0 if name starts with xN, or x00 if name
starts with x0N, etc *)
let restart_subscript id =
if not (has_subscript id) then id else
(* It would probably be better with something in the spirit of
*** make_ident id (Some 0) *** but compatibility would be lost... *)
forget_subscript id
let visible_ids sigma (nenv, c) =
let accu = ref (Refset_env.empty, Int.Set.empty, Id.Set.empty) in
let rec visible_ids n c = match EConstr.kind sigma c with
| Const _ | Ind _ | Construct _ | Var _ as c ->
let (gseen, vseen, ids) = !accu in
let g = global_of_constr c in
if not (Refset_env.mem g gseen) then
begin
try
let gseen = Refset_env.add g gseen in
let short = shortest_qualid_of_global Id.Set.empty g in
let dir, id = repr_qualid short in
let ids = if DirPath.is_empty dir then Id.Set.add id ids else ids in
accu := (gseen, vseen, ids)
with Not_found when !Flags.in_debugger || !Flags.in_toplevel -> ()
end
| Rel p ->
let (gseen, vseen, ids) = !accu in
if p > n && not (Int.Set.mem p vseen) then
let vseen = Int.Set.add p vseen in
let name =
try Some (List.nth nenv (p - n - 1))
with Invalid_argument _ | Failure _ ->
(* Unbound index: may happen in debug and actually also
while computing temporary implicit arguments of an
inductive type *)
None
in
let ids = match name with
| Some (Name id) -> Id.Set.add id ids
| _ -> ids
in
accu := (gseen, vseen, ids)
| _ -> EConstr.iter_with_binders sigma succ visible_ids n c
in
let () = visible_ids 1 c in
let (_, _, ids) = !accu in
ids
(* Now, there are different renaming strategies... *)
(* 1- Looks for a fresh name for printing in cases pattern *)
let next_name_away_in_cases_pattern sigma env_t na avoid =
let id = match na with Name id -> id | Anonymous -> default_dependent_ident in
let visible = visible_ids sigma env_t in
let bad id = Id.List.mem id avoid || is_constructor id
|| Id.Set.mem id visible in
next_ident_away_from id bad
(* 2- Looks for a fresh name for introduction in goal *)
(* The legacy strategy for renaming introduction variables is not very uniform:
- if the name to use is fresh in the context but used as a global
name, then a fresh name is taken by finding a free subscript
starting from the current subscript;
- but if the name to use is not fresh in the current context, the fresh
name is taken by finding a free subscript starting from 0 *)
let next_ident_away_in_goal id avoid =
let id = if Id.List.mem id avoid then restart_subscript id else id in
let bad id = Id.List.mem id avoid || (is_global id && not (is_section_variable id)) in
next_ident_away_from id bad
let next_name_away_in_goal na avoid =
let id = match na with
| Name id -> id
| Anonymous -> default_non_dependent_ident in
next_ident_away_in_goal id avoid
(* 3- Looks for next fresh name outside a list that is moreover valid
as a global identifier; the legacy algorithm is that if the name is
already used in the list, one looks for a name of same base with
lower available subscript; if the name is not in the list but is
used globally, one looks for a name of same base with lower subscript
beyond the current subscript *)
let next_global_ident_away id avoid =
let id = if Id.List.mem id avoid then restart_subscript id else id in
let bad id = Id.List.mem id avoid || is_global id in
next_ident_away_from id bad
(* 4- Looks for next fresh name outside a list; if name already used,
looks for same name with lower available subscript *)
let next_ident_away id avoid =
if Id.List.mem id avoid then
next_ident_away_from (restart_subscript id) (fun id -> Id.List.mem id avoid)
else id
let next_name_away_with_default default na avoid =
let id = match na with Name id -> id | Anonymous -> Id.of_string default in
next_ident_away id avoid
let reserved_type_name = ref (fun t -> Anonymous)
let set_reserved_typed_name f = reserved_type_name := f
let next_name_away_with_default_using_types default na avoid t =
let id = match na with
| Name id -> id
| Anonymous -> match !reserved_type_name t with
| Name id -> id
| Anonymous -> Id.of_string default in
next_ident_away id avoid
let next_name_away = next_name_away_with_default default_non_dependent_string
let make_all_name_different env sigma =
(** FIXME: this is inefficient, but only used in printing *)
let avoid = ref (Id.Set.elements (Context.Named.to_vars (named_context env))) in
let sign = named_context_val env in
let rels = rel_context env in
let env0 = reset_with_named_context sign env in
Context.Rel.fold_outside
(fun decl newenv ->
let na = named_hd newenv sigma (RelDecl.get_type decl) (RelDecl.get_name decl) in
let id = next_name_away na !avoid in
avoid := id::!avoid;
push_rel (RelDecl.set_name (Name id) decl) newenv)
rels ~init:env0
(* 5- Looks for next fresh name outside a list; avoids also to use names that
would clash with short name of global references; if name is already used,
looks for name of same base with lower available subscript beyond current
subscript *)
let next_ident_away_for_default_printing sigma env_t id avoid =
let visible = visible_ids sigma env_t in
let bad id = Id.List.mem id avoid || Id.Set.mem id visible in
next_ident_away_from id bad
let next_name_away_for_default_printing sigma env_t na avoid =
let id = match na with
| Name id -> id
| Anonymous ->
(* In principle, an anonymous name is not dependent and will not be *)
(* taken into account by the function compute_displayed_name_in; *)
(* just in case, invent a valid name *)
default_non_dependent_ident in
next_ident_away_for_default_printing sigma env_t id avoid
(**********************************************************************)
(* Displaying terms avoiding bound variables clashes *)
(* Renaming strategy introduced in December 1998:
- Rule number 1: all names, even if unbound and not displayed, contribute
to the list of names to avoid
- Rule number 2: only the dependency status is used for deciding if
a name is displayed or not
Example:
bool_ind: "forall (P:bool->Prop)(f:(P true))(f:(P false))(b:bool), P b" is
displayed "forall P:bool->Prop, P true -> P false -> forall b:bool, P b"
but f and f0 contribute to the list of variables to avoid (knowing
that f and f0 are how the f's would be named if introduced, assuming
no other f and f0 are already used).
*)
type renaming_flags =
| RenamingForCasesPattern of (Name.t list * constr)
| RenamingForGoal
| RenamingElsewhereFor of (Name.t list * constr)
let next_name_for_display sigma flags =
match flags with
| RenamingForCasesPattern env_t -> next_name_away_in_cases_pattern sigma env_t
| RenamingForGoal -> next_name_away_in_goal
| RenamingElsewhereFor env_t -> next_name_away_for_default_printing sigma env_t
(* Remark: Anonymous var may be dependent in Evar's contexts *)
let compute_displayed_name_in sigma flags avoid na c =
match na with
| Anonymous when noccurn sigma 1 c ->
(Anonymous,avoid)
| _ ->
let fresh_id = next_name_for_display sigma flags na avoid in
let idopt = if noccurn sigma 1 c then Anonymous else Name fresh_id in
(idopt, fresh_id::avoid)
let compute_and_force_displayed_name_in sigma flags avoid na c =
match na with
| Anonymous when noccurn sigma 1 c ->
(Anonymous,avoid)
| _ ->
let fresh_id = next_name_for_display sigma flags na avoid in
(Name fresh_id, fresh_id::avoid)
let compute_displayed_let_name_in sigma flags avoid na c =
let fresh_id = next_name_for_display sigma flags na avoid in
(Name fresh_id, fresh_id::avoid)
let rename_bound_vars_as_displayed sigma avoid env c =
let rec rename avoid env c =
match EConstr.kind sigma c with
| Prod (na,c1,c2) ->
let na',avoid' =
compute_displayed_name_in sigma
(RenamingElsewhereFor (env,c2)) avoid na c2 in
mkProd (na', c1, rename avoid' (na' :: env) c2)
| LetIn (na,c1,t,c2) ->
let na',avoid' =
compute_displayed_let_name_in sigma
(RenamingElsewhereFor (env,c2)) avoid na c2 in
mkLetIn (na',c1,t, rename avoid' (na' :: env) c2)
| Cast (c,k,t) -> mkCast (rename avoid env c, k,t)
| _ -> c
in
rename avoid env c
(**********************************************************************)
(* "H"-based naming strategy introduced June 2014 for hypotheses in
Prop produced by case/elim/destruct/induction, in place of the
strategy that was using the first letter of the type, leading to
inelegant "n:~A", "e:t=u", etc. when eliminating sumbool or similar
types *)
let h_based_elimination_names = ref false
let use_h_based_elimination_names () =
!h_based_elimination_names && Flags.version_strictly_greater Flags.V8_4
open Goptions
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "use of \"H\"-based proposition names in elimination tactics";
optkey = ["Standard";"Proposition";"Elimination";"Names"];
optread = (fun () -> !h_based_elimination_names);
optwrite = (:=) h_based_elimination_names }
|