1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open CErrors
open Sorts
open Util
open Names
open Nameops
open Constr
open Vars
open Environ
(* module RelDecl = Context.Rel.Declaration *)
module NamedDecl = Context.Named.Declaration
type econstr = constr
type etypes = types
(** Generic filters *)
module Filter :
sig
type t
val equal : t -> t -> bool
val identity : t
val filter_list : t -> 'a list -> 'a list
val filter_array : t -> 'a array -> 'a array
val extend : int -> t -> t
val compose : t -> t -> t
val apply_subfilter : t -> bool list -> t
val restrict_upon : t -> int -> (int -> bool) -> t option
val map_along : (bool -> 'a -> bool) -> t -> 'a list -> t
val make : bool list -> t
val repr : t -> bool list option
end =
struct
type t = bool list option
(** We guarantee through the interface that if a filter is [Some _] then it
contains at least one [false] somewhere. *)
let identity = None
let rec equal l1 l2 = match l1, l2 with
| [], [] -> true
| h1 :: l1, h2 :: l2 ->
(if h1 then h2 else not h2) && equal l1 l2
| _ -> false
let equal l1 l2 = match l1, l2 with
| None, None -> true
| Some _, None | None, Some _ -> false
| Some l1, Some l2 -> equal l1 l2
let rec is_identity = function
| [] -> true
| true :: l -> is_identity l
| false :: _ -> false
let normalize f = if is_identity f then None else Some f
let filter_list f l = match f with
| None -> l
| Some f -> CList.filter_with f l
let filter_array f v = match f with
| None -> v
| Some f -> CArray.filter_with f v
let rec extend n l =
if n = 0 then l
else extend (pred n) (true :: l)
let extend n = function
| None -> None
| Some f -> Some (extend n f)
let compose f1 f2 = match f1 with
| None -> f2
| Some f1 ->
match f2 with
| None -> None
| Some f2 -> normalize (CList.filter_with f1 f2)
let apply_subfilter_array filter subfilter =
(** In both cases we statically know that the argument will contain at
least one [false] *)
match filter with
| None -> Some (Array.to_list subfilter)
| Some f ->
let len = Array.length subfilter in
let fold b (i, ans) =
if b then
let () = assert (0 <= i) in
(pred i, Array.unsafe_get subfilter i :: ans)
else
(i, false :: ans)
in
Some (snd (List.fold_right fold f (pred len, [])))
let apply_subfilter filter subfilter =
apply_subfilter_array filter (Array.of_list subfilter)
let restrict_upon f len p =
let newfilter = Array.init len p in
if Array.for_all (fun id -> id) newfilter then None
else
Some (apply_subfilter_array f newfilter)
let map_along f flt l =
let ans = match flt with
| None -> List.map (fun x -> f true x) l
| Some flt -> List.map2 f flt l
in
normalize ans
let make l = normalize l
let repr f = f
end
(* The kinds of existential variables are now defined in [Evar_kinds] *)
(* The type of mappings for existential variables *)
module Store = Store.Make ()
type evar = Evar.t
let string_of_existential evk = "?X" ^ string_of_int (Evar.repr evk)
type evar_body =
| Evar_empty
| Evar_defined of constr
type evar_info = {
evar_concl : constr;
evar_hyps : named_context_val;
evar_body : evar_body;
evar_filter : Filter.t;
evar_source : Evar_kinds.t Loc.located;
evar_candidates : constr list option; (* if not None, list of allowed instances *)
evar_extra : Store.t }
let make_evar hyps ccl = {
evar_concl = ccl;
evar_hyps = hyps;
evar_body = Evar_empty;
evar_filter = Filter.identity;
evar_source = Loc.tag @@ Evar_kinds.InternalHole;
evar_candidates = None;
evar_extra = Store.empty
}
let instance_mismatch () =
anomaly (Pp.str "Signature and its instance do not match.")
let evar_concl evi = evi.evar_concl
let evar_filter evi = evi.evar_filter
let evar_body evi = evi.evar_body
let evar_context evi = named_context_of_val evi.evar_hyps
let evar_filtered_context evi =
Filter.filter_list (evar_filter evi) (evar_context evi)
let evar_hyps evi = evi.evar_hyps
let evar_filtered_hyps evi = match Filter.repr (evar_filter evi) with
| None -> evar_hyps evi
| Some filter ->
let rec make_hyps filter ctxt = match filter, ctxt with
| [], [] -> empty_named_context_val
| false :: filter, _ :: ctxt -> make_hyps filter ctxt
| true :: filter, decl :: ctxt ->
let hyps = make_hyps filter ctxt in
push_named_context_val decl hyps
| _ -> instance_mismatch ()
in
make_hyps filter (evar_context evi)
let evar_env evi = Global.env_of_context evi.evar_hyps
let evar_filtered_env evi = match Filter.repr (evar_filter evi) with
| None -> evar_env evi
| Some filter ->
let rec make_env filter ctxt = match filter, ctxt with
| [], [] -> reset_context (Global.env ())
| false :: filter, _ :: ctxt -> make_env filter ctxt
| true :: filter, decl :: ctxt ->
let env = make_env filter ctxt in
push_named decl env
| _ -> instance_mismatch ()
in
make_env filter (evar_context evi)
let map_evar_body f = function
| Evar_empty -> Evar_empty
| Evar_defined d -> Evar_defined (f d)
let map_evar_info f evi =
{evi with
evar_body = map_evar_body f evi.evar_body;
evar_hyps = map_named_val f evi.evar_hyps;
evar_concl = f evi.evar_concl;
evar_candidates = Option.map (List.map f) evi.evar_candidates }
(* This exception is raised by *.existential_value *)
exception NotInstantiatedEvar
(* Note: let-in contributes to the instance *)
let evar_instance_array test_id info args =
let len = Array.length args in
let rec instrec filter ctxt i = match filter, ctxt with
| [], [] ->
if Int.equal i len then []
else instance_mismatch ()
| false :: filter, _ :: ctxt ->
instrec filter ctxt i
| true :: filter, d :: ctxt ->
if i < len then
let c = Array.unsafe_get args i in
if test_id d c then instrec filter ctxt (succ i)
else (NamedDecl.get_id d, c) :: instrec filter ctxt (succ i)
else instance_mismatch ()
| _ -> instance_mismatch ()
in
match Filter.repr (evar_filter info) with
| None ->
let map i d =
if (i < len) then
let c = Array.unsafe_get args i in
if test_id d c then None else Some (NamedDecl.get_id d, c)
else instance_mismatch ()
in
List.map_filter_i map (evar_context info)
| Some filter ->
instrec filter (evar_context info) 0
let make_evar_instance_array info args =
evar_instance_array (NamedDecl.get_id %> isVarId) info args
let instantiate_evar_array info c args =
let inst = make_evar_instance_array info args in
match inst with
| [] -> c
| _ -> replace_vars inst c
type 'a in_evar_universe_context = 'a * UState.t
(*******************************************************************)
(* Metamaps *)
(*******************************************************************)
(* Constraints for existential variables *)
(*******************************************************************)
type 'a freelisted = {
rebus : 'a;
freemetas : Int.Set.t }
(* Collects all metavars appearing in a constr *)
let metavars_of c =
let rec collrec acc c =
match kind c with
| Meta mv -> Int.Set.add mv acc
| _ -> Constr.fold collrec acc c
in
collrec Int.Set.empty c
let mk_freelisted c =
{ rebus = c; freemetas = metavars_of c }
let map_fl f cfl = { cfl with rebus=f cfl.rebus }
(* Status of an instance found by unification wrt to the meta it solves:
- a supertype of the meta (e.g. the solution to ?X <= T is a supertype of ?X)
- a subtype of the meta (e.g. the solution to T <= ?X is a supertype of ?X)
- a term that can be eta-expanded n times while still being a solution
(e.g. the solution [P] to [?X u v = P u v] can be eta-expanded twice)
*)
type instance_constraint = IsSuperType | IsSubType | Conv
let eq_instance_constraint c1 c2 = c1 == c2
(* Status of the unification of the type of an instance against the type of
the meta it instantiates:
- CoerceToType means that the unification of types has not been done
and that a coercion can still be inserted: the meta should not be
substituted freely (this happens for instance given via the
"with" binding clause).
- TypeProcessed means that the information obtainable from the
unification of types has been extracted.
- TypeNotProcessed means that the unification of types has not been
done but it is known that no coercion may be inserted: the meta
can be substituted freely.
*)
type instance_typing_status =
CoerceToType | TypeNotProcessed | TypeProcessed
(* Status of an instance together with the status of its type unification *)
type instance_status = instance_constraint * instance_typing_status
(* Clausal environments *)
type clbinding =
| Cltyp of Name.t * constr freelisted
| Clval of Name.t * (constr freelisted * instance_status) * constr freelisted
let map_clb f = function
| Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl)
| Clval (na,(cfl1,pb),cfl2) -> Clval (na,(map_fl f cfl1,pb),map_fl f cfl2)
(* name of defined is erased (but it is pretty-printed) *)
let clb_name = function
Cltyp(na,_) -> (na,false)
| Clval (na,_,_) -> (na,true)
(***********************)
module Metaset = Int.Set
module Metamap = Int.Map
let metamap_to_list m =
Metamap.fold (fun n v l -> (n,v)::l) m []
(*************************)
(* Unification state *)
type conv_pb = Reduction.conv_pb
type evar_constraint = conv_pb * Environ.env * constr * constr
module EvMap = Evar.Map
module EvNames :
sig
type t
val empty : t
val add_name_undefined : Id.t option -> Evar.t -> evar_info -> t -> t
val remove_name_defined : Evar.t -> t -> t
val rename : Evar.t -> Id.t -> t -> t
val reassign_name_defined : Evar.t -> Evar.t -> t -> t
val ident : Evar.t -> t -> Id.t option
val key : Id.t -> t -> Evar.t
end =
struct
type t = Id.t EvMap.t * Evar.t Id.Map.t
let empty = (EvMap.empty, Id.Map.empty)
let add_name_newly_undefined id evk evi (evtoid, idtoev as names) =
match id with
| None -> names
| Some id ->
if Id.Map.mem id idtoev then
user_err (str "Already an existential evar of name " ++ Id.print id);
(EvMap.add evk id evtoid, Id.Map.add id evk idtoev)
let add_name_undefined naming evk evi (evtoid,idtoev as evar_names) =
if EvMap.mem evk evtoid then
evar_names
else
add_name_newly_undefined naming evk evi evar_names
let remove_name_defined evk (evtoid, idtoev as names) =
let id = try Some (EvMap.find evk evtoid) with Not_found -> None in
match id with
| None -> names
| Some id -> (EvMap.remove evk evtoid, Id.Map.remove id idtoev)
let rename evk id (evtoid, idtoev) =
let id' = try Some (EvMap.find evk evtoid) with Not_found -> None in
match id' with
| None -> (EvMap.add evk id evtoid, Id.Map.add id evk idtoev)
| Some id' ->
if Id.Map.mem id idtoev then anomaly (str "Evar name already in use.");
(EvMap.set evk id evtoid (* overwrite old name *), Id.Map.add id evk (Id.Map.remove id' idtoev))
let reassign_name_defined evk evk' (evtoid, idtoev as names) =
let id = try Some (EvMap.find evk evtoid) with Not_found -> None in
match id with
| None -> names (** evk' must not be defined *)
| Some id ->
(EvMap.add evk' id (EvMap.remove evk evtoid),
Id.Map.add id evk' (Id.Map.remove id idtoev))
let ident evk (evtoid, _) =
try Some (EvMap.find evk evtoid) with Not_found -> None
let key id (_, idtoev) =
Id.Map.find id idtoev
end
type goal_kind = ToShelve | ToGiveUp
type evar_map = {
(** Existential variables *)
defn_evars : evar_info EvMap.t;
undf_evars : evar_info EvMap.t;
evar_names : EvNames.t;
(** Universes *)
universes : UState.t;
(** Conversion problems *)
conv_pbs : evar_constraint list;
last_mods : Evar.Set.t;
(** Metas *)
metas : clbinding Metamap.t;
(** Interactive proofs *)
effects : Safe_typing.private_constants;
future_goals : Evar.t list; (** list of newly created evars, to be
eventually turned into goals if not solved.*)
principal_future_goal : Evar.t option; (** if [Some e], [e] must be
contained
[future_goals]. The evar
[e] will inherit
properties (now: the
name) of the evar which
will be instantiated with
a term containing [e]. *)
future_goals_status : goal_kind EvMap.t;
extras : Store.t;
}
(*** Lifting primitive from Evar.Map. ***)
let rename evk id evd =
{ evd with evar_names = EvNames.rename evk id evd.evar_names }
let add_with_name ?name d e i = match i.evar_body with
| Evar_empty ->
let evar_names = EvNames.add_name_undefined name e i d.evar_names in
{ d with undf_evars = EvMap.add e i d.undf_evars; evar_names }
| Evar_defined _ ->
let evar_names = EvNames.remove_name_defined e d.evar_names in
{ d with defn_evars = EvMap.add e i d.defn_evars; evar_names }
let add d e i = add_with_name d e i
(** New evars *)
let evar_counter_summary_name = "evar counter"
(* Generator of existential names *)
let evar_ctr, evar_counter_summary_tag = Summary.ref_tag 0 ~name:evar_counter_summary_name
let new_untyped_evar () = incr evar_ctr; Evar.unsafe_of_int !evar_ctr
let new_evar evd ?name evi =
let evk = new_untyped_evar () in
let evd = add_with_name evd ?name evk evi in
(evd, evk)
let remove d e =
let undf_evars = EvMap.remove e d.undf_evars in
let defn_evars = EvMap.remove e d.defn_evars in
let principal_future_goal = match d.principal_future_goal with
| None -> None
| Some e' -> if Evar.equal e e' then None else d.principal_future_goal
in
let future_goals = List.filter (fun e' -> not (Evar.equal e e')) d.future_goals in
let future_goals_status = EvMap.remove e d.future_goals_status in
{ d with undf_evars; defn_evars; principal_future_goal; future_goals; future_goals_status }
let find d e =
try EvMap.find e d.undf_evars
with Not_found -> EvMap.find e d.defn_evars
let find_undefined d e = EvMap.find e d.undf_evars
let mem d e = EvMap.mem e d.undf_evars || EvMap.mem e d.defn_evars
let undefined_map d = d.undf_evars
let drop_all_defined d = { d with defn_evars = EvMap.empty }
(* spiwack: not clear what folding over an evar_map, for now we shall
simply fold over the inner evar_map. *)
let fold f d a =
EvMap.fold f d.defn_evars (EvMap.fold f d.undf_evars a)
let fold_undefined f d a = EvMap.fold f d.undf_evars a
let raw_map f d =
let f evk info =
let ans = f evk info in
let () = match info.evar_body, ans.evar_body with
| Evar_defined _, Evar_empty
| Evar_empty, Evar_defined _ ->
anomaly (str "Unrespectful mapping function.")
| _ -> ()
in
ans
in
let defn_evars = EvMap.smartmapi f d.defn_evars in
let undf_evars = EvMap.smartmapi f d.undf_evars in
{ d with defn_evars; undf_evars; }
let raw_map_undefined f d =
let f evk info =
let ans = f evk info in
let () = match ans.evar_body with
| Evar_defined _ ->
anomaly (str "Unrespectful mapping function.")
| _ -> ()
in
ans
in
{ d with undf_evars = EvMap.smartmapi f d.undf_evars; }
let is_evar = mem
let is_defined d e = EvMap.mem e d.defn_evars
let is_undefined d e = EvMap.mem e d.undf_evars
let existential_value d (n, args) =
let info = find d n in
match evar_body info with
| Evar_defined c ->
instantiate_evar_array info c args
| Evar_empty ->
raise NotInstantiatedEvar
let existential_value0 = existential_value
let existential_opt_value d ev =
try Some (existential_value d ev)
with NotInstantiatedEvar -> None
let existential_opt_value0 = existential_opt_value
let existential_type d (n, args) =
let info =
try find d n
with Not_found ->
anomaly (str "Evar " ++ str (string_of_existential n) ++ str " was not declared.") in
instantiate_evar_array info info.evar_concl args
let existential_type0 = existential_type
let add_constraints d c =
{ d with universes = UState.add_constraints d.universes c }
let add_universe_constraints d c =
{ d with universes = UState.add_universe_constraints d.universes c }
(*** /Lifting... ***)
(* evar_map are considered empty disregarding histories *)
let is_empty d =
EvMap.is_empty d.defn_evars &&
EvMap.is_empty d.undf_evars &&
List.is_empty d.conv_pbs &&
Metamap.is_empty d.metas
let cmap f evd =
{ evd with
metas = Metamap.map (map_clb f) evd.metas;
defn_evars = EvMap.map (map_evar_info f) evd.defn_evars;
undf_evars = EvMap.map (map_evar_info f) evd.undf_evars
}
(* spiwack: deprecated *)
let create_evar_defs sigma = { sigma with
conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty }
let empty = {
defn_evars = EvMap.empty;
undf_evars = EvMap.empty;
universes = UState.empty;
conv_pbs = [];
last_mods = Evar.Set.empty;
metas = Metamap.empty;
effects = Safe_typing.empty_private_constants;
evar_names = EvNames.empty; (* id<->key for undefined evars *)
future_goals = [];
principal_future_goal = None;
future_goals_status = EvMap.empty;
extras = Store.empty;
}
let from_env e =
{ empty with universes = UState.make (Environ.universes e) }
let from_ctx ctx = { empty with universes = ctx }
let has_undefined evd = not (EvMap.is_empty evd.undf_evars)
let evars_reset_evd ?(with_conv_pbs=false) ?(with_univs=true) evd d =
let conv_pbs = if with_conv_pbs then evd.conv_pbs else d.conv_pbs in
let last_mods = if with_conv_pbs then evd.last_mods else d.last_mods in
let universes =
if not with_univs then evd.universes
else UState.union evd.universes d.universes
in
{ evd with
metas = d.metas;
last_mods; conv_pbs; universes }
let merge_universe_context evd uctx' =
{ evd with universes = UState.union evd.universes uctx' }
let set_universe_context evd uctx' =
{ evd with universes = uctx' }
let add_conv_pb ?(tail=false) pb d =
(** MS: we have duplicates here, why? *)
if tail then {d with conv_pbs = d.conv_pbs @ [pb]}
else {d with conv_pbs = pb::d.conv_pbs}
let evar_source evk d = (find d evk).evar_source
let evar_ident evk evd = EvNames.ident evk evd.evar_names
let evar_key id evd = EvNames.key id evd.evar_names
let restricted = Store.field ()
let define_aux ?dorestrict def undef evk body =
let oldinfo =
try EvMap.find evk undef
with Not_found ->
if EvMap.mem evk def then
anomaly ~label:"Evd.define" (Pp.str "cannot define an evar twice.")
else
anomaly ~label:"Evd.define" (Pp.str "cannot define undeclared evar.")
in
let () = assert (oldinfo.evar_body == Evar_empty) in
let evar_extra = match dorestrict with
| Some evk' -> Store.set oldinfo.evar_extra restricted evk'
| None -> oldinfo.evar_extra in
let newinfo = { oldinfo with evar_body = Evar_defined body; evar_extra } in
EvMap.add evk newinfo def, EvMap.remove evk undef
(* define the existential of section path sp as the constr body *)
let define evk body evd =
let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in
let last_mods = match evd.conv_pbs with
| [] -> evd.last_mods
| _ -> Evar.Set.add evk evd.last_mods
in
let evar_names = EvNames.remove_name_defined evk evd.evar_names in
{ evd with defn_evars; undf_evars; last_mods; evar_names }
let is_restricted_evar evi =
Store.get evi.evar_extra restricted
let restrict evk filter ?candidates ?src evd =
let evk' = new_untyped_evar () in
let evar_info = EvMap.find evk evd.undf_evars in
let evar_info' =
{ evar_info with evar_filter = filter;
evar_candidates = candidates;
evar_source = (match src with None -> evar_info.evar_source | Some src -> src) } in
let last_mods = match evd.conv_pbs with
| [] -> evd.last_mods
| _ -> Evar.Set.add evk evd.last_mods in
let evar_names = EvNames.reassign_name_defined evk evk' evd.evar_names in
let ctxt = Filter.filter_list filter (evar_context evar_info) in
let id_inst = Array.map_of_list (NamedDecl.get_id %> mkVar) ctxt in
let body = mkEvar(evk',id_inst) in
let (defn_evars, undf_evars) = define_aux ~dorestrict:evk' evd.defn_evars evd.undf_evars evk body in
{ evd with undf_evars = EvMap.add evk' evar_info' undf_evars;
defn_evars; last_mods; evar_names }, evk'
let downcast evk ccl evd =
let evar_info = EvMap.find evk evd.undf_evars in
let evar_info' = { evar_info with evar_concl = ccl } in
{ evd with undf_evars = EvMap.add evk evar_info' evd.undf_evars }
(* extracts conversion problems that satisfy predicate p *)
(* Note: conv_pbs not satisying p are stored back in reverse order *)
let extract_conv_pbs evd p =
let (pbs,pbs1) =
List.fold_left
(fun (pbs,pbs1) pb ->
if p pb then
(pb::pbs,pbs1)
else
(pbs,pb::pbs1))
([],[])
evd.conv_pbs
in
{evd with conv_pbs = pbs1; last_mods = Evar.Set.empty},
pbs
let extract_changed_conv_pbs evd p =
extract_conv_pbs evd (fun pb -> p evd.last_mods pb)
let extract_all_conv_pbs evd =
extract_conv_pbs evd (fun _ -> true)
let loc_of_conv_pb evd (pbty,env,t1,t2) =
match kind (fst (decompose_app t1)) with
| Evar (evk1,_) -> fst (evar_source evk1 evd)
| _ ->
match kind (fst (decompose_app t2)) with
| Evar (evk2,_) -> fst (evar_source evk2 evd)
| _ -> None
(** The following functions return the set of evars immediately
contained in the object *)
(* excluding defined evars *)
let evars_of_term c =
let rec evrec acc c =
match kind c with
| Evar (n, l) -> Evar.Set.add n (Array.fold_left evrec acc l)
| _ -> Constr.fold evrec acc c
in
evrec Evar.Set.empty c
let evars_of_named_context nc =
Context.Named.fold_outside
(NamedDecl.fold_constr (fun constr s -> Evar.Set.union s (evars_of_term constr)))
nc
~init:Evar.Set.empty
let evars_of_filtered_evar_info evi =
Evar.Set.union (evars_of_term evi.evar_concl)
(Evar.Set.union
(match evi.evar_body with
| Evar_empty -> Evar.Set.empty
| Evar_defined b -> evars_of_term b)
(evars_of_named_context (evar_filtered_context evi)))
(**********************************************************)
(* Sort variables *)
type rigid = UState.rigid =
| UnivRigid
| UnivFlexible of bool (** Is substitution by an algebraic ok? *)
let univ_rigid = UnivRigid
let univ_flexible = UnivFlexible false
let univ_flexible_alg = UnivFlexible true
let evar_universe_context d = d.universes
let universe_context_set d = UState.context_set d.universes
let to_universe_context evd = UState.context evd.universes
let const_univ_entry ~poly evd = UState.const_univ_entry ~poly evd.universes
let ind_univ_entry ~poly evd = UState.ind_univ_entry ~poly evd.universes
let check_univ_decl ~poly evd decl = UState.check_univ_decl ~poly evd.universes decl
let restrict_universe_context evd vars =
{ evd with universes = UState.restrict evd.universes vars }
let universe_subst evd =
UState.subst evd.universes
let merge_context_set ?loc ?(sideff=false) rigid evd ctx' =
{evd with universes = UState.merge ?loc sideff rigid evd.universes ctx'}
let merge_universe_subst evd subst =
{evd with universes = UState.merge_subst evd.universes subst }
let with_context_set ?loc rigid d (a, ctx) =
(merge_context_set ?loc rigid d ctx, a)
let new_univ_level_variable ?loc ?name rigid evd =
let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in
({evd with universes = uctx'}, u)
let new_univ_variable ?loc ?name rigid evd =
let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in
({evd with universes = uctx'}, Univ.Universe.make u)
let new_sort_variable ?loc ?name rigid d =
let (d', u) = new_univ_variable ?loc rigid ?name d in
(d', Type u)
let add_global_univ d u =
{ d with universes = UState.add_global_univ d.universes u }
let make_flexible_variable evd ~algebraic u =
{ evd with universes =
UState.make_flexible_variable evd.universes ~algebraic u }
(****************************************)
(* Operations on constants *)
(****************************************)
let fresh_sort_in_family ?loc ?(rigid=univ_flexible) env evd s =
with_context_set ?loc rigid evd (Universes.fresh_sort_in_family env s)
let fresh_constant_instance ?loc env evd c =
with_context_set ?loc univ_flexible evd (Universes.fresh_constant_instance env c)
let fresh_inductive_instance ?loc env evd i =
with_context_set ?loc univ_flexible evd (Universes.fresh_inductive_instance env i)
let fresh_constructor_instance ?loc env evd c =
with_context_set ?loc univ_flexible evd (Universes.fresh_constructor_instance env c)
let fresh_global ?loc ?(rigid=univ_flexible) ?names env evd gr =
with_context_set ?loc rigid evd (Universes.fresh_global_instance ?names env gr)
let whd_sort_variable evd t = t
let is_sort_variable evd s = UState.is_sort_variable evd.universes s
let is_flexible_level evd l =
let uctx = evd.universes in
Univ.LMap.mem l (UState.subst uctx)
let is_eq_sort s1 s2 =
if Sorts.equal s1 s2 then None
else
let u1 = univ_of_sort s1
and u2 = univ_of_sort s2 in
if Univ.Universe.equal u1 u2 then None
else Some (u1, u2)
(* Precondition: l is not defined in the substitution *)
let universe_rigidity evd l =
let uctx = evd.universes in
if Univ.LSet.mem l (Univ.ContextSet.levels (UState.context_set uctx)) then
UnivFlexible (Univ.LSet.mem l (UState.algebraics uctx))
else UnivRigid
let normalize_universe evd =
let vars = ref (UState.subst evd.universes) in
let normalize = Universes.normalize_universe_opt_subst vars in
normalize
let normalize_universe_instance evd l =
let vars = ref (UState.subst evd.universes) in
let normalize = Universes.level_subst_of (Universes.normalize_univ_variable_opt_subst vars) in
Univ.Instance.subst_fn normalize l
let normalize_sort evars s =
match s with
| Prop _ -> s
| Type u ->
let u' = normalize_universe evars u in
if u' == u then s else Type u'
(* FIXME inefficient *)
let set_eq_sort env d s1 s2 =
let s1 = normalize_sort d s1 and s2 = normalize_sort d s2 in
match is_eq_sort s1 s2 with
| None -> d
| Some (u1, u2) ->
if not (type_in_type env) then
add_universe_constraints d
(Universes.Constraints.singleton (Universes.UEq (u1,u2)))
else
d
let set_eq_level d u1 u2 =
add_constraints d (Univ.enforce_eq_level u1 u2 Univ.Constraint.empty)
let set_leq_level d u1 u2 =
add_constraints d (Univ.enforce_leq_level u1 u2 Univ.Constraint.empty)
let set_eq_instances ?(flex=false) d u1 u2 =
add_universe_constraints d
(Universes.enforce_eq_instances_univs flex u1 u2 Universes.Constraints.empty)
let set_leq_sort env evd s1 s2 =
let s1 = normalize_sort evd s1
and s2 = normalize_sort evd s2 in
match is_eq_sort s1 s2 with
| None -> evd
| Some (u1, u2) ->
if not (type_in_type env) then
add_universe_constraints evd (Universes.Constraints.singleton (Universes.ULe (u1,u2)))
else evd
let check_eq evd s s' =
UGraph.check_eq (UState.ugraph evd.universes) s s'
let check_leq evd s s' =
UGraph.check_leq (UState.ugraph evd.universes) s s'
let fix_undefined_variables evd =
{ evd with universes = UState.fix_undefined_variables evd.universes }
let refresh_undefined_universes evd =
let uctx', subst = UState.refresh_undefined_univ_variables evd.universes in
let evd' = cmap (subst_univs_level_constr subst) {evd with universes = uctx'} in
evd', subst
let nf_univ_variables evd =
let subst, uctx' = UState.normalize_variables evd.universes in
let evd' = {evd with universes = uctx'} in
evd', subst
let minimize_universes evd =
let subst, uctx' = UState.normalize_variables evd.universes in
let uctx' = UState.minimize uctx' in
{evd with universes = uctx'}
let universe_of_name evd s = UState.universe_of_name evd.universes s
let universe_binders evd = UState.universe_binders evd.universes
let universes evd = UState.ugraph evd.universes
let update_sigma_env evd env =
{ evd with universes = UState.update_sigma_env evd.universes env }
exception UniversesDiffer = UState.UniversesDiffer
(**********************************************************)
(* Side effects *)
let emit_side_effects eff evd =
{ evd with effects = Safe_typing.concat_private eff evd.effects;
universes = UState.emit_side_effects eff evd.universes }
let drop_side_effects evd =
{ evd with effects = Safe_typing.empty_private_constants; }
let eval_side_effects evd = evd.effects
(* Future goals *)
let declare_future_goal ?tag evk evd =
{ evd with future_goals = evk::evd.future_goals;
future_goals_status = Option.fold_right (EvMap.add evk) tag evd.future_goals_status }
let declare_principal_goal ?tag evk evd =
match evd.principal_future_goal with
| None -> { evd with
future_goals = evk::evd.future_goals;
principal_future_goal=Some evk;
future_goals_status = Option.fold_right (EvMap.add evk) tag evd.future_goals_status;
}
| Some _ -> CErrors.user_err Pp.(str "Only one main subgoal per instantiation.")
type future_goals = Evar.t list * Evar.t option * goal_kind EvMap.t
let future_goals evd = evd.future_goals
let principal_future_goal evd = evd.principal_future_goal
let save_future_goals evd =
(evd.future_goals, evd.principal_future_goal, evd.future_goals_status)
let reset_future_goals evd =
{ evd with future_goals = [] ; principal_future_goal = None;
future_goals_status = EvMap.empty }
let restore_future_goals evd (gls,pgl,map) =
{ evd with future_goals = gls ; principal_future_goal = pgl;
future_goals_status = map }
let fold_future_goals f sigma (gls,pgl,map) =
List.fold_left f sigma gls
let map_filter_future_goals f (gls,pgl,map) =
(* Note: map is now a superset of filtered evs, but its size should
not be too big, so that's probably ok not to update it *)
(List.map_filter f gls,Option.bind pgl f,map)
let filter_future_goals f (gls,pgl,map) =
(List.filter f gls,Option.bind pgl (fun a -> if f a then Some a else None),map)
let dispatch_future_goals_gen distinguish_shelf (gls,pgl,map) =
let rec aux (comb,shelf,givenup as acc) = function
| [] -> acc
| evk :: gls ->
let acc =
try match EvMap.find evk map with
| ToGiveUp -> (comb,shelf,evk::givenup)
| ToShelve ->
if distinguish_shelf then (comb,evk::shelf,givenup)
else raise Not_found
with Not_found -> (evk::comb,shelf,givenup) in
aux acc gls in
(* Note: this reverses the order of initial list on purpose *)
let (comb,shelf,givenup) = aux ([],[],[]) gls in
(comb,shelf,givenup,pgl)
let dispatch_future_goals =
dispatch_future_goals_gen true
let extract_given_up_future_goals goals =
let (comb,_,givenup,_) = dispatch_future_goals_gen false goals in
(comb,givenup)
let shelve_on_future_goals shelved (gls,pgl,map) =
(shelved @ gls, pgl, List.fold_right (fun evk -> EvMap.add evk ToShelve) shelved map)
(**********************************************************)
(* Accessing metas *)
(** We use this function to overcome OCaml compiler limitations and to prevent
the use of costly in-place modifications. *)
let set_metas evd metas = {
defn_evars = evd.defn_evars;
undf_evars = evd.undf_evars;
universes = evd.universes;
conv_pbs = evd.conv_pbs;
last_mods = evd.last_mods;
metas;
effects = evd.effects;
evar_names = evd.evar_names;
future_goals = evd.future_goals;
future_goals_status = evd.future_goals_status;
principal_future_goal = evd.principal_future_goal;
extras = evd.extras;
}
let meta_list evd = metamap_to_list evd.metas
let undefined_metas evd =
let filter = function
| (n,Clval(_,_,typ)) -> None
| (n,Cltyp (_,typ)) -> Some n
in
let m = List.map_filter filter (meta_list evd) in
List.sort Int.compare m
let map_metas_fvalue f evd =
let map = function
| Clval(id,(c,s),typ) -> Clval(id,(mk_freelisted (f c.rebus),s),typ)
| x -> x
in
set_metas evd (Metamap.smartmap map evd.metas)
let map_metas f evd =
let map cl = map_clb f cl in
set_metas evd (Metamap.smartmap map evd.metas)
let meta_opt_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> Some b
| Cltyp _ -> None
let meta_defined evd mv =
match Metamap.find mv evd.metas with
| Clval _ -> true
| Cltyp _ -> false
let try_meta_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> b
| Cltyp _ -> raise Not_found
let meta_fvalue evd mv =
try try_meta_fvalue evd mv
with Not_found -> anomaly ~label:"meta_fvalue" (Pp.str "meta has no value.")
let meta_value evd mv =
(fst (try_meta_fvalue evd mv)).rebus
let meta_ftype evd mv =
match Metamap.find mv evd.metas with
| Cltyp (_,b) -> b
| Clval(_,_,b) -> b
let meta_type evd mv = (meta_ftype evd mv).rebus
let meta_type0 = meta_type
let meta_declare mv v ?(name=Anonymous) evd =
let metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas in
set_metas evd metas
let meta_assign mv (v, pb) evd =
let modify _ = function
| Cltyp (na, ty) -> Clval (na, (mk_freelisted v, pb), ty)
| _ -> anomaly ~label:"meta_assign" (Pp.str "already defined.")
in
let metas = Metamap.modify mv modify evd.metas in
set_metas evd metas
let meta_reassign mv (v, pb) evd =
let modify _ = function
| Clval(na, _, ty) -> Clval (na, (mk_freelisted v, pb), ty)
| _ -> anomaly ~label:"meta_reassign" (Pp.str "not yet defined.")
in
let metas = Metamap.modify mv modify evd.metas in
set_metas evd metas
(* If the meta is defined then forget its name *)
let meta_name evd mv =
try fst (clb_name (Metamap.find mv evd.metas)) with Not_found -> Anonymous
let clear_metas evd = {evd with metas = Metamap.empty}
let meta_merge ?(with_univs = true) evd1 evd2 =
let metas = Metamap.fold Metamap.add evd1.metas evd2.metas in
let universes =
if with_univs then UState.union evd2.universes evd1.universes
else evd2.universes
in
{evd2 with universes; metas; }
type metabinding = metavariable * constr * instance_status
let retract_coercible_metas evd =
let mc = ref [] in
let map n v = match v with
| Clval (na, (b, (Conv, CoerceToType as s)), typ) ->
let () = mc := (n, b.rebus, s) :: !mc in
Cltyp (na, typ)
| v -> v
in
let metas = Metamap.smartmapi map evd.metas in
!mc, set_metas evd metas
let evar_source_of_meta mv evd =
match meta_name evd mv with
| Anonymous -> Loc.tag Evar_kinds.GoalEvar
| Name id -> Loc.tag @@ Evar_kinds.VarInstance id
let dependent_evar_ident ev evd =
let evi = find evd ev in
match evi.evar_source with
| (_,Evar_kinds.VarInstance id) -> id
| _ -> anomaly (str "Not an evar resulting of a dependent binding.")
(**********************************************************)
(* Extra data *)
let get_extra_data evd = evd.extras
let set_extra_data extras evd = { evd with extras }
(*******************************************************************)
type open_constr = evar_map * constr
(*******************************************************************)
(* The type constructor ['a sigma] adds an evar map to an object of
type ['a] *)
type 'a sigma = {
it : 'a ;
sigma : evar_map
}
let sig_it x = x.it
let sig_sig x = x.sigma
let on_sig s f =
let sigma', v = f s.sigma in
{ s with sigma = sigma' }, v
(*******************************************************************)
(* The state monad with state an evar map. *)
module MonadR =
Monad.Make (struct
type +'a t = evar_map -> evar_map * 'a
let return a = fun s -> (s,a)
let (>>=) x f = fun s ->
let (s',a) = x s in
f a s'
let (>>) x y = fun s ->
let (s',()) = x s in
y s'
let map f x = fun s ->
on_snd f (x s)
end)
module Monad =
Monad.Make (struct
type +'a t = evar_map -> 'a * evar_map
let return a = fun s -> (a,s)
let (>>=) x f = fun s ->
let (a,s') = x s in
f a s'
let (>>) x y = fun s ->
let ((),s') = x s in
y s'
let map f x = fun s ->
on_fst f (x s)
end)
(**********************************************************)
(* Failure explanation *)
type unsolvability_explanation = SeveralInstancesFound of int
(** Deprecated *)
type evar_universe_context = UState.t
let empty_evar_universe_context = UState.empty
let union_evar_universe_context = UState.union
let evar_universe_context_set = UState.context_set
let evar_universe_context_constraints = UState.constraints
let evar_context_universe_context = UState.context
let evar_universe_context_of = UState.of_context_set
let evar_universe_context_subst = UState.subst
let add_constraints_context = UState.add_constraints
let constrain_variables = UState.constrain_variables
let evar_universe_context_of_binders = UState.of_binders
let make_evar_universe_context e l =
let g = Environ.universes e in
match l with
| None -> UState.make g
| Some l -> UState.make_with_initial_binders g l
let normalize_evar_universe_context_variables = UState.normalize_variables
let abstract_undefined_variables = UState.abstract_undefined_variables
let normalize_evar_universe_context = UState.minimize
let nf_constraints = minimize_universes
module MiniEConstr = struct
module ESorts =
struct
type t = Sorts.t
let make s = s
let kind sigma = function
| Sorts.Type u -> Sorts.sort_of_univ (normalize_universe sigma u)
| s -> s
let unsafe_to_sorts s = s
end
module EInstance =
struct
type t = Univ.Instance.t
let make i = i
let kind sigma i =
if Univ.Instance.is_empty i then i
else normalize_universe_instance sigma i
let empty = Univ.Instance.empty
let is_empty = Univ.Instance.is_empty
let unsafe_to_instance t = t
end
type t = econstr
let safe_evar_value sigma ev =
try Some (existential_value sigma ev)
with NotInstantiatedEvar | Not_found -> None
let rec whd_evar sigma c =
match Constr.kind c with
| Evar ev ->
begin match safe_evar_value sigma ev with
| Some c -> whd_evar sigma c
| None -> c
end
| App (f, args) when isEvar f ->
(** Enforce smart constructor invariant on applications *)
let ev = destEvar f in
begin match safe_evar_value sigma ev with
| None -> c
| Some f -> whd_evar sigma (mkApp (f, args))
end
| Cast (c0, k, t) when isEvar c0 ->
(** Enforce smart constructor invariant on casts. *)
let ev = destEvar c0 in
begin match safe_evar_value sigma ev with
| None -> c
| Some c -> whd_evar sigma (mkCast (c, k, t))
end
| _ -> c
let kind sigma c = Constr.kind (whd_evar sigma c)
let kind_upto = kind
let kind_of_type sigma c = Term.kind_of_type (whd_evar sigma c)
let of_kind = Constr.of_kind
let of_constr c = c
let unsafe_to_constr c = c
let unsafe_eq = Refl
let to_constr ?(abort_on_undefined_evars=true) sigma c =
let rec to_constr c = match Constr.kind c with
| Evar ev ->
begin match safe_evar_value sigma ev with
| Some c -> to_constr c
| None ->
if abort_on_undefined_evars then
anomaly ~label:"econstr" Pp.(str "grounding a non evar-free term")
else
Constr.map (fun c -> to_constr c) c
end
| Sort (Sorts.Type u) ->
let u' = normalize_universe sigma u in
if u' == u then c else mkSort (Sorts.sort_of_univ u')
| Const (c', u) when not (Univ.Instance.is_empty u) ->
let u' = normalize_universe_instance sigma u in
if u' == u then c else mkConstU (c', u')
| Ind (i, u) when not (Univ.Instance.is_empty u) ->
let u' = normalize_universe_instance sigma u in
if u' == u then c else mkIndU (i, u')
| Construct (co, u) when not (Univ.Instance.is_empty u) ->
let u' = normalize_universe_instance sigma u in
if u' == u then c else mkConstructU (co, u')
| _ -> Constr.map (fun c -> to_constr c) c
in to_constr c
let of_named_decl d = d
let unsafe_to_named_decl d = d
let of_rel_decl d = d
let unsafe_to_rel_decl d = d
let to_rel_decl sigma d = Context.Rel.Declaration.map_constr (to_constr sigma) d
end
|